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Cytokine Delivery and Tissue Engineering

Seung Jin Lee

—— Abstract

. Tissue engineering has been applied to various tissues, and particularly significant progress has been made in the ateas
of skin, cartilage, and bone regeneration. Inclusion of bioactive factors into the synthetic scaffolds has been suggested as
one of the possible tissue engineering strategies. The growth factors are polypeptides that transmit signals to modulate
cellular activities. They have short half-lives, for example, platelet-derived growth factor (PDGF), isolated from platelets,
has a half life of less than 2 minutes when injected intravenously. Extended biological activity and the controlled release
of growth factor are achieved by incorporating growth factor into the polymeric device. This review will focus on growth
factor delivery for tissue engineering. Particular examples will be given whereby growth factors are delivered from a
tissue-engineered device to facilitate wound healing and tissue repair.
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INTRODUCTION

Critical limitations in traditional therapies call for
new tissue and organ replacement strategies." The
emerging field of tissue engineering is concerned with
the development of devices that restore, maintain or
modify tissue structure and function.” Tissue engi-
neering has been applied to various tissues, and par-
ticularly significant progress has been made in the
areas of skin,” cartilage,4 and bone regeneration.” The
inclusion of bioactive factors (e.g. growth factors) into
synthetic scaffolds has been suggested as one of the
possible tissue engineering strategies.

Growth factors are polypeptides that transmit sig-
nals to modulate cellular activities. The term cytokine
is generally reserved to describe factors associated
with cells involved in immune system.6 Growth fac-
tors can either stimulate or inhibit cellular prolifera-
‘tion, differentiation, migration and gene expression.’
In a concentration dependent manner, growth factors
can also act in an opposing manner and up- or down-
regulate the synthesis of receptors.6 Growth factors
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usually exist as inactive or partially active precursors
that require proteolytic activation and may need to
bind to extracellular matrix molecules for activation
or stabilization.® Growth factors initiate their action
by binding to specific receptors on the surfaces of
target cells. Depending on the proximity of their
locations to the target sites, growth factors may be
classified as endocrine (target cell is distant), paracrine
(target cell is nearby), autocrine (target cell is ‘the
same cell that secreted the growth factor), juxtacrine
(target cell is apposed to growth factor/receptor com-
plex) or intracrine (growth factot/receptor complex is
internalized) (Fig. 1).”” Hundreds of growth factors
have been identified, characterized, and classified into
at least 20 families and superfamilies on the basis of
structural homologies (Table 1)."*" Prolonged biolo-
gical activity and the controlled release of growth
factor may be obtained by ‘incorporating a growth
factor into a polymeric device.

In tissue engineered devices, there are two different
potential delivery systems. Growth factors can be
incorporated directly into the scaffold'" or intro-
duced after fabrication.'®"” Another way of delivering
growth factors is via the co-transplantation of either
natural growth -factor-secreting cells or genetically
engineered cells within the device.'® Specific growth
factors, released from a delivery device or from trans-
planted cells, aid the induction of host parenchymal
cell infiltration and improve engraftment of co-
delivered cells for more efficient tissue regeneration.'”
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Fig. 1. Various ways in which growth factors exhibit their activities.
Growth factor (black dots) are produced by the cells and can act
within the cell or in vicinal or remote cells to modulate their activities
by reacting with specific receptors. (1) Autocrine; (2) Paracrine; (3)
Endocrine; (4) Juxtacrine; (5) Extracelluar matrix mediated; (6)
Intracrine.

Table 1. Principal Source and Activity of Growth Factor

Local delivery of growth factors can induce cell
proliferation, chemotaxis, differentiation, and matrix
synthesis, and thus, exhibits potential for regenerative
therapeutics. The basic requirements of the tissue
engineering scaffold include, degradability, biocom-
patibility, surface area/volume ratio, mechanical integ-
rity and vascular and neural infiltration.' Materials
used as tissue engineering scaffolds must be degraded
over a predictable and - controllable time scale, to-
enable the synchronization of material degradation
and tissue formation. Delivery systems for growth fac-
tors often take advantage of the known controllable
degradation of synthetic polymer scaffolds, to release
quantities of drug over an extended time scale.
Another key material requirement is a large surface
area/volume ratio to support cell adhesion, and facili-
tate nutrient transport. Porous material promotes cell
activity by extending the substrate area for growth

Factor Principal source Primary activity Remark
Platelets, Promotes proliferation of Two different protein chains
PDGF endothelial cells, connective tissue, glial and form 3 distinct dimer forms;
placenta smooth muscle cells AA, AB and BB
Platelets, Promotes proliferation of
EGF endothelial cells, mesenchymal, glial and
placenta epithelial cells

Common in

May be important for normal

Promotes proliferation of many cells;
inhibits some stem cells; induces
mesoderm to form in eatly embryos

Promotes neurite outgrowth

Promotes proliferation and
differentiation of erythrocytes

Anti-inflammatory (suppresses
cytokine production and class II
MHC expression), promotes wound
healing, inhibits macrophage and

Promotes proliferation of many

Promotes proliferation of many cell

TGE-¢a transformed cells Wound healing
Wide range of cells;
FGF protein is associated with
the ECM
NGF Tlssues that are '
innervated by neuron and neural cell survival
Erythro-poietin Kidney
Activated TH1 cells
TGF- (T-helper) and natural
killer (NK) cells
lymphocyte proliferation
IGF-I Primarily liver
cell types
IGF-II Variety of cells

types primarily of fetal origin

Related to EGF

At least 19 family
members,
4 distinct receptors

Several related proteins first
identified as proto-oncogenes;
trkA (trackA), trkB, trkC

At least 100 different
family members

Related to IGF-II and
proinsulin, also called
Somatomedin C

Related to IGF-I
and proinsulin
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and proliferation while also allowing for optimal dif-
fusion of nutrients between cells in the scaffold and
the surrounding tissue. Vascularization expedites mass
transport, which is essential in the region of a deve-
loping tissue. Mechanical integrity of the scaffold
material is necessary to resist contractile cellular for-
ces, which can cause collapse of a 3-dimensional scaf-
fold structure during tissue growth.”

This review will focus on growth factor delivery for
tissue engineering. Particular examples will be given
in which growth factors are delivered from a tissue-
engineered device to facilitate wound healing and
tissue repair.

BONE MORPHOGENETIC PROTEIN

Urist believed that osteoinduction by a dematerial-
ized bone matrix (DBM),21 was caused by a contained
factor, which he named bone morphogenetic protein
(BMP).22 Wozney et al. later isolated this protein,

which directs cartilage and bone formation. The
amino acid sequence of protein obtained from a
highly purified preparation has been identified, and
the expression of the recombinant human proteins has
been obtained. Three proteins in total were demons-
trated, BMP-1, BMP-2A and BMP-3.”

BMP-4 was originally identified as a factor purified
from demineralized bone that can trigger ectopic
bone formation at non-skeletal sites iz vivn.” Later,
more BMPs were identified, and currently the list
stands at least 15. BMPs initiate, promote and main-
tain chondrogenesis and osteogenesis.”” BMP-2,3
(Osteogenin),4,5,6 and 7 (Osteogenic protein-1) have
osteoinductive potentialzs’%"ao and when delivered with
a carrier substance these recombinant BMPs have
been demonstrated to be effective at healing inter-
mediate sized bone defects in a variety  of animal
models including rat’" and rabbit.”®

Recombinant human BMP-2 (thBMP-2) when im-
planted subcutaneously in rat inactive DBM carrier
induced cartilage and some new bone.”” When the
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Fig. 2. Role of BMP in ostesduction.
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concentration of BMP-2 was increased, bone forma-
tion was observed earlier and cartilage and bone were
formed concurrently. The osteoinductive response in-
duced by BMP-4 and BMP-5 seems to be weaker
than that of BMP-2.** Cartilage and bone formation
was induced in athymic mice by Chinese hamster
ovary cells transfected with either the murine BMP-6
gene” or the BMP-4 gene.34

Implanted thBMP-2 enhanced the healing of femur
defects in rats’" and sheep,” and mandible defects in
rats”® and dogs.37 Recombinant human BMP-7 (OP-
1) enhances the healing of segmental ulnar defects in
rabbits’” and dogs,26 and stimulates the differentiation
of cartilage from periochondrium tissue.’® Recently,
thBMP-2 has been shown to stimulate the repair of
bone and hyaline-like cartilage in experimental osteo-
chondral defects in rabbits,” and has been shown to
accelerate the healing process when a tendon graft is
transplanted into a bone tunnel.’

BMP enhances the differentiation of mesenchymal
or muscle cells into chondrocytes and osteoblasts.
Osteoblasts release BMP and TGF, and the latter
inhibits further BMP release. Osteoblast-derived alka-
line phosphatase catalyzes the formation of hydroxy-
apatite (HA), and these growth factors promote the
formation of bone™' (Fig. 2).

BMP delivery systems

Bone morphogenetic proteins have been shown to
stimulate the production of bone iz vivo when com-
bined with an appropriate carrier material such as
collagen, tricalcium phosphate, or polylactic acid.”
An ideal functional carrier that is also compatible
with human tissues should possess the following
characteristics: -high affinity for BMP and host bone
promote the delivery and/or function of BMP; lack
of interference with bone repair; lack of toxicity and
- immunogenicity; weight bearing capacity and mecha-
nical strength; ease of manipulation; compatibility of
sterilization; biodegradability. Synthetic polymers have
most of the characteristics required of the ideal BMP
carrier.”! ,

Poly-D,L-lactide-co-glycolide (PLGA) copolymers
are good carriers for BMP and promote the induction
of new bone formation. Further, PLGA copolymers,
with recombinant human bone morphogenetic pro-
teins (thBMP-2), had a greater effect in inducing new
bone formation and resorbing implanted material
than active demineralized freeze-dried bone allografts

alone.” PLGA capsules containing thBMP-2 regene-
rated bone in rat femur defects™ and in segmental
defects of the rabbit's radius.”’ Bicerodible PLGA
particles loaded with rhBMP-2 were suspended in
either carboxymethylcellulose (CMC) or methylcell-
ulose (MC) implants. The CMC implants appeared to
encourage bone growth even in the absence of BMP,
and when BMP was added, new bone formed earlier.
CMC may influence new bone formation because it -
is hydrophilic. MC is less hydrophilic and may cause
undue inflammation.” Rat mandibular defects were
implanted with thBMP-2 with or without osteopro-
motive membrane. thBMP-2 was delivered using
bio-absorbable PLGA beads plus allogenic blood as
carriers. After 24 days, defects treated with mem-
brane and thBMP-2 in the PLGA carrier were totally
bridged with regenerated bone."

Freeze-dried poly-L-lactic acid discs mixed with
BMP may be effective at healing rat skull defects.*
Composites of semipurified BMP and polylactic acid-
polyethylene glycol block copolymer (PLA-PEG), and
composites of BMP, PLA-PEG and PLGA were im-
planted under the fasciae of the dorsal muscles of
mice. After three weeks, both the BMP/PLA-PEG
and BMP/PLA-PEG/PLGA composites were absorbed
and replaced by newly induced bone with hemato-
poietic marrow. The BMP/PLA-PEG/PLGA compo-
sites were also implanted in large segmental bone
defects in the tibiae in rabbits. Twelve weeks after
implantation, the bone defect was completely restored
by a newly formed bone mass of the original thickness
and structure.”

BMP, associated with N, N-dicarboxymethy! chito-
san, was used to induce or facilitate the repair of
articular cartilage.”” thBMP-2, reconstituted with in-
soluble collagenous bone matrix, was sufficient to
repair craniotomy defects in the rat.”’ BMP-beta tri-
calciam phosphate (TCP) composite also regenerated
bone in skull trephine defects in dogs.”> And a TCP-
monocalcium phosphate monohydrate cement was
also determined to be an effective carrier of thBMP-2
in rat femoral defects.”” Poloxamer 407 proved to be
efficient at delivering BMP.™

EPIDERMAL GROWTH FACTOR

Epidermal growth factor (EGF), a 53-amino acid
mitogenic polypeptide present in many mammalian

Yonsei Med ] Vol. 41, No. 6, 2000
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species, is one of a number of growth factors being
investigated for their potential to expedite the healing
process.55 EGF and TGF- o are distinct mitogenic
peptides (of 53 and 50 amino acids, respectively) that
interact with the same cell-surface receptor despite
their limited sequence homology. Though they are
antigenically distinct, they seem to do so with similar
binding affinities, and have both been implicated in
processes ranging from carcinogenesis and -central
nervous system development to ¢raniofacial morpho-
genesis and wound healing.56 EGF has been shown
to stimulate keratinocyte division iz vitro and epi-
dermal regeneration in vivo.”” Tt has also been shown
to have an effect on mesenchymal cells by producing
marked proliferation of the dermis in partial-thickness
wounds and by increasing the tensile strength of
surgical incisions.”® EGF is a naturally occurring mito-
gen, which in its recombinant form is under intensive
investigation for therapeutic use. Receptor activation
by EGF induces up-regulation of the syntheses of
specific proteins and the proliferation and differentia-
tion of the corneal epithelium, keratocytes, and end-
othelium both iz vive and in vitro.”’

Wound healing is a localized process, which in-
volves inflammation, wound cell migration and mito-
sis, neovascularization and the regeneration of the
extracellular matrix. Recent data suggests the actions
of wound cells may be regulated by the local pro-
duction of peptide growth factors, which influence
wound cells through autocrine and paracrine mecha-
nisms. EGF may play an important role in normal
tissue wound healing, such as, in skin, cornea, and
the gastrointestinal tract. EGF treatment accelerated
healing of gastroduodenal ulcers, and also increased
the tensile strength of skin incisions in rats and
corneal incisions in rabbits, cats, and primates.60

EGF delivery systems

Experimental studies in animals have demonstrated
that the topical application - of epidermal growth
factor accelerates the rate of epidermal regeneration
of partial-thickness wounds and second-degree burns.
Donor sites treated with silver sulfadiazine containing
epidermal growth factor demonstrated an accelerated
rate of epidermal regeneration in all 12 patients com-
pared with paired donor sites treated with silver
sulfadiazine alone.”” .

EGF and extracellular matrix (ECM) molecules
(collagen type IV, and chondroitin sulfate) were also

Yonsei Med J Vol. 41, No. 6, 2000

investigated, as surface-grafted biomolecules. They
stimulate cell attachment, proliferation, and function
by signaling only from the basal side of cultured
cells.”!

Treatment with EGF in a Carbopol gel carrier for
a period of 8 hours resulted in significant wound
healing enhancement (p<0.05). The optimum EGF
loading in the gel was determined to be 0.4%. A
slowly releasing gel was suggested to be an effective
way of delivering EGF to the corneal surface.”

In vitio and in vivo studies have shown that EGF
has the potential to improve ligament healing. Gene
therapy approaches may represent a new alternative
in delivering these specific growth factors to the
anterior cruciate ligament (ACL). The aim of this
study was to investigate the feasibility of three dif-
ferent gene therapy approaches (direct-, fibroblast-,
and myoblast-mediated gene transfer) to the ACL.
This new technology based on gene therapy and
tissue engineering may allow a persistent expression
of selected growth factors to enhance ACL healing
following injury.63

A single application of irradiated EGF gene trans-
fected fibroblasts to wounds can thus continuously
deliver the transgene iz vivo and could be used to
administer drugs to the wound bed during the crucial
initial - seven days of wound-healing.64

FIBROBLAST GROWTH FACTOR

The fibroblast growth factor (FGF) family has nine
members. Among them, the best characterized are
acidic fibroblast growth factor (FGF-1) of 16 KDa
and basic fibroblast growth factor (FGF-2) of 17
KDa.” The fibroblast growth factor (FGF) family
modulates function in various cell types including
fibroblasts, chondrocytes, endothelial cells, smooth
muscle cells, and astrocytes.“

When injected or .ingested, bFGF is rapidly
degraded and loses its mitogenic activity primarily by
sustained release.”’ Prolonged storage and encap-
sulation were accomplished by binding bFGF to he-
parin-sepharose beads. Various combinations of FGF
and heparin complexed to fibrin were investigated in
vitro.** DNA replication of fibroblasts grown either on
or within fibrin matrices was enhanced in the pre-
sence of both FGF and high doses of heparin in-
corporated in the fibrin. To develop a reliable carrier
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system, various carriers were investigated, including,

the release of FGF from plaster of Paris (PLP),69 fibrin

scaffold for the delivery of FGF-1,° in vivo release of

bFGF from biodegradable gelatin hydrogel carrier."

bFGF, which is a potent mitogen, induces neovas-
7178 . 79-87

cularization’ " and osteogenesis’” and enhances nerve

. 6,88,89
regeneration.

FGF delivery systems for neovascularization

bFGF is known as heparin-binding growth factor
because of its high affinity for heparin and sulfate,
which are abundantly present in the ECM of endo-
thelial cells.”! When the vascular wall is damaged,
bEGF can be released through several mechanisms,”
and proliferation of endothelial cells will be induced.
bFGF was sorbed into microspheres of acidic and
basic gelatin with different isoelectric points. CMC
incorporation slowed down the biodegradation and
vascularization effect of bFGF-incorporating gelatin
microspheres.”” Neovascularization was induced around
the implanted site of the bFGF-incorporating acidic
gelatin hydrogel, but a prolonged vascularization ef-
fect was not achieved by the bFGF-incorporating
basic gelatin hydrogel.74 Due to an initial large burst
in bFGF release, probably because of the down re-
gulation of bFGF receptor, only transient vasculari-
zation occurred.

The treatment of myocardial ischemia based on the
use of pro-angiogenic growth factors induced the
growth of new blood vessels to supply the myocar-
dium at risk.”” A single intrapericardial injection of
bFGF in a porcine model improved myocardial per-
fusion and function in the ischemic territory, but
these benefits were not seen in saline- or heparin-
treated ischemic animals. Also the administration of
growth factors is emerging as a new therapeutic
approach for the enhancement of collateral vessel
. formation.”® FGF-2 administered with heparin proved
the most effective method of enhancing angiogenesis,
when compared to FGF-2 alone, FGF-2 plus heparan
sulfate or FGF-2 codated heparin agarose beads.

bFGF, endothelial cell growth factor (ECGF) and
a penetrance enhancer (dimethyl sulfoxide) were ap-
plied to composite grafts.” A group of bFGF and
ECGF showed a 40% increase in vascular ingrowth
but did not increase growth survival. Recently, de novo
adipogenesis using a mixture of basement membrane
extract (Matrigel) and the bFGF-incorporated gelatin
microspheres provided ‘2 new idea for the tissue

L L 78
engineering of adipose tissue.

FGF delivery systems for bone regeneration
FGF-2 was found to improve endosteal bone for-
mation in rat long bones after intravenous administra-
tion, but to a limited extent,w_81 and to moderately
promote fracture healing.*” FGF-2 delivered on a
collagenous carrier was shown to stimulate bone
healing of segmental bone defects in rabbit femurs,”
enhance ectopic bone formation in rats™* and promote
bone ingrowth in titanium chambers placed in rat
tibia.® However, FGF-2 effects on the ectopic bone
formation rate were dose-dependently biphalsic.85 Mini-
pellets incorporating atelocollagen were prepared and
analyzed.” At doses of 1.4 microgram approximately
90% of the defects were filled with new bone and
cartilage within 6 weeks of minipellet implantation.
But an injection of 2 microgram of FGF solution into
bony defects had no effect on the repair of segmental
bony defects. In other cases, an increased number of
osteocytes was found in the newly formed bone at
sites treated with the lower thFGF-2 doses, whereas
the high-dose rhFGF-2 caused a return to control
levels.* Morphometrical analysis revealed that the
new bone area in the l-ng group was significantly
larger than that in the O-ng group,” but in the
100-ng FGF-2 group, new bone formation seemed
suppressed. Continuous slow administration of a small
amount of FGF-2 may thus accelerate bone-derived
osteogenic cytokine-induced new bone formation.

Applications of FGF in nerve regeneration

bFGF was shown to enhance the #n wvitro survival
and neuritic extension of various types of neurons,
including dorsal root ganglion cells.**® This cell cul-
ture experiment was performed in the context of
peripheral nerve regeneration.

FGF-9 improved the survival of acetylcholines-
terase-positive neurons, increased their mean soma
size and up-regulating their choline acetyltransferase
(ChAT) activity.” The ChAT-promoting effect of
FGF-9 was approximately as potent as that of nerve
growth factor (NGF) and was greater- than those of
bFGF, ciliary neurotrophic factor and glia-derived
neurotrophic factor. Although the effective delivery of
exogenous FGF-9 into the central nervous system
remains a problem, FGF-9 may be a promising candi-
date for therapeutic trials in Alzheimer disease.

Yonsei Med J Vol. 41, No. 6, 2000
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NERVE GROWTH FACTOR

The role of neurotrophic factors in the maintenance
and survival of neuronal cells has been the subject of
numerous  studies.” Neurotrophic factors are poly-
peptides known to regulate the survival and dif-
ferentiation of nerve cells during the development of
the peripheral and central nervous systems. Specific
neurotrophins such as nerve growth factor (NGF),
neurotrophin-3 (NT-3) and brain derived neuro-
trophic factor (BDNF) have shown to protect nerve
cells in a number of experimental models of neuro-
degenerative diseases, such as, Parkinson disease,
Alzheimer disease, and amyotrophic lateral sclerosis,
in-much the same way as specific neurotrophic factors
have been shown to stimulate the regenerative growth
of both peripheral and central nerve fibers.”"

'NGF exists as a 7 S complex- containing 2 @, 23,
and 2 7 subunits held together by two gram-atoms
of Zn’". These subunits are readily separated and
‘each has been sequenced and cloned. Only the J3-
NGF dimer possesses biological activity. It is asso-
ciated with two @-NGF and two y-NGF subunits,
which belong to the glandular kallikrein family of
serine proteinases. The y-NGF subunit is an active
serine proteinase capable of processing the precursor
form of /A-NGF, whereas, @-NGF is an inactive
serine proteinase. The structure of 7 S NGF could be
used as a starting point to design inhibitors that
prevent NGF binding to its receptors, as a potential
treatment ‘of neurodegenerative disease. The role of
the @-subunit remains unclear, although it is re-
quired for stable interaction of the A- and 7-
subunits in vitro.”’

NGF delivery systems

NdGF and other neurotrophic factors have been
.shown to promote neuritic extension after injury. The
difficulty in effectively delivering these substances
over a protracted time course that promotes maximal,
directed growth has been an obstacle to achieving the
maximal benefits from these substances. Nowadays,
problems with continuous and localized delivery of
specific neurotrophins, single or in combination, into
the nervous system appears to be the most important
obstacle preventing more widespread clinical appli-
cation.”

The use of transferrin (Tf) as a brain drug delivery
vector proven as effective at transporting biotinylated

Yonsei Med J Vol. 41, No. 6, 2000

therapeutics as OX26, and avoided the disadvantages
of its antigenicity. Transferrin receptors are con-
centrated on the plasma membrane of brain endo-
thelial cells and mediate the transcytosis of transferrin
(Tf) through the blood-brain barrier. This property
allows transferrin to act as the brain drug transporter
vector. NGF was conjugated to transferrin using the
avidin/biotin technology, and its brain-uptake effici-
ency was increased.”

The effectiveness of a specific growth factor/extra-
cellular media incorporated in a biodegradable non-
neural nerve conduit material was also investigated
for enhancement of axonal regeneration. Numerous
experiments were carried out on the incorporation of
hyaluronic acid (HA). inside a newly manufactured
nerve conduit material from fresh human amnionic
membrane. Results- of these investigations showed
that NGF/HA treatment improved axonal regenera-
tion across the amnionic tube nerve conduit 45%
more so than the non-treated amnionic tube group.”

Agarose hydrogel scaffolds were engineered to
stimulate and guide neuronal process extension in
three dimensions 7z witro. Using the bifunctional
cross-linking reagent 1,19-carbonyl diimidazole the
extracellular ECM protein laminin (LN) was co-
valently coupled to agarose hydrogel. Compared to
the unmodified agarose gels controls, LN-modified
agarose gels significantly enhanced neurite extension
from three dimensionally (3D) cultured embryonic
day 9 (E9) chick dorsal root ganglia, and PC12
cells.”

A NGF-releasing  biodegradable microsphere is
currently under investigation to protect striatum
against excitotoxic damage. NGF-loaded poly (d,l-
lactide-co-glycolide) ‘microspheres resulted in a sus-
tained release of NGF for at least one month in vitro.
Microspheres implanted in the intact striatum still
contained NGF after 2.5 months and they were
totally degraded after 3 months. After quinolinic acid
infusion, the lesion size in the group treated with the
NGEF-releasing microspheres was found to be reduced
by 40% compared with the control group.”

As these devices, aimed at delivering neurotrophic
factors to brain cells, are further developed and
perfected, it is very likely that their use will greatly
contribute to the amelioration of a variety of neu-
rogenic disorders.’
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PLATELET-DERIVED GROWTH FACTOR

Platelet-derived growth factor (PDGF) was initially
observed as a fibroblast growth-promoting activity
present in serum but lacking in plasma.”® PDGF
(=30 kDa) consists of two distinct disulphide-linked
peptide chains, termed A and B, that share a 60
percent sequence identity, and can be expressed as
homodimers (PDGF-AA and PDGF-BB) or as a
heterodimer (PDGF—AB).”’100 Binding of PDGF to
several plasma and extracellular matrix proteins, in-
cluding @»>-macroglobulin may modulate its biolo-
gical acr:ivity.6’102 Since PDGF is a strongly cationic
protein, it should bind to negatively charged extra-
cellular matrix proteins.6 Also, binding of PDGF to
the extracellular part of either receptor type leads to
dimerization of the receptor molecules, followed by
activation of the receptor protein-tyrosine kinase, and
the generation of phosphorylation-mediated signals
that initiate the biological response.'’"'” PDGF is
not detectable in. the circulation and its biological
half-life is less than 2 minutes when injected intra-
venously.104 PDGF is both a locally produced and
locally acting growth factor.® Smooth muscle cells and
fibroblasts synthesize only the PDGF-A chain, wher-
eas endothelial cells and macrophages synthesize both
the PDGF-A and PDGE-B chains.' """

PDGF as a mitogen is able to induce density-
inhibited cells to reach the first arrest point in the
cell cycle, called the competence point, hence it is
classified as a ‘competence factor’."” Peptides such as
insulin-like growth factor-I (IGF-I) and EGF act later
in the cell cycle, and are termed ‘progression factors’.
They exhibit potent synergy with PDGF iz vitro and
in vivo.® PDGF is mitogenic for fibroblasts, partly
through its ability to induce the synthesis of autocrine
factors.” It also enhances fibroblast production of
. fibronectin, hyaluronic acid and collagermse.no’111

PDGF is a potent mitogen and chemotactic factor
for cells of mesenchymal origin, including periodontal
ligament cells and osteoblasts."*"** Enhancement of
periodontal tissue regeneration using PDGF has been
demonstrated in beagle dogs and monkeys.'”"?
Though PDGF has superior activity in tissue re-
generation, rapid clearance of PDGF due to its short
half-life result in difficulties at maintaining thera-
peutic concentrations after injection. This has lead to
the administration of extremely high doses above 10
ug for bone regeneration.'” PDGF and IGF-I are

important anabolic growth factors for bone regenera-
tion, because both adsorb to the bone mineral matrix
in a concentration-dependent fashion."”*'” PDGF in
concentrations equal to or greater than 50 ng/ml
demonstrated a significant stimulation of periodontal
ligament cells adherence to periodontal diseased root
surfaces.'*® Resting zone chondrocyte (RC) cells were
pretreated with recombinant human PDGF prior to
implantation. Pretreatment of the RC cells with
PDGF promoted the retention of a hyaline-like chon-
drogenic phenotype. There was also a marked increase
in cartilage formation in PDGF treated cells.””’

Topically applied recombinant human PDGF is a
new pharmacologically active therapy for chronic,
neutopathic, lower extremity diabetic ulcers.””® In a
rabbit ear dermal ulcer model, PDGF was unique
among several factors tested, including TGF- 31, FGF
and EGF, in significantly enhancing both granulation
tissue volume and the degree of re-epithelization.'” It
also stimulated granulation tissue formation in normal
and diabetic rats."” ,

Platelets release granule products and products of
the coagulation process- which deposit locally. The
sequential migration of neutrophils, monocytes and
fibroblasts into wounds begins immediately and con-
tinues over the first several days. Activated wound
macrophages and fibroblasts result in the e novo
synthesis of growth factors, other cytokines and ex-
tracellular matrix proteins including collagen.'” PDGF
and IGF-I have been shown to regulate DNA and
protein synthesis in bone cells 7z vitro and to interact
synergistically to enhance soft tissue wound healing
in vivo despite their short half-lifes."”> A combination
of PDGF and EGF promoted human colonic fibro-
blast-dependent wound tepair activities.”’ PDGF also
stimulates neointimal formation and vascular rege-
neration. ‘

PDGF and TGF J1 stimulated neointima cells 7
vitro and neointimal formation iz vive.””’ HGF and
PDGF also act in coordination to promote the pro-
liferation and migration of smooth muscle cells in the
earlier phases of neointimal formation.”” Experiments
with an in vitro growth chamber model in the rat,
consisting of a silicone shell containing a dissected
femoral vascular bundle, revealed that recombinant
PDGF-BB, when incorporated into a rapidly dis-
solving -collagen type film, induced the generation

of de novo tissue around the femoral vascular
133
bundle.
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PDGF-BB delivery systems

New bone formation induced by DBM was sig-
nificantly enhanced by PDGF or transforming growth
factor beta (TGF- ) (60 ng of each growth factor)
after adsorption on microcrystals of hydroxyapatite,
which indicated that a suitable carrier was required
for the stimulation of osteoinduction.'’” It is essential
that a carrier system is developed to maintain PDGF-
BB at therapeutic concentrations at wound sites for
healing period of up to 4 weeks to obtain enhanced
bone regeneration.'”” Khouri et al. developed a
collagen disk which delivers rtPDGF-BB either as a
rapid pulse or by slow release. Sustained delivery of
rPDGF-BB  caused continuous growth of the tissue
and was more effective than pulsed delivery.154 The
local delivery of PDGF and TGF-1 significantly in-
creased neointimal thickness at the neck of porcine
aneurysms using collagen sponge. The chitosan/TCP
sponge carrier system was fabricated as a sustained
delivery system of PDGE-BB for bone regeneration."”
Extrudable ethylene-vinyl acetate (EVA) copolymer
delivery systems capable of sustained release of PDGE-
BB were developed for human osteoblast proliferation
and differentiation.”*® In previous study, EVA, bovine
serum albumin and PDGF-BB were combined and
coated onto a stainless-steel Kirshner wire (K-wire).
PDGEF-BB released from the K-wire delivery system
stimulated thymidine uptake in human bone cell
cultures. Differences in porosity and tortuosity of the
EVA rod accounted for the different release kinetics
observed."””’ For enhanced regeneration of both soft
and hard tissue components of the periodontium, a
combination of 3 g of recombinant PDGF-BB and
IGF-I in a methylcellulose gel was prepared. Com-
pared to controls receiving placebo gel, PDGF-BB/
IGF-1I treated sites showed increased height and total
area of new bone after 2 to 5 weeks.”" Poly a-
hydroxyacids are known to be degraded principally by
non-specific hydrolysis iz vivo. Porous poly-L-lactide
(PLLA) membranes have been developed and PDGEF-
BB was incorporated into such a membrane for
periodontal regeneration. The membrane maintained

a sustained release of PDGF-BB and degraded gra- -

dually d{lring the regeneration period."”’

TRANSFORMING GROWTH FACTOR- 8
TGF- 8 is a secreted multifunctional protein that

Yonse: Med J Vol. 41, No. 6, 2000

regulates cell proliferation, differentiation and extra-
cellular matrix metabolism,">*%! TGEF- 8 is member
of the TGF- /S superfamily, which consists of three
groups, TGF-f3, the activins and the BMPs. Five
subtypes have been demonstrated, and three of these
are found in all mammalian species.mo’ "2 The active
TGF- 5 is 25 kDa homodimer of disulfide-linked
subunits. TGF- 8 performs various function on dif-
ferent tissues, stimulating mesenchymal cells and in-
hibiting ectodermal cells."* A variety of potential
clinical applications for this growth factor has been
suggested, including the enhancement of soft and
hard tissue healing, control of chronic inflammatory
diseases associated with fibrosis and the suppression
of autoimmune diseases.'** TGF- 8 usually circulates
in the blood stream in latent form with a half life
of 90 min, while the active form of TGE- §3, is cleared
from the circulation in a few minutes.'"

TGEF- B presents its signals to the cell by binding
to specific large transmembrane receptors on the
surface of the target cell: Binding to the extracellular
domain of the receptor triggers the intracellular
domain, which generally activates a protein kinase.
The kinase cascade activates transcription of affected
gene into mRNA, which is then translated into
protein to be secreted."*® TGF- f is secreted by cells
as a biologically inactive latent precursor. Latent
TGEF- B is generally found as a complex of active

"TGE- f3, a latency-associated peptide (LAP) and the

latent TGF- /3 binding protein.141 The release of ma-
ture TGF- B from LAP is thought to be necessary for
the interaction of TGF- 8 with cell-surface receptors.
Latent TGF- 3 is activated by glycosidase, resulting
in a change of carbohydrate structure in LAP do-
main.147 Recently, an extracellular matrix protein,
thrombospondin (TSP), was found to activate latent
TGF- A via a novel mechanism which does not re-
quire proteolytic activity.148 The possible mechanism

~of such activation may be via a conformational change
-in the LAP induced by the binding of TSP.

Some binding proteins play important roles in
targeting TGF- 8 to proper locations after synthesis
and secretion."”"° Active TGF- 8 binds to multiple
extracellular matrix components, such as, IV collagen,
fibronectin, thrombospondin, decorin and heparin.
Binding of TGF- 3 to these components can modu-
late its activity, serve as a reservoir for the growth
factor,”""? and also play a role in delivering it to
the cell-surface receptors.'” ’
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TGF- B delivery systems to enhance wound healing

TGF- 3 mediates tissue embryogenesis, normal
cellular physiology, inflammation and tissue repair.l54
The wound healing response of full-thickness skin
defects in rabbit to TGF- 3, incorporated in a col-
lagen scaffold, was evaluated.”” Though greater in-
flammatory response was found in the collagen
scaffold-treated group, the fastest epithelialization and
contraction rates ‘were associated with TGF- £ and
collagen. This study demonstrated that TGF-f de-
livered through a collagen scaffold enhanced the heal-
ing process and showed promise for future clinical
applications. In general, TGF- 8 shows great promise
for use in the therapy of poorly healing wounds. "
However, the fibrogenic potential of TGF- 8 becomes
apparent after repeated injections of higher doses."”’
The deleterious effects of TGF- 8 when administered
in excess requires the development of a controlled
delivery system.

TGF- B delivery system for bone repair

TGF- B is produced by osteoblasts and stored in
the bone matrix, making bone the largest reservoir
of TGE- 3 in the body.158 It stimulates osteoblast-like
cells to proliferate and synthesize collagen in cul-
ture,”” and increase bone. thickness when applied
adjacent to periosteum 7n vivo.'* A single application
of human recombinant TGF-fA1 in a 3% methyl-
cellulose gel to skull defects created in rabbits in-
duced a dose-dependent increase in intramembranous
bone' formation.'*"

Although bone has a remarkable capacity for
regenerative growth, there are many clinical situations
in which the bony repair process is impaired. There
still exists a need for an effective method of delivering
TGEF- 81 to the osseous defect site to promote bone
healing. A biodegradable controlled release system for
. TGF- 31 comprised of poly (DL- lactic—co-glycolic
acid) and DBM has been described.™

TGF-B1 is found in the periosteum at an early
stage in fractures, and enhances the proliferation of
mesenchymal cells and osteoblasts in experimental
bone defects.""®® Whereas, BMPs induce bone in
heterotopic sites, TGF- 31 depends on orthotoplc
application such as subperiosteal injection.'” TGEF-
B1 enhances the healing of experimentally created
defects of the skull in rabbxts 12019 bone ingrowth in
porous titanium rods'”” and tricalcium phosphate
coated implants in dogs.168

Rh TGF- 81 was incorporated into biodegradable
microparticles of blends of poly (DL-lactic-co-glycolic
acid) and poly (ethylene glycol) to create a delivery
vehicle for growth factor."” The TGF-B1 released
from the microparticles enhanced the proliferation
and osteoblastic differentiation of marrow stromal
cells cultured on poly (propylene fumarate) substrate.
The - cells showed significantly increased total cell
number, ALP activity, and osteocalcin production
compared to cells cultured without TGF- 81. These
results suggest that controlled release of TGF- /51
from the PLGA/PEG blend microparticles may mod-
ulate cellular response bone healing at a skeletal site.
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