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In oncology trials, patients are withdrawn from study at the time when progressive disease (PD) is 
diagnosed, which is defined as 20% increase of tumor size from the minimum. Such informative 
censoring can lead to biased parameter estimates when nonlinear mixed effects models are fitted 
using NONMEM. In this work, we investigated how empirical Bayes estimates (EBE) could be 
exploited to impute missing tumor size observations and partially correct biases in the parameter 
estimates. 50 simulated datasets, each consisting of 100 patients, were generated based on the pub-
lished model. From the simulated dataset, censoring due to PD diagnosis has been implemented. 
Using the post-hoc EBEs acquired from fitting the censored datasets using NONMEM, imputed 
values were generated from the tumor size model. Model fitting was carried out using censored and 
imputed datasets. Parameter estimates using both datasets were compared with true values. Tumor 
growth rate and cell kill rate were approximately 28% and 16% underestimated when fitted using 
the censored dataset, respectively. With the imputed datasets, relative biases of tumor growth rate 
and cell kill rate decreased to about 6% and 0%, respectively. Our work demonstrates that using 
EBEs acquired from fitting the model to the censored dataset and imputing the unknown tumor 
size observations with individual predictions beyond the PD time point is a viable option to solve 
the bias associated with structural parameter estimates. This approach, however, would not be help-
ful in getting better estimates of variance parameters.

Introduction
  In solid tumors, there is recently growing interest in more 
precisely modeling tumor size to better assess drug efficacy and 
resistance development. Tumor size is usually expressed as the 
sum of the longest diameter (SLD), acquired as part of Response 
Evaluation Criteria in Solid Tumors (RECIST)[1] evaluation. 
Although changes in the size of measurable lesions often fail to 
correlate with clinical outcome, they nevertheless constitute the 
current standard of treatment assessment. In the field of phar-
macometrics, there are several published tumor size models for 
different cancer types, including colorectal cancer and nonsmall 
cell lung cancer.[2] These models use SLD as a continuous scale 

measure, to describe the time course of tumor response in rela-
tion to drug exposure. Such endeavors began with the criticisms 
of the traditional approach of classifying tumor responses into 
four categories – namely, complete response, partial response, 
stable disease, and progressive disease (PD) – since such an 
approach results in the loss of information, posing an obvious 
limit to what can be possibly learnt.[3]
  However, fitting tumor size observations acquired from RE-
CIST evaluation all suffer from problems related to non-random 
censoring. In oncology trials, patients are withdrawn from study 
at the time of PD diagnosis. Based on RECIST version 1.1, tar-
get lesion PD is diagnosed when tumor size increases by more 
than 20% relative to the minimum size. Hence, patients who are 
diagnosed with PD early in the trial are under-represented in 
terms of tumor size observations. Regarding such non-random 
censoring, Bjornsson et al. (2015)[4] reported the effect of in-
formative dropout on parameter estimation in nonlinear mixed 
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effects models and found that failure to account for dropout in 
the analysis resulted in bias of up to 21% in parameter estimates. 
Recently, a method using NONMEM’s capability of estimat-
ing empirical Bayes estimates (EBEs) has been suggested for 
imputation of missing covariates.[5] The method used a four-
step multiple imputation, carried out by (1) estimation of model 
parameters and EBEs using a basic model without missing 
covariates, (2) creation of a regression model for the covariate 
values given the EBEs from subjects with covariate information, 
(3) imputation of missing covariates using the regression model, 
and (4) re-estimation of model parameters using a basic model 
with imputed covariates. 
  With this background, this work aimed to extend the afore-
mentioned method to investigating how EBEs could be ex-
ploited to impute missing tumor size observations. We sought 
to assess the magnitude of bias that results from ignoring in-
formative censoring and test how the use of EBEs of individual 
parameters to impute for missing values can partially correct for 
such biases.

Methods

Simulation model
  The tumor growth model considered for simulation was the 
published model by Claret et al [6] below. 

                  = KL∙y(t) - KD(t)∙Exposure(t)∙y(t)   � (1)
                 KD(t) = KD,0 ∙ e

-λt           �  (2)
                 y(0) = y0    �  (3)

  In the above, y(t) is the tumor size at time t, y0 is the baseline 
tumor size, KL is the tumor growth rate, KD(t) is the drug-
constant cell kill rate that decreases exponentially with time 
(according to λ) from an initial value of KD,0 to account for the 
progressive development of resistance. Exposure(t) is the drug 
exposure at time t. For Exposure(t), since no drug concentra-
tion or dose information was available in the original work by 
Claret et al, using the prior knowledge that the usual amount of 
capecitabine, a drug used in the original work, is 1,000 mg/m2/
day and the mean BSA is about 2 m2, it was initially assumed as 
2 g/day and then finally chosen to be 1 g/day for simplicity. For 
y0, based on the median value of 71 mm reported in the original 
work, an exponential distribution with a mean value of 50 (mm) 
was used.
  However, using an exponential growth model above led to 
excessively large tumor sizes during simulations, so a logistic 
growth restriction was imposed as below. 

                = (KLy(t) - KD(t)∙Exposure(t)∙y(t))∙(1 - )   �  (4)

  In the above, 1000 is the theoretical maximum tumor size (or 
called carrying capacity) (mm), which was chosen based on the 
empirical evidence that the observed maximum tumor size was 

reported as 100 ~ 300 mm in previous studies[6-7] and 500 mm 
in ToGA study recently conducted, implying that carrying ca-
pacity could be larger than 500 mm. The approach of fixing the 
maximum tumor size in logistic growth model has been used 
by other research groups, one of which is Ribba et al.[7]
  The inter-individual variance (IIV) was modeled as

                                           P = TVP∙exp(SD∙η)    �  (5)
                                           CV(P) = SD    �  (6)

  P and TVP denote individual and typical or population es-
timates of KL, KD,0 and λ, respectively, SD denotes the scale 
parameter for inter-individual error η assumed to follow the 
standard normal distribution, and CV denotes coefficient of 
variation. For residual variance, unlike the original article, a 
proportional error model was used so that negative tumor sizes 
do not result during simulations.
  Then, with the model chosen as above, 50 simulated datasets, 
each consisting of 100 patients, were generated, with tumor 
size measurements being simulated at 0 (baseline) and every 3 
weeks thereafter up to 51 weeks from the initiation of treatment. 
The final parameter estimates reported in the original work, as 
shown in Table 1, were used for the simulations, except for re-
sidual variance which was assumed to be 10% (CV).

Generating censored datasets
  From each simulated dataset, censoring due to 20% increase 
of tumor size from the minimum has been implemented as fol-
lows:

Step 1. Acquire minimum tumor size ymin from each patient. 
Denote the time at which ymin is attained as tmin.
Step 2. Find the minimum t satisfying y(t) ≥ 1.2ymin for t > tmin 
and denote it as tPD.
Step 3. Discard y(t) for t > tPD

Imputation method to reduce estimation bias in tumor models

Table 1. Estimate (%RSE) of tumor growth model parameters reported 
in the original publication

Parameter Estimate (%RSE)

Structural parameters

Tumor growth rate, KL /week 0.015 (25.4)

Cell kill rate, KD /g week 0.058 (17.0)

Resistance appearance, λ/week 0.042 (28.7)

Variance parameters

IIV (variance) of KL 0.556 (27.8)

IIV (variance) of KD 0.540 (43.7)

IIV (variance) of λ 0.450 (55.5)

Sigma, mm 14.9
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  Using the above procedure, 50 censored datasets were gener-
ated from 50 simulated datasets. Then, model fitting using these 
censored datasets has been carried out.

Generating imputed datasets
  The post-hoc EBEs acquired from fitting the tumor size model 
to censored datasets were used to predict the values to be im-
puted for censored tumor sizes. The resultant dataset would be 
a mixture of the original observations and imputed observa-
tions before and beyond the PD time point, respectively. That is, 
observation(t ≤ tPD) = DV(t), observation(t > tPD) = IPRED(t), 
where DV(t) and IPRED(t) denote true tumor sizes and indi-
vidual predicted tumor sizes using EBEs, respectively.
  Figure 1 compares the original dataset with censored and 
imputed datasets. Model fitting using the imputed dataset was 
then carried out.

Bias assessment of population parameter estimates
  Relative bias of the population parameter estimates from the 
censored and imputed datasets was calculated as follows:

Bias of population parameter estimate =  X 100 (%)  � (7)

(TVP: true population parameter value used in simulation, 
TVP: estimated population parameter value using the censored 
or imputed dataset)
  The mean bias was then calculated from 50 relative bias esti-
mates. It was then seen whether the estimates from the imputed 
dataset resulted in reduced biases.

Bias assessment of individual parameter estimates
  To assess the bias of individual parameter estimates or EBEs, 
the individual differences of ETAs acquired from fitting the 
model to the true and imputed datasets were calculated. Then, 
the mean difference was calculated for each dataset. Finally, the 
grand mean difference was calculated for entire datasets. Math-

ematically,

               ∆ETAij = ETAij(true) - ETAij(imputed)   �  (8)
               ∆METAj = Mean(∆ETAij)   �   �   (9)
               ∆GMETA = Mean(∆METAj)   �   (10)

∆ETAij, ∆METAj and ∆GMETA represent the individual differ-
ences of ETAs of individual i for dataset j, the mean difference 
of ETAs for dataset j, and the grand mean difference of ETAs for 
the entire datasets, respectively.

Software
  Parameter estimations were done using NONMEM 7.3 and 
simulations were performed using Python 2.7. 

RESULTS
  Table 2 shows the population parameter estimates acquired 
from fitting the model to original, censored, and imputed datas-
ets and relative biases of the population parameter estimates ob-
tained from fitting the model to the censored and imputed da-
tasets. Tumor growth rate and cell kill rate were underestimated 
when fitted from censored datasets. Fitting from imputed datas-
ets resulted in tumor growth rate and cell kill rate estimates that 
were closer to those fitted from the original datasets. For true 
parameter values used to calculate the bias, parameters esti-
mates obtained from fitting the model to the original dataset re-
ported in Table 2 were used. Tumor growth rate and cell kill rate 
were approximately 28% and 16%  underestimated when fitted 
using the censored dataset, respectively. When imputed dataset 
was used for refitting, relative biases of tumor growth rate and 
cell kill rate decreased to about 6% and 0%, respectively. The 
estimate of resistance appearance was not particularly biased in 
the censored dataset, and the relative bias of the estimates using 
the imputed dataset was similar. The relative biases of the IIV of 
tumor growth rate and cell kill rate were reduced when imputed 
dataset was used, but standard error of the former was relatively 

Figure 1. Comparison plots of tumor size observations of original (LEFT), censored (CENTER), and imputed (RIGHT) datasets.
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high. On the other hand, relative biases of the IIV of resistance 
appearance and residual error have increased when imputed 
dataset was used. 
  When assessing the bias of individual parameter estimates, 
∆GMETA was 0.0003, -0.0078 and -0.022 for KL, KD and λ, re-
spectively, with none of them being significantly different from 
0. On the other hand, the mean ETA shrinkage (%) was 69.02, 
13.53 and 27.53 for KL, KD and λ, respectively.

Discussion
  In this report, we have exploited NONMEM’s capability to 
generate post-hoc EBEs of the individual parameters to impute 
missing values. This idea is based on the fact that although fixed 
effect parameters (THETAs in NONMEM terminology) are bi-
ased when estimated from the censored datasets, post-hoc EBEs 
might be unbiased, enabling the imputed datasets to produce 
the unbiased estimates of population and individual param-
eters. 
  This indeed seems to be the case (see Table 2). The biases of 
the structural parameter estimates obtained from the imputed 

datasets were significantly reduced compared to those estimated 
from the censored datasets. This approach, however, does not 
reduce the biases of the variance estimates. For individual pa-
rameter estimates, ∆GMETA was close to zero, not significantly 
different from 0 for any of the 3  parameters. The results indicate 
that the mixed-effect modeling approach used in NONMEM 
generated unbiased estimates of EBEs. Except for tumor growth 
rate (KL) associated with the mean ETA shrinkage of 69.02%,  
cell kill rate (KD) and resistance development (λ) were within 
an acceptable range of the mean ETA shrinkage, supporting the 
validity of the above assertion. 
  Our work demonstrates that using EBEs acquired from fitting 
the model to the censored dataset and imputing the unknown 
tumor size observations with individual predictions beyond the 
PD time point is a viable option to solve the bias associated with 
structural parameter estimates. This approach, however, would 
not be helpful in getting better estimates of variance parameters.
  Further studies would be needed to validate the usefulness of 
our approach by repeating similar analyses across models of 
varying complexity and variance structures. The effect of the 

Table 2. Estimate (%RSE) and relative bias (%RSE) of tumor growth model parameters obtained from fitting the model to the original, censored and 
imputed datasets 

Parameter Original Dataset Censored Dataset Imputed Dataset

Structural parameters

Tumor growth rate, KL /week

Estimate (%RSE) 0.015 (17.43) 0.011 (35.79) 0.014 (41.21)

Relative Bias (%RSE) - 28.17 (21.73) 6.06 (35.07)

Cell kill rate, KD /g week

Estimate (%RSE) 0.056 (8.85) 0.047 (13.58) 0.056 (16.47)

Relative Bias (%RSE) - 15.71 (8.62) 0.098 (14.00)

Resistance appearance, λ/week

Estimate (%RSE) 0.042 (13.86) 0.041 (15.90) 0.044 (17.77)

Relative Bias (%RSE) - 3.12 (9.27) -3.38 (14.99)

Variance parameters

IIV (variance) of KL

Estimate (%RSE) 0.52 (35.54) 0.26 (187.3) 0.77 (185.05)

Relative Bias (%RSE) - 58.17 (49.27) -29.77 (124.68)

IIV (variance) of KD

Estimate (%RSE) 0.62 (17.14) 0.85 (27.82) 0.69 (32.72)

Relative Bias (%RSE) - -37.81 (27.72) -11.66 (28.47)

IIV (variance) of λ

Estimate (%RSE) 0.40 (27.91) 0.41 (28.96) 0.54 (35.44)

Relative Bias (%RSE) - -1.75 (13.12) -37.99 (47.22)

Sigma (variance)

Estimate (%RSE) 0.0096 (5.83) 0.01 (8.51) 0.012 (11.76)

Relative Bias (%RSE) - -3.61 (3.67) -19.55 (12.78)

Imputation method to reduce estimation bias in tumor models



Vol. 24, No.4, Dec 15, 2016
193

TCP 
Transl Clin Pharmacol

type and the magnitude of measurement errors associated with 
the observations should also be investigated further. Although 
not tried in this work, other methods for accounting for non-
random censoring including M3, jointly modeling tumor size 
and censored probability and pattern mixture methods are 
found elsewhere,[8] which might be worth trying and compar-
ing with the proposed method.
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