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The Role of  High Mobility Group Box 1 in Innate Immunity
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With growing accounts of inflammatory diseases such as sepsis, greater understand-
ing the immune system and the mechanisms of cellular immunity have become pri-
mary objectives in immunology studies. High mobility group box 1 (HMGB1) is a 
ubiquitous nuclear protein that is implicated in various aspects of the innate immune 
system as a damage-associated molecular pattern molecule and a late mediator of 
inflammation, as well as in principal cellular processes, such as autophagy and apop-
tosis. HMGB1 functions in the nucleus as a DNA chaperone; however, it exhibits 
cytokine-like activity when secreted by injurious or infectious stimuli. Extracellular 
HMGB1 acts through specific receptors to promote activation of the NF-κB signal-
ing pathway, leading to production of cytokines and chemokines. These findings fur-
ther implicate HMGB1 in lethal inflammatory diseases as a crucial regulator of in-
flammatory, injurious, and infectious responses. In this paper, we summarize the role 
of HMGB1 in inflammatory and non-inflammatory states and assess potential ther-
apeutic approaches targeting HMGB1 in inflammatory diseases.
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INTRODUCTION

High mobility group box 1 (HMGB1, previously HMG-1 or amphoterin) is a high-
ly conserved, non-histone chromosomal protein that serves various roles in intra-
cellular and extracellular microenvironments.1 HMGB1 was discovered 40 years 
ago as part of a group of chromatin proteins. This group of proteins was designat-
ed as the “high mobility group,” due to their rapid electrophoretic mobility proper-
ties in polyacrylamide gels.2 Since its first discovery as a chromatin-associated 
protein, extensive studies of this group have led to the identification of several crit-
ical functions of HMGB1. In eukaryotic cells, this ubiquitous protein mainly re-
mains in the nucleus, where it functions as a DNA chaperone facilitating DNA 
replication, V(D)J recombination, transcription, DNA repair, and the stabilization 
of nucleosome formation by bending the DNA helical structure and promoting the 
binding of regulatory complexes to DNA.3-7 Within the cytoplasm, HMGB1 takes 
part in regulating autophagy and maintaining balance between autophagy and 
apoptosis.8 Recently, cytoplasmic HMGB1 was also shown to act as a chaperon in 
the cytoplasm, using a model of Huntington’s expanded polyglutamine traits, by 
reducing protein aggregation caused by heat or chemical stress.5 Apart from preva-
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ing factor (UBF), lymphoid transcription factors T-cell fac-
tor (TCF)-1 and lymphoid enhancer factor (LEF)-1, fungal 
mating genes mat-Mc and MATa1, and mammalian sex-de-
termining gene SRY, all comprise this DNA-binding do-
main in a single-sequence specific or non-sequence specific 
manner.14 This paper summarizes the role of HMGB1 as a 
damage-associated molecular pattern (DAMP) molecule in 
inflammatory and non-inflammatory conditions and dis-
cusses therapeutic potential of HMGB1 in various immune 
diseases.

STRUCTURE AND RELEASE OF HMGB1

HMGB1 is a 25--30 kDa protein that is structurally com-
posed of two homologous DNA-binding domains, the A 
box and B box--each comprising approximately 80 amino 
acid residues--and a negatively charged acidic C-terminal 
tail that consists of approximately 30 consecutive aspartate 
and glutamate residues (Fig. 1A).15 The box A domain of 
HMGB1 is involved in the binding of HMGB1 to damaged 
DNA and acts as a specific antagonist to HMGB1, exhibit-
ing an anti-inflammatory effect.16 It also consists of a hepa-
rin-binding domain (6--12) and a proteolytic cleavage site 
(10--11) mediated by thrombin. Reportedly, HMGB1 cleaved 
by thrombin-thrombomodulin complex leads to a reduction 
in proinflammatory activity and binding affinity with hepa-
rin.17 The box B domain, on the other hand, is related to the 
cytokine activity of full length HMGB1 by stimulating the 
release of tumor necrosis factor (TNF)-α and other proin-
flammatory cytokines in macrophages, in addition to its 
role in DNA binding.18 It contains two important binding 
sites for toll-like receptor (TLR) (89--108) and receptor for 
advanced glycation end products (RAGE) (105--183) that 
are crucial in the activation of macrophage cytokine release, 
where the first 20 residues represent the minimum amount of 
peptides required to induce proinflammatory response.18-20 

lent roles in the cell, extracellular HMGB1 also acts as a 
proinflammatory cytokine, secreted by activated macro-
phages, as a late mediator of inflammation.9

HMGB1 is crucial to embryogenesis and neonatal growth. 
In a previous study, Hmgb1 gene-knockout mice were born 
normal, but soon became less active and died of hypoglyce-
mia within 24 h after birth. This was mainly due to impair-
ment of glucocorticoid receptors that failed to activate gene 
expression and utilize glycogen stored in the liver.10 Hmgb1-/- 
mice also showed defects in endochondral ossification in 
skeletal development during embryogenesis, suggesting that 
HMGB1 may play a role in regulating endochondral ossifi-
cation during osteogenesis.11 Furthermore, in an HMGB1 
conditional knockout mouse study, conditional ablation of 
HMGB1 in mice showed higher vulnerability to lipopolysac-
charide (LPS)-induced endotoxemia, along with crucial 
amount of macrophage cell death in tissues.12 This study fur-
ther revealed the significance of HMGB1 in regulation of 
bacteria-induced autophagic processes and cell death in mac-
rophages, suggesting a critical role of intracellular HMGB1 
in protection against bacterial infection by modulating au-
tophagy.12

Following its discovery, several subgroups of HMG pro-
teins were identified in comprehensive studies. These addi-
tional members of the protein family were found to have 
different functions than those of nuclear HMG proteins. For 
clarification purposes, the nomenclature of HMG family 
proteins was revised, and HMG proteins were divided into 
three superfamilies based on their physicochemical proper-
ties.13 Each HMG superfamily is characterized by a distin-
guished functional sequence motif: HMGB superfamily 
with “HMG-box,” HMGN with “nucleosomal binding do-
main,” and HMGA with “AT-hook” (Table 1). HMGB1 is a 
member of the HMGB superfamily, which is characterized 
by the functional motif of a DNA-binding domain, or 
HMG box. Members of this superfamily, such as HMGB1 
and HMGB2, nucleolar transcription factor upstream bind-

Table 1. HMG Chromosomal Protein Family and Its Nomenclature*
HMG superfamily (old name) Functional motif Canonical HMG proteins† (old names)

HMGA (HMG-I/Y) AT-hook HMGA1a, 1b, 1c, 2 
HMG-I, -Y, -I/R, HMGI-C

HMGB (HMG-1/2) HMG-box (DNA-binding domain) HMGB1, 2, 3, 4
HMG1 (amphoterin), 2, 2a, not yet characterized 

HMGN (HMG-14/17) Nucleosomal binding domain HMGN1, 2, 3, 3a, 4, 5
HMG14, 17, Trip7, -, -, NSBP1 (NBD-45)

*Http://www.informatics.jax.org/mgihome/nomen/hmg_family.shtml.
†Names of canonical HMG proteins are matched old names in serial respectively.
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matic residues that specifically characterize the HMG-
box.15 Within the 215 amino acid residues are target resi-
dues for post-translational modification sites, which are 
crucial in mediating the translocation of HMGB1 by acety-
lation, phosphorylation, methylation, and oxidation of 
HMGB1 (Fig. 1B).27-30

HMGB1 exhibits cytokine-like function as a proinflam-
matory mediator when released from the cell. This secre-
tion of HMGB1 to the extracellular milieu occurs in two 
principal ways: actively by inflammatory cells and passive-
ly by necrotic and apoptotic cells (Fig. 2A). When the cyto-
kine-like function of HMGB1 was first discovered, re-
searchers reported that HMGB1 is secreted by macrophages 
and monocytes as a late response to activation by proin-
flammatory stimuli, such as LPS, interleukin (IL)-1, inter-
feron (IFN)-γ, or TNF.9,31,32 These inflammatory cells modi-

Another peptide in the B box (130--139) is responsible for 
promoting erythroleukemia cell differentiation, where the 
presence of extracellular HMGB1 is essential in erythroid 
differentiation.21 The C-terminal tail is responsible for DNA 
damage repair and DNA bending, which then promotes 
other transcription factors to bind DNA.22,23 The signifi-
cance of this C-terminal tail lies on its role in increasing the 
structural stability of HMGB1 and binding to A and B box 
alternatively.24,25 Additionally, HMGB1 consists of two 
LPS-binding peptide regions in the A box (3--15) and B box 
(80--96) that are important in HMGB1-LPS-mediated 
TLR4 signaling.26 The unique shape and structure of the 
protein defines the many roles HMGB1 plays in the cell. 
HMGB1 has three α-helices arranged in an L-shaped con-
figuration that accounts for 75% of its total residues, and 
contains a significant amount of conserved basic and aro-

Fig. 1. Structure of HMGB1. (A) HMGB1 protein is composed of 215 amino acids in three structural domains: the A box (1--79), B box (89--
162), and the acidic C tail (186--215). The A box functions in DNA binding and inducing anti-inflammatory effects, whereas the B box do-
main plays an important role in DNA binding and stimulating proinflammatory responses. The B box domain consists of two crucial bind-
ing sites for TLR4 and RAGE that mediate the release of proinflammatory cytokines. In particular, the 20 amino acids of the TLR4 binding 
site (89--108) are the minimal sequence needed to induce cytokine activity. Two peptide regions (3--15, 80--96) of HMGB1 bind to delipidat-
ed LPS and lipid A regions, respectively. (B) The functional component of HMGB1 is represented in a linear diagram underlining the ami-
no acid residues that constitute the A box domain (pink), B box domain (purple), and C tail (blue). Symbols are used to denote specific 
sites for the four post-translational modifications that HMGB1 goes through during active secretion: methylation, oxidation, phosphoryla-
tion, and acetylation. 
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HMGB1, thereby causing diffusion out from the nucleus to 
the cytoplasm.30 HMGB1 also consists of three cysteine resi-
dues: Cys23, Cys45, and Cys106. Cys23 and Cys45 in the A 
box undergo a conformational change in response to oxida-
tive stress, whereas Cys106 was recently identified to be in-
volved in nucleocytoplasmic translocation of HMGB1.28 The 
proinflammatory cytokine activity of HMGB1 is dependent 
upon the redox modification state of these three cysteine resi-
dues (Fig. 2B). Recombinant HMGB1 is freely reduced and 
oxidized in the presence of electron donors or acceptors, 
such as oxygen.35 The reduced form of HMGB1 exhibits 
all-thiol groups that induce chemokine activity and increase 
autophagy level, specifically in cancer cells.36,37 The disul-
fide form of HMGB1, with Cys23 and Cys45 forming a di-
sulfide bridge, is responsible for inducing proinflammatory 
cytokine activity, as well as activation of NF-κB.35 HMGB1 
in its fully oxidized form loses its functions of inducing pro-
inflammatory effect and activating caspase-dependent apop-

fy HMGB1 by acetylation of lysine residues, which induces 
relocalization of HMGB1 from the nucleus to the cytosol.27 
Hyperacetylated HMGB1 in the cytosol is then secreted via 
secretory vesicles or lysosomes when an appropriate sec-
ondary signal is received.27 HMGB1 is also released when 
TNF-α-induced phosphorylation occurs on the serine resi-
dues in the nuclear localization signals by classical protein ki-
nase C (cPKC) in a calcium-dependent mechanism.29,33 Hy-
perphosphorylated HMGB1 translocates to the cytoplasm 
and shows decreased binding affinity with karyopherin-α1, 
a nuclear import protein, preventing itself from re-entering 
the nucleus.29 When this phosphorylation activity is inhibited, 
it restrains the secretion of HMGB1 by blocking the LPS-
stimulated phosphoinositide 3-kinase (PI3K) and cPKC sig-
naling pathways.34 Another posttranslational modification 
that induces active secretion of HMGB1 in neutrophils is 
through methylation at Lys42, which reduces DNA binding 
affinity by a conformational change in the box A domain of 

Fig. 2. Secretion mechanism and inflammatory role of HMGB1 in redox states. (A) HMGB1 is translocated to the extracellular environ-
ment via two secretion mechanisms: active secretion by inflammatory cells or passive release by necrotic or apoptotic cells. HMGB1 in 
the nucleus is actively secreted when immunologically competent cells are activated by inflammatory stimulus and undergo post-trans-
lation modifications such as acetylation, phosphorylation, methylation, and redox change. Passive release of HMGB1 is mediated by ne-
crotic or apoptotic cell death caused by injury. Released HMGB1 triggers inflammatory responses in the body. (B) The inflammatory ac-
tivity of released extracellular HMGB1 is dependent upon its redox state. HMGB1 consists of three cysteine residues (C23, C45, C106) that 
are modified during redox change. The reduced form of HMGB1 with all thiol groups defines the chemokine activity of HMGB1, whereas 
the disulfide-HMGB1 with C23 and C45, forming an intermolecular disulfide bond, induces cytokine activity. The fully oxidized form of 
HMGB1 has no known immune function in the cells. 
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duction from responding macrophages.41 When cells 
undergo apoptosis, a programmed cell death process, they 
activate macrophages that engulf apoptotic cells which se-
crete HMGB1 and release nuclear molecules including 
DNA that binds HMGB1.41,42

HMGB1 RECEPTORS AND 
INTERACTIONS

Once secreted from cells through active and passive mech-
anisms, HMGB1 induces inflammatory responses by signal 
transduction pathways through many binding receptors 
(Fig. 3). When binding to its major transmembrane recep-
tors, HMGB1 associates and shows interactions with sever-
al molecules, such as IL-1β, RNA and DNA, LPS, lipotei-
choic acid (LTA), CXCL12 (stromal cell-derived factor-1), 
and nucleosomes.43-47 HMGB1 physically interacts with a 

totic cell death.36,37 Aside from the secretion of HMGB1, 
Cys106 also plays a role in binding TLR4, which will be 
further discussed later.

The cytokine activity of extracellular HMGB1 is not sole-
ly dependent on active secretion by inflammatory cells, as it 
is also passively released by necrotic and apoptotic cells. In 
a normal state HMGB1 is loosely associated with nucleo-
somes in the chromosomes. HMGB1 is diffused out of the 
nuclei when membrane permeability is lost or when cells 
go through necrosis.38-40 HMGB1 secreted by necrotic cells 
transmits demise signals to neighboring cells and triggers 
inflammatory response.39,40 Another passive secretion 
mechanism of HMGB1 involves cells dying via apoptosis. 
Initially, early investigators concluded that apoptotic cells 
do not significantly secrete HMGB1.39 Further studies have 
showed that cells that undergo apoptosis do release consid-
erable amounts of HMGB1, except those that are immuno-
logically inactive because they fail to stimulate TNF pro-

Fig. 3. HMGB1 binding to receptors and activating signal transduction pathway. Interaction of HMGB1 with RAGE, TLR2, TLR4, and TLR9 
transduce cellular signals through a common pathway that leads to activation of NF-κB. HMGB1 interaction with LPS, LTA, and CpG en-
hances TLR4-, TLR2-, and TLR9-mediated signaling, respectively, and further leads to downstream signaling of NF-κB activation and 
proinflammatory cytokine production. Activated NF-κB gets released from IκB translocates to the nucleus and binds to the DNA in the 
most abundant form of NF-κB, the p65/p50 heterodimer form. HMGB1 also interacts with CXCL12, which binds to CXCR4 and induces 
chemotaxis and recruitment of inflammatory cells. 
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grating dendritic cells (DCs) and macrophages enhances these 
CXCL12-induced activities by physically associating with 
CXCL12 to form a heterocomplex that helps maintain its con-
formational structure under reduced conditions.47,59 According 
to a previous report, this CXCL12-induced cell migration was 
exclusive to CXCR4 alone, and neither RAGE nor TLR 
showed synergistic effects on HMGB1 binding to CXCL12.59

The activity of HMGB1-triggered cytokine production via 
TLR4 is sensitive to the redox state of HMGB1 as it binds to 
TLR4 in a structure-specific manner. The recombinant B box 
domain of HMGB1 interacts specifically with the TLR4/
MD2 complex, where a reduced form of HMGB1 cysteine 
106 is required.19 This hints that the pivotal difference in im-
mune activity between necrotic cells and apoptotic cells 
might lie on the redox state of HMGB1. During necrosis, 
HMGB1 is released with a reduced form of Cys106, which 
can initiate inflammation by binding to TLR4. HMGB1 re-
leased from apoptotic cells, however, comprises an oxidized 
form of Cys106 that prevents its interaction with TLR4.60,61 
Along with the reduced form of Cys106, disulfide linkages 
between Cys23 and Cys45 are also required for HMGB1 
binding to TLR.62 However, the direct interaction between 
Cys106 and TLR4 has not been confirmed, and the exact 
mechanism of the role in TLR4 binding still remains un-
clear. The TLR family, including TLR4, is known to trans-
mit proinflammatory signals through a ligand binding-in-
duced oligomerization, as well as the oligomerization of the 
partner ligands.63 We have identified that HMGB1 oligo-
merization occurs through Cys106-mediated disulfide bond 
in oxidative conditions and that oligomerized-HMGB1 in-
creasingly binds with TLR4 and enhances inflammatory re-
sponses (unpublished data). Thus, Cys106 mediates oligo-
merization of HMGB1 in oxidative conditions induced by 
bacterial or viral infections in the cell, and may play a criti-
cal role in inducing proinflammatory signals through the 
solid binding of oligomerized-HMGB1 and TLR4.

HMGB1 AS A DAMP MOLECULE

Recently, over the past few years, there has been rising inter-
est on a group of endogenous danger signals that play a criti-
cal proinflammatory role in innate immunity, called DAMP 
molecules.64 These molecules, also known as “alarmins,” are 
released by stressed or damaged cells and contribute to in-
duction of inflammatory responses by binding to pattern rec-
ognition receptors (PRRs).64 Immune alarmins share a few 

polygamous molecule of RAGE, which is a cell surface, 
multi-ligand member of the immunoglobulin superfamily.20 
HMGB1 bound to RAGE mediates signals for neuronal 
outgrowth and promotes activation of TLR9-mediated cy-
tokine production.20,48 HMGB1 actively secreted by matur-
ing dendritic cells also signals through RAGE; this signal is 
responsible for proliferation and polarization of T cells, as 
well as up-regulation of other cell-surface receptors, such as 
TLR4 and RAGE.49 As HMGB1 binds to RAGE, it triggers 
activation of Ras, PI3K, and Rho, which are major down-
stream signaling molecules towards NF-κB activation.50 The 
proinflammatory effect of HMGB1 is significant in the signal 
transduction pathway of NF-κB, which involves extracellular 
signal-regulated kinase 1 and 2, and p38 mitogen-activated 
protein kinase, by increasing the nuclear translocation of 
NF-κB and thus enhancing proinflammatory cytokine ex-
pressions.45,51,52

Subsequently, HMGB1 signals to other multi-ligand re-
ceptors of TLR4 and TLR2 by direct binding of TLR4 or 
by binding to LPS.46,53,54 It is well known that LPS is recog-
nized by LPS-binding protein (LBP) and transferred to CD14 
for signaling to TLR4/MD2 complex.53,54 Here, HMGB1 acts 
as a sensor molecule by binding to LPS, as well as a transfer-
ring molecule that brings the complex to CD14 and, conse-
quently, to TLR4 for downstream signaling that leads to NF-
κB activation, providing a synergistic effect on LPS-TLR4 
signaling.26,46 Similarly, LTA, a Gram (+) bacteria cell wall 
component, is transferred to CD14 by LBP for signaling 
through TLR2-mediated NF-κB activation.55 The function of 
HMGB1 in the transfer of LTA to CD14 needs further inves-
tigation. HMGB1 also interacts with TLR9, a member of the 
TLR family located in the endoplasmic reticulum-Golgi in-
termediate compartment.56 HMGB1 is an essential molecule 
of the DNA complex that promotes cytokine release through 
binding to TLR9 and signaling through downstream path-
ways involving MyD88 and NF-κB.48 Moreover, HMGB1 
interaction with CpG-DNA enhances redistribution of TLR9 
to early endosomes and augmented cytokine production.48,57 
The MyD88-dependent mechanism of NF-κB activation by 
HMGB1, therefore, allows the transcription of proinflam-
matory genes, such as IL-1, IL-6, and TNF.45 Extracellular 
HMGB1 also functions in chemotaxis and cell migration 
through its interaction with CXCL12 and its binding recep-
tor, CXCR4. CXCL12 is a chemokine protein that binds to 
CXCR4 and mediates signaling pathways that induce chemo-
taxis, cell migration, and cell proliferation, as well as the re-
cruitment of inflammatory cells.58 HMGB1 secreted from mi-
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production of IL-1β, TNF-α, and IL-6 in murine macro-
phages by binding to RAGE.73 HMGB1 bound to DNA 
promoted maturation of immune cells and cytokine produc-
tion through RAGE and TLR9-MyD88-dependent path-
way.48,57 HMGB1 that remained bound to nucleosomes in 
secretion from apoptotic cells induced activation of anti-
gen-presenting cells and secretion of cytokines by macro-
phages.45 Recently, emerging findings on the proinflamma-
tory cytokine activity of HMGB1 show that it acts as a 
danger signal, especially in the pathogenesis of autoim-
mune diseases, including ischemia-reperfusion injury, trau-
ma, rheumatoid arthritis, and lupus erythematosus.74-77 Stud-
ies have also suggested that HMGB1 is involved in tissue 
repair and remodeling activity, such as angiogenesis, a nov-
el role of DAMP molecules.78,79

HMGB1 IN NON-INFLAMMATION

HMGB1 is also implicated in non-inflammatory conditions, 
such as cell metabolism through autophagy and mitophagy, 
cancer, angiogenesis, tolerance induction, complement bind-
ing, and other non-inflammatory states. HMGB1 is a criti-
cal regulator of autophagy, an important cellular mecha-
nism for maintaining homeostasis and protecting organisms 
from pathologies of multiple diseases by degrading dys-
functional cellular components, thus enhancing survival of 
cells. HMGB1 translocated to the cytoplasm due to oxida-
tive stress forms an intramolecular disulfide bridge between 
Cys23 and Cys45 that is essential in binding the autophagy 
protein Beclin1 and further enhancing the process of au-
tophagy.8,80 Extracellular reduced HMGB1 signals through 
RAGE inhibits mammalian target of rapamycin (mTOR), 
which then increases Beclin1-PtdIns3KC3 interaction that 
further promotes autophagic processes.81 Recently, a discrep-
ancy in this finding was reported by a group that have inves-
tigated the dispensability of HMGB1 in autophagy through a 
HMGB1 conditional knockout mouse study.82 HMGB1 is 
also important in regulation of mitochondrial activity. Nucle-
ar HMGB1 enhances gene expression of heat shock protein 
beta 1 (HSPB1), and phosphorylation of HSPB1 induces 
formation of actin cytoskeleton that regulates cellular trans-
port and mitochondria degradation in mitophagy through the 
Pink1-Parkin pathway.81 

In cancer stem cells, HMGB1 was identified as binding 
to TLR2 and inducing NF-κB activation by phosphoryla-
tion of IκBα, as well as secretion of IL-6 and TGF-β and 

characteristic in the immune system: they enhance adaptive 
immune responses, activate antigen-presenting cells, and are 
rapidly released upon tissue injury.64,65 DAMP molecules 
such as defensins and cathelicidin are rapidly released by epi-
thelial cells or leukocytes when they encounter with patho-
gen-associated molecular patterns (PAMP) molecules or 
proinflammatory cytokines.64-66 HMGB1 is one of the best 
known DAMP molecules. HMGB1 is secreted by injured 
cells, specifically upon necrotic cell death.39,40 Aside from its 
capability in enhancing antigen-specific immune response, 
HMGB1 also acts as a chemoattractant and activator of 
dendritic cells that recruits DCs to their site of release.67-69 
In a previous study, inflammatory responses induced by 
DAMPs showed high similarity with responses induced by 
PAMPs, suggesting that they may use common receptors and 
pathways to initiate host defense mechanism in cells of in-
nate immune system.64 Major receptors that detect endoge-
nous danger signals for inducing cytokine production include 
RAGE, TLR2, TLR4, and other cell surface binding sites, 
such as carboxylated glycans and heparin sulfate proteogly-
cans.70 

HMGB1 IN INFLAMMATION

Through binding to specific receptors, DAMP molecules 
induce early innate and adaptive immune inflammation 
without any infection. This early response, termed sterile in-
flammation, is triggered by cellular stress as a result of trau-
ma, ischemia-reperfusion injury, or other chemically-induced 
tissue injury. Immune responses in sterile inflammatory con-
ditions are characterized by recruitment of inflammatory 
cells, generation of memory T cell subsets, and production of 
proinflammatory cytokines and chemokines.71,72 Mecha-
nisms by which DAMPs trigger sterile inflammation are 
through activation of PRRs and common downstream sig-
naling, release of proinflammatory cytokines and chemo-
kines, and binding to specific DAMP receptors that are not 
PRRs.

HMGB1 acts as a DAMP molecule when released by ne-
crotic cells or secreted by activated macrophages. It con-
trols maturation and migration of dendritic cells and acti-
vates T-cells through binding to RAGE, thereby functioning 
as a significant mediator of sterile inflammation in innate 
immune system.49,67,69 These monocytes and T cells produce 
proinflammatory signals and cytokines that augment in-
flammatory conditions.31 HMGB1 is also involved in the 
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LPS and endotoxin tolerance through a RAGE-dependent 
signaling pathway. These HMGB1-tolerant macrophages 
exhibit down regulation of intracellular signaling pathways, 
which subsequently decrease the activity of proinflammato-
ry gene transcription and production of cytokines, such as 
TNF-α, IL-6, and IL-1β.90 Similarly, HMGB1 also induces 
LTA tolerance, but does not require RAGE for its induc-
tion.91 Further investigation is necessary to identify whether 
TLR4 or other receptors are involved in the induction of tol-
erance by preconditioning with HMGB1. HMGB1 is also 
implicated in epileptic seizures, as patients with epilepsy 
exhibit significantly higher serum levels of HMGB1, sug-
gesting a potential pathological contribution of HMGB1 in fe-
brile seizures and epilepsy.92 Besides the prevalent findings of 
the role of HMGB1 in various areas, the role of HMGB1 in 
activation of complement pathways and other binding re-
ceptors is currently being studied.

activation of STAT3 and Smad3.83 These cytokines regulate 
tumorigenesis through proliferation and self-renewal of 
cancer cells independent of tumor inflammation.84 Secreted 
IL-6 enhances malignant properties of cancer cells and 
TGF-β signaling contributes to metastasis and survival of 
cancer stem cells.85,86 HMGB1 also plays a pivotal proan-
giogenetic role in angiogenesis by stimulating cell prolifer-
ation and chemotaxis in endothelial cells during tissue dam-
age.87 The production of these proangiogenic factors by 
HMGB1 are induced through the TLR4 signaling pathway 
and contribute to neovascularization and vascular growth.88 
Additionally, HMGB1 regulates autocrine and paracrine 
signaling in angiogenic gene expression of endothelial 
cells, which suggests its proangiogenetic role in tumor an-
giogenesis.89

HMGB1 also functions as an immune tolerance-inducing 
molecule. HMGB1 induces the proinflammatory effect of 

Fig. 4. Targeting HMGB1 as a potential therapeutic approach for inflammatory diseases. HMGB1 can be targeted in various areas to po-
tentially block the proinflammatory cytokine effect of HMGB1 in inflammatory disease models. HMGB1 is actively released upon infection 
by inflammatory cells or passively released by necrotic cells. Inhibiting the release of HMGB1 and blocking the activity of extracellular 
HMGB1 can reduce the inflammatory responses induced by HMGB1. Blockade of HMGB1 binding receptors can inhibit the production of 
proinflammatory cytokines by HMGB1 in immune cells. 
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conflict about targeting HMGB1 inhibitor as a cancer thera-
py is that there may be cross-presentation of tumor antigens 
through TLR4, as HMGB1 is also rapidly released after 
chemotherapy and radiotherapy, playing a crucial role in DC 
recruitment and maturation, tumor-specific T cell activa-
tion, and antitumor immune response.99

CONCLUSION

HMGB1 is a ubiquitous protein that has diverse roles in 
mediating significant pathways of inflammation in the in-
tra- and extra-cellular microenvironment. With the growing 
studies on HMGB1 and its cytokine-like function in innate 
immunity, HMGB1 is implicated as a key mediator in in-
flammatory mechanisms in the pathogenesis of many auto-
immune and inflammatory diseases. It is also known that 
modification of HMGB1 and its interaction with various 
molecules are significant mediators of signaling pathways, 
suggesting that HMGB1 can serve as a new target for ther-
apeutic purposes. However, the exact pathological mecha-
nisms and direct involvement of HMGB1 in these diseases 
are still unknown. In order to further define the immuno-
logical activities of HMGB1 in inflammation, identification 
of exact mechanisms is necessary.
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