삼출성 흉수에서 기질 금속단백분해효소-1과 금속단백분해효소의 조직억제제-1

¹인하대학교 의과대학 내과학교실, ²진단검사의학교실 조재화¹, 남정현², 이금호¹, 윤병갑¹, 류정선¹, 곽승민¹, 이홍렬¹

Matrix Metalloproteinase-1 Tissue **Inhibitor** of Metalloproteinase-1 and levels in Exudative Pleural Effusions

Jae Hwa Cho¹, Jeong Hyeon Nam², Kyum Ho Lee¹, Byeong Kab Yoon¹, Jeong Sun Ryu¹, Sung Min Kwak¹ and Hong Lyeol Lee¹

Department of ¹Internal Medicine and ²Clinical Pathology, College of Medicine, Inha University, Incheon, Republic of Korea

Background: The balances of the proteinases and antiproteinases system have been implicated in the pathogenesis of various exudative pleural effusions. The aim of this study was to examine the matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinase-1 (TIMP-1) levels in exudative pleural effusions.

Methods: The study included 33 tuberculous effusions, 17 malignant, and 5 transudates. The pleural levels of MMP-1 and TIMP-1 were determined using a commercially available ELISA assay.

Results: The group of tuberculous effusions showed higher pleural MMP-1 levels than the malignant and transudates. The pleural TIMP-1 levels of the tuberculous and malignant effusions were higher than the transudates.

Conclusion: Elevated pleural MMP-1 and TIMP-1 levels were found in tuberculous effusions. (Tuberc Respir Dis 2005; 59: 517-521)

Key words: Matrix metalloproteinase, Pleural effusion, Tissue inhibitor of metalloproteinase

서 론

흉수는 흉강에 세포들이 유입되고 이들 세포와 흉 막세포에서 분비되는 염증전달물질들이 염증반응을 일으켜 발생되며, 이들 염증전달물질 중 단백질분해 효소와 기질분해효소들이 최근에 염증반응의 주요한 특징으로 흉막질환의 병인에 중요하다¹⁻³. 기질 금속 단백분해효소(Matrix metalloproteinase, MMP)와 그 내인성 억제제인 금속단백분해효소의 조직억제제 (tissue inhibitors of metalloproteinase, TIMP)들은 감염과 면역질환들의 다양한 병태생리과정들에 관여 하고 있다^{4,5}. 기질 금속단백분해효소는 간질성 폐섬 유화와 흉막질환을 포함하여 비정상적인 치유과정들

이 논문은 인하대학교의 지원에 의하여 연구되었음.

study was supported INHA Research Grant (INHA).

Address for correspondence: Jae Hwa Cho, M.D. Department of Internal Medicine, College of Medicine, Inha University, 7-206, 3-ga, Shinheung-dong, Jung-gu, Incheon, 400-711, Republic of Korea. Phone: +82-32-890-3490 Fax: +82-32-882-6578

E-mail: jaehwa.cho@inha.ac.kr Received: May. 2. 2005 Accepted : Sep. 21. 2005

에 많은 역할을 한다⁶. 결핵성흉막염은 간혹 흉막비후 와 유착을 일으키고, 기질 금속단백분해효소와 금속 단백분해효소 조직억제제는 이들 섬유화 과정 에 관여 할 수 있다. 여러 원인의 흉수질환에서 기질 금속단백 분해효소와 금속단백분해효소의 조직억제제들은 흉강 의 항상성을 유지하고, 일부는 질환을 유발할 수 있음 이 알려졌다^{3,6,7}. 저자들은 삼출성 흉수에서 기질 금속 단백분해효소-1과 금속단백분해효소 조직억제제-1를 측정하여 원인질환에 따른 차이를 구하고자 하였다.

대상 및 방법

1. 대 상

2003년 2월부터 2004년 5월까지 인하대학교 의과 대학 부속병원 내과에 입원하여 흉수천자를 시행하 였던 55명을 대상으로 하였다. Light 등의 기준에 따 라 흉수는 삼출성(50예)과 누출성(5예)으로 구분하였 다⁸. 삼출성 흉수는 결핵성(33예), 악성(17예)이었고, 누출성은 심부전증(3예)과 간경화(2예)이었다.

결핵성 흉수는 흉막생검에서 건락육아종이 관찰되 거나, 흉수 AFB배양 양성이거나, 림프구 우세이면서 흉막 adenosine deaminase(ADA)가 50 IU/mL이상인 경우이고 항결핵제 치료 후 흉부방사선사진의 호전이 있는 경우에 진단하였다⁹. 악성 흉수는 흉수 세포진 검사에서 악성세포가 관찰되거나 흉막 조직생검에서 악성으로 진단된 경우로 하였다.

흉수는 처음 진단적 천자를 할 때 단순 튜브에 모 았으며, 젖산 탈수소효소(LDH)와 총단백질을 측정하였 다. LDH는 효소법(Wako Chemical Co. Ltd, Japan)을 이 용한 색측정법으로, ADA는 효소법(Toyobo Co. Ltd., Japan) 으로 측정하였다. 원심분리를 600 g, 4℃에서 30 분간 시행하여 상층액을 모아 -70℃에 보관하였다.

2. 기질 금속단백분해효소-1과 금속단백분해효소 조 직억제제-1 측정

기질 금속단백분해효소-1(MMP-1)와 금속단백분 해효소 조직억제제-1(TIMP-1)은 효소면역측정 방법 (Biotrack[™] Amersharm Pharmacia Biotech, Freiburg, FRG)을 이용하여 흉수에서 측정하였다. MMP-1은 희석하지 않고 측정하였고 TIMP-1은 1:1000으로 희 석한 후 측정하였다.

3. 통계처리

자료는 평균과 표준편차로 표시하였다. 통계분석

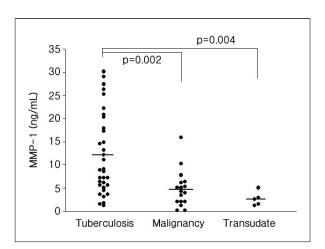


Figure 1. Pleural fluid MMP-1 levels according to the different etiologies. The pleural MMP-1 of tuberculous effusion was higher than that of malignancy and trasudate, Horizontal line represented the mean.

은 Statistical Package for Social Sciences version 10 (SPSS Inc., Chicago, IL, USA)를 이용하였다. 비모수통계로 연속변수는 양군간 비교에 Mann-Whitney 검사와 세 군들 차이여부에 Kruskal-Wallis검사, 그리고 범위변수는 Chi square검사를 시행하였다. P값이 0.05미만인 경우에 통계적 유의가 있다고 정의하였다.

결 과

대상의 임상적 특성으로 결핵성 흉수 33예 중 남자 24명 여자 9명이고 악성 흉수는 남자 11명, 여자 6명 이었으며 누출흉수는 남자 3명, 여자 2명이었다. 나이는 악성흉수에서 평균 59세로 결핵성 흉수 평균 46세 보다 다소 높았으며 누출흉수 평균 61세와 비슷하였다(p=0.065). 흉수 LDH는 결핵성 흉수(1476.7±865.7 IU/L)와 악성흉수(1577.3±1272.7 IU/L)간 차이는 없었느나, 누출액(332.8±134.1 IU/L)보다는 높았다. 흉수 ADA는 결핵성(94.6±23.9 IU/L)에서 악성흉수(23.1±11.4 IU/L)와 누출액(20.7±6.6 IU/L)보다 높았다.

흉수 MMP-1은 결핵성 흉수(n=33, 12.1±8.8 ng/mL) 가 악성 흉수(n=17, 4.8±4.0 ng/mL)나 누출액(n=5, 2.6± 1.5 ng/mL)보다 높았다(각각 p=0.002). 흉수 TIMP-1 은 결핵성 흉수(n=23, 110.9±38.2 μg/mL)가 누출성 흉수(n=5, 53.7±21.8 μg/mL)보다 높았고(p=0.004), 악

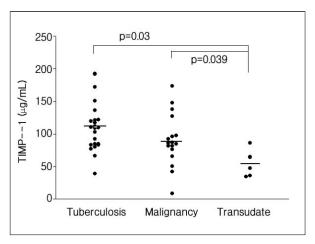


Figure 2. Pleural fluid TIMP-1 levels according to the different etiologies. The pleural TIMP-1 of tuberculosis and malignancy effusion was higher than that of trasudate. Horizontal line represented the mean.

Table 1. Clinical characteristics of subjects in the different types of pleural effusions

	Tuberculosis	Malignancy	Transudate	P value*	
Subjects	33	17	5		
Age (year)	46 ± 23	59 ± 14	61 ± 21	0.065	
Male:Female	24:9	11:6	3:2	0.759	
Pleural WBC (/µL)	2,766 ± 3,141	2,012 ± 2,537	954 ± 789	0.359	
Pleural protein (mg/dL)	4.96 ± 0.96	4.40 ± 1.20	2.50 ± 1.37	0.002	
Pleural LDH (IU/L)	1476.7 ± 865.4	1577.3 ± 1272.7	332.8 ± 134.1	0.003	
ADA [†] (IU/L)	94.6 ± 23.9	23.1 ± 11.4	20.7 ± 6.6	0.000	
MMP-1 [‡] (ng/mL)	12.1 ± 8.8	4.8 ± 4.0	2.6 ± 1.5	0.000	
TIMP-1 [§] (µg/mL)	110.9 ± 38.2	90.2 ± 39.8	53.7 ± 21.8	0.010	
MMP-1/TIMP-1 ratio (X 10^{-5})	9.68 ± 6.85	8.42 ± 11.98	5.82 ± 4.77	0.214	

Data were expressed mean±standard deviation. *Kruskal-wallis test were performed for difference among groups.

† adenosine deaminase,

† metrix metalloproteinase-1,

Étissue inhibitor of metalloproteinase-1

성 흉수(n=17, 90.2±39.8 µg/mL)도 누출성 흉수보다 높았으나(p=0.039), 결핵성 흉수와 악성 흉수는 유의 한 차이가 없었다(p=0.132). 흉수 MMP-1/TIMP-1비 (X10⁻⁵)는 결핵성 흉수(n=23, 9.68±6.85), 악성흉수 (n=17, 8.42±11.98), 누출성 흉수(n=5, 5.82±4.77)간 유의한 차이가 없었다(p=0.214).

고 찰

본 연구에서 흉수 MMP-1 수치는 결핵성과 악성 흉수에서 누출성 흉수보다 높았으며, 흉수 TIMP-1 수치는 결핵성 흉수에서 악성과 누출성 흉수보다 높 았다. 단백분해효소와 항단백분해효소 시스템의 균형 이 염증반응에서 중요한 역할을 한다. MMP들은 구 조와 기질특이성에 따라 아교질분해효소 (MMP-1.8.13. 18), 젤라틴분해효소 (MMP-2,9), stromelysin (MMP-3,10,11,19,20) 그리고 막기질 금속단백효소 (MMP-14, 15,16,17)들로 나눈다⁴. 흉막강에서 MMP-1은 감염성 흉막염에서 섬유화 반응에 유도한다고 알려져 있다¹⁰. 그리고 폐암에서 단백분해활성이 증가되는 것은 종 양 침범정도 그리고 조직의 구조변형과 관련이 있다. 단백분해효소들의 분해능력은 특정한 내인성 억제제 들 즉 TIMP와 생리적으로 균형을 이룬다. TIMP 동 종형은 MMP와 1대1로 결합하여 억제하는 특징이 있 다. 생체에서 기질의 생성과 파괴를 조절하는 과정은 활성된 MMP와 유리 TIMP의 균형에 의해 조절된다^{6,10}. 그러나 TIMP-1의 역할에 대해 아직 알려져 있지 않으 나 MMP가 기질 분해하는 과정이 활성 하는 것을 억 제하고 조절하는 역할을 할 것으로 생각된다. 본 연구 에서 MMP-1/TIMP-1의 비가 각 누출성, 결핵성, 그 리고 악성흉수에서 차이가 없는 것으로 나타났다. 이 는 ELISA방법으로 측정하는 MMP-1이나 TIMP-1 가 유리형과 복합형들이 측정되는 한계를 갖고 있기 때문으로, 각각의 활성상태를 측정하는 방법이 필요 할 것으로 보인다. 실험에서 사용된 ELISA 방법으로 MMP-1은 총 MMP-1, 유리형과 복합형 TIMP-1과 결합한 형태를 모두 측정하며, TIMP-1은 TIMP-1의 유리형과 복합형 모두를 측정하였다. MMP-1과 TIMP-1은 중피세포에서 발현되는 것으로 누출액, 악성흉수, 부폐렴 흉수에서 동일하게 발현되고 있다7. 이전의 두 연구에서 MMP-1, TIMP-1의 수치는 각 기 다른 종류의 흉수에서 의미 있는 차이가 없다고 하였다^{3,7}. 누출액보다 삼출액에서 MMP수치가 높은 것은 이들 흉수생성에 중요한 역할을 하는 세포들에 의한 것으로 생각된다¹¹. 그러나 다른 연구에서 결핵성 흉수에서 EILISA방법으로 측정한 MMP-1, MMP-2, MMP-8, 그리고 MMP-9의 수치가 심부전증 흉수보 다 높았다¹². 폐결핵에서 결핵균의 lipoarabinomannan은 MMP-9의 분비를 촉진시키고, 대식세포에서 MMP-1 과 MMP-9의 유전자발현을 촉진시킨다¹³. 흉수 MMP-1의 수치가 농흉이나 합병증이 동반된 부폐렴흉수에 서 매우 높게 나타났고 염증 인자인 TNF-a, IL-8 등 과 양의 상관관계에 있었다¹⁴. 본 연구에서도 MMP-1 은 결핵성, 악성, 누출성 흉수에서 모두 측정되었으나 각각 차이가 있었다. 따라서 MMP-1은 염증인자들에 의해 자극을 받고 또한 염증에 관련된 세포들에서 중 피세포가 자극을 받아 생성하는 것으로 생각할 수 있다. 농흉은 중성구가 주된 염증반응에 역할을 하고¹⁵, 결핵성 흉막염은 림프구가 주된 역할을 한다¹². 때문에 질환에 따라 다른 종류의 MMP나 TIMP를 측정하면 의미가 있을 것이다.

요약하면 결핵성 흉막염에서 흉수 MMP-1과 TIMP-1 은 심부전이나 간경화의 누출성 흉수에서 보다 높은 수치를 보였다. 추후 흉막염에서 여러 MMP와 TIMP에 대한 연구와 더불어 염증매개물질, 섬유화 반응에 관련된 인자들과의 연관성에 관한 연구가 필요하리라 사료된다.

요 약

배 경:

흉수에서 기질 금속단백분해효소(MMP)와 금속단백분해효소 조직억제제(TIMP)는 감염과 면역질환의병인에 중요한 역할을 한다. 저자들은 삼출성 흉수에서 MMP-1과 TIMP-1의 발현에 대한 측정을 하였다.

방 법:

결핵성 흉막염 33예, 악성흉수 17예, 심부전 또는 간경화 흉수환자 5예의 흉막천자액에서 세포분석, 생 화학적 분석을 하였고, 효소면역측정방법으로 MMP-1 과 TIMP-1(Biotrack™ Amersharm Pharmacia Biotech, Freiburg, FRG)를 측정하였다.

결 과:

흉수 MMP-1은 결핵성 흉수(n=33, 12.1±8.8 ng/mL)가 악성 흉수(n=17, 4.8±4.0 ng/mL)나 누출액(n=5, 2.6±1.5 ng/mL)보다 높았다(p=0.002). 흉수 TIMP-1 은 결핵성 흉수(n=23, 110.9±38.2 μg/mL)가 누출성 흉수(n=5, 53.7±21.8 μg/mL)보다 높았고(p=0.004), 악성 흉수(n=17, 90.2±39.8 μg/mL)도 누출성 흉수보다 높았으나(p=0.039), 결핵성 흉수와 악성 흉수는 유의한 차이가 없었다(p=0.132).

결 론:

흉수 MMP-1, TIMP-1는 결핵성 흉막염에서 심부

전이나 간경화 흉수보다 높았다.

감사의 글

본 연구의 자료정리에 도움을 준 이경주씨에게 감 사를 드립니다.

참 고 문 헌

- Antony VB, Godbey SW, Kunkel SL, Hott JW, Hartman DL, Burdick MD, et al. Recruitment of inflammatory cells to the pleural space: chemotactic cytokines, IL-8 and monocyte chemotactic peptide-1 in human pleural fluids. J Immunol 1993;151:7216-23.
- Philip-Joet F, Alessi MC, Philip-Joet C, Alilaud M, Barriere JR, Arnaud A, et al. Fibrolytic and inflammatory processes in pleural effusion. Eur Respir J 1995;8:1352-6.
- Hurewitz AN, Zucker S, Mancusco P, Wu CL, Dimassimo B, Lysik RM, et al. Human pleural effusions are rich in matrix metalloproteases. Chest 1992;102: 1808-14.
- Birkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkedal-Hansen B, DeCarlo A, et al. Matrix metalloproteinase: a review. Crit Rev Oral Biol Med 1993; 4:197–250.
- Stetler-Stevenson WG. Dynamics of matrix turnover during pathologic remodeling of the extracellular matrix. Am J Pathol 1996;148:1345-50.
- O'Connor CM, Fitzgerald MX. Matrix metalloproteases and lung disease. Thorax 1994;49:602-9.
- Eickelberg O, Sommerfeld CO, Wyser C, Tamm M, Reichenberger F, Bardin PG, et al. MMP and TIMP expression in pleural effusions of different origin. Am J Respir Crit Care Med 1997;156:1987–92.
- Light RW, MacGregor MI, Luchsinger PC, Ball WC Jr. Pleural effusion: the diagnostic separation of transudates and exudates. Ann Intern Med 1972;77:507-13.
- Ocana I, Martinez-Vazquenz JM, Segura RM, Fernandez-DeSevilla T, Capdevila JA. Adenosine deaminase in pleural fluid: test for diagnosis of tuberculous pleural effusion. Chest 1983;84:51-3.
- Murphy G, Doherty AJ. The matrix metalloproteinase and their inhibitors. Am J Respir Cell Mol Biol 1992; 7:120-5.
- Segura-Valdez L, Pardo A, Gaxiola M, Uhal BD, Becerril C, Selman M. Upregulation of gelatinases A and B, collagenase 1 and 2, and increased parenchymal cell death in COPD. Chest 2000;117:684-94.

- Hoheisel G, Sack U, Hui DS, Huse K, Chan KS, Chan KK, et al. Occurance of matrix metalloproteinases and tissue inhibitors of metalloproteinases in tuberculous pleuritis. Tuberculosis 2001;81:203-9.
- Chang JC, Wysocki A, Tchou-Wong KM, Moskowitz N, Zhang Y, Rom WN. Effect of Mycobacterium tuberculosis and its components on macrophages and the release of matrix metalloproteinases. Thorax 1996;51: 306-11.
- Iglesias D, Alegre J, Aleman C, Ruiz E, Soriano T, Armadans LI, et al. Metalloproteinases and tissue inhibitors of metalloproteinases in exudative pleural effusions. Eur Respir J 2005;25:104-9.
- Odeh M, Sabo E, Srugo I, Oliven A. Correlation between polymorphonuclear leukocyte counts and levels of tumor necrosis factor-α in pleural fluid of patients with parapneumonic effusion. Lung 2002;180:265-71.