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The first-order conditional estimation (FOCE) method is more complex than the first-order (FO) 
approximation method because it estimates the empirical Bayes estimate (EBE) for each iteration. 
By contrast, it is a further approximation of the Laplacian (LAPL) method, which uses second-
order expansion terms. FOCE without INTERACTION can only be used for an additive error 
model, while FOCE with INTERACTION (FOCEI) can be used for any error model. The formula 
for FOCE without INTERACTION can be derived directly from the extension of the FO method, 
while the FOCE with INTERACTION method is a slight simplification of the LAPL method. De-
tailed formulas and R scripts are presented here for the reproduction of objective function values by 
NONMEM.

Introduction
  The first-order conditional estimation (FOCE) method esti-
mates the empirical Bayes estimate (EBE) at each step. There-
fore, one iteration is almost the same as the first-order (FO) 
approximation method with the POSTHOC option, which 
produces EBE after finalization of parameter estimation.[1] The 
term ‘parameter’ in this tutorial means either theta (θ), omega 
(Ω), or sigma (Σ). Actually, NONMEM combines the theta 
vector and vech (half-vectorization)-operated ‘Cholesky-like’ 
decomposed omega and sigma matrix into one vector, and it 
differentiates simultaneously for the quasi-Newton-type mini-
mization algorithm.[2-4] ‘Cholesky-like’ means that it is similar 
to a Cholesky decomposition, but not exactly the same, because 
it includes a kind of scaling for this unconstrained minimiza-
tion algorithm. NONMEM 7.3 and R 3.3.1 were used for their 
calculation in this tutorial. Derivation of the formula and scripts 
for the FO method are explained in the previous article of this 
tutorial series.[5]
  Essentially, there are two ways to derive FOCE: one is simply 
an expansion of the FO approximation method,[6] and the 
other is a further approximation of the LAPL approximation.

[7] If we want to consider the interaction between the random 
variables eta (η) and epsilon (ε), we need to use a second-order 
approximation of the Taylor series expansion or Laplacian ap-
proximation. The Taylor series expansion is adequate for the 
approximation of the prediction function (F), while the Lapla-
cian approximation is suitable for the approximation of the ob-
jective function, which is usually in the form of an exponential 
function. Calculation of the objective function value using the 
second-order approximation of the prediction function (F) is 
too complex. Therefore, using the Laplacian approximation of 
likelihood (objective) function is much easier when considering 
the interaction of the random variables eta and epsilon, because 
the Laplacian method is the second-order approximation of an 
exponential function, such as the likelihood objective function.

FOCE without INTERACTION
  The FO method can be regarded as a kind of maximum likeli-
hood estimation (MLE) with the Taylor series expansion of the 
‘observation’ (or prediction) function.[8,9] Observation func-
tion, or the vector of observation values will be noted here as ‘Y,’ 
and the prediction function, or the vector of prediction values 
as ‘F’. If we know the mean and variance of the observation 
function (Y), we can plug those into the MLE formula of nor-
mal distribution in the following:
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eq. 1

where E(Y) is the mean of observation, and V(Y) is the variance 
of observation.
For the FO method, we can use E(Y) and V(Y) as follows:

                        eq. 2

eq. 3

where

  Here, it is assumed that eta and epsilon are independent 
random variables, i.e. COV(eta, epsilon) = 0, and there is no 
correlation among residuals. The assumption of no correlation 
among epsilons is not necessary, but it is natural for the nonlin-
ear structural model combined with the heteroscedastic statisti-
cal model. If we observe correlation among residuals, it means 
that the structural and/or statistical models are not adequate 
and the modeling process needs to be continued. Sheiner and 
Beal discarded the assumption of normal distribution after the 
building of the objective function. They called this procedure 
the ‘Extended Least Square (ELS)’ method instead of the MLE 
method.[10-12]
  Meanwhile, the FOCE method uses the following E(Y) and 
V(Y) for the MLE plug-in as follows:

eq. 4

eq. 5

eq. 6

where

  F0 is called the typical prediction (PRED) with EBE=0, while 
F1 is called the individual prediction (IPRED or IPRE) with 
EBE. Subscript 0 denotes that 0 was used as a true eta value and 

1 denotes that EBE was used as a true eta value (ηt). The func-
tion for Y, f2 may contain theta (θ) in real situations, i.e. one can 
include thetas (θ) within the $ERROR clause of NONMEM. 
However, theta (θ) is not included in f2 for the clarity. One may 
also use a Y function, such as Y=f(θ,η,x,ε). For the MLE plug-
in, V(Y) in equation 6 seems more natural but NONMEM® uses 
V(Y) in equation 5 strangely.
  Here, F is the predictive function, theta (θ) is a parameter 
(constant) vector within the predictive function, and eta (η) is 
a random variable vector indicating interindividual random 
variability with the mean of zero vector and the variance–cova-
riance matrix of omega (Ω). Epsilon (ε) is also a random vari-
able vector used to describe unexplainable residual variability 
between prediction (F) and observation (Y).
  The primary work of NONMEM software is to estimate pa-
rameters (θ, Ω, and Σ), while the secondary work is to estimate 
the empirical Bayes estimate (EBE) of the random variable eta 
for each subject. Therefore, NONMEM has two objective func-
tions to optimize: one for the parameters (θ, Ω and Σ), and the 
other for EBE. To estimate parameters (θ, Ω and Σ), EBEs are 
regarded as true values, while to estimate EBE, parameters (θ, 
Ω and Σ) are considered to be true. Parameters (θ, Ω and Σ) are 
constant for the entire population, while EBEs are constant for a 
certain subject or dosing occasion.
For the additive error model, H1 is identical to H0 as 1.

eq. 7

eq. 8

In the case of the following combined error model:

eq. 9

eq. 10

eq. 11

We can construct two types of residuals as follows:

eq.12

eq. 13

eq. 14  
 

  R0 is called the weighted residual (WRES) in NONMEM, 
which is distinct from the weighted residual in statistics text-
books. Therefore, the sign of WRES could be opposite to that 
of the residual, RES (= Y – F), in NONMEM. By contrast, R1 in 
equation 13 is called a conditional weighted residual (CWRES). 

= F0 =PRED (Typical Prediction)  E(Y)

Y = F + ε 

Y = F + F ∙ ε1 + ε2  

 

R0 = C0
− 1/ 2 (Y − F0 ) = WRES 

 

R1 = C− 1/ 2 (Y − F1 ) = CWRES x

 

R1 1= C− 1/ 2 (Y − F1 ) = CWRES 

thus, H = (F, 1). 
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However, using R1 in equation 14 seems more natural in au-
thors’ opinion. C0, CX and C1 are defined in equations 3, 5 and 
6, respectively. The calculation of the matrix to the power of -0.5 
is explained as the R function of mat.sqrt.inv() in the previous 
article [5].
  If we use the variance (V(Y) or C), and the weighted residual 
(WRES or R) for the objective function, NONMEM’s objective 
function is as follows:

eq. 15

eq. 16
  

  The total objective function value (O) is simply the summation 
of individual objective function values (Oi).
  The reason that we use “G11 G21 G31 H11” (Fig. 1) for the 
extraction of G matrix and H matrix is that NONMEM (up to 
version 6.2) stores those values in the internal matrices as follows:

  The second subscripts in “G11, G21, G31, H11” mean the 
column numbers of the internal storage matrix, while the first 
subscripts denote the row numbers, i.e. G21 means row 2, col-
umn 1 of the G matrix. NONMEM version 7.x also supports 
printing the first column elements, such as G11, G21, G31, H11, 
and H21, but not other elements. Usually, we need the values of 
the first column only. If you want to reduce the time needed to 
calculate unnecessary derivatives, you can use the “$ABBREVI-
ATED DERIV2=NO” clause in the NONMEM control file. If 
you use the PREDPP library (ADVAN subroutines), G and H 
matrices are renamed as GG and HH, respectively.
  A slight difference in objective function values between R 
(Fig. 2) and NONMEM may be caused while calculating many 
matrices. Matrix calculation results often differ among different 
software programs. The first seven digits were identical in our 
example.

 Oi = 𝑔𝑔 Ci + Ri
TRi lo｜ ｜
→ →

ΣO O= i =1 i 
in

 

Figure 1. NONMEM control file for FOCE without INTERACTION
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About SIGDIG in NONMEM
SIGDIG (significant digits) can be defined as follows:

eq. 17  

  In a scaled and transformed parameter (STP, now it is renamed 
as UCP, unconstrained parameter) space, the standardization 
(dividing by θtrue) may not be very meaningful because it was 
already standardized in a certain way. NONMEM starts mini-
mization with the value of 0.1 in UCP space.
  If we calculate the following example, the process may be 
clearer. Notice that the values are in a real number domain, not 
in an integer domain.

  However, we do not know the true value of parameters. There-
fore, we need to use the following instead:

eq. 18
  

  Here, θi denotes the i-th iterated value during the minimiza-
tion of objective function. During the minimization process, 
differences between adjacent iterated values become smaller. 
Therefore, SIGDIG increases as the iterations proceed. NON-
MEM calculates SIGDIG a little differently because it also con-

R-based reproduction of FOCE

SIGDIG= − log10
−

 
θ
θ
θtrue

true｜ ｜
｜ ｜− log10

10 .001 − 10 .000
10 .000

= 4 

SIGDIG= − log10
i i𝜃𝜃 − 𝜃𝜃

i𝜃𝜃
− 1｜ ｜

 

Figure 2. R script for FOCE without INTERACTION

setwd("D:/NM/THEO")  # Set this to your working directory
CtlName = "THEOFOCE" # Control file name without extension
EXT     = as.matrix(read.table(paste0(CtlName, ".ext"), skip=1, header=TRUE))
OM      = �ltv2mat(EXT[2, c("OMEGA.1.1.", "OMEGA.2.1.", "OMEGA.2.2.", 
          "OMEGA.3.1.", "OMEGA.3.2.", "OMEGA.3.3.")]) # Omega matrix
SG      = matrix(EXT[2, "SIGMA.1.1."], nrow=1, ncol=1) # Sigma matrix

EBE     = as.matrix(read.table(paste0(CtlName, ".phi"), skip=1, header=TRUE))
DATA    = as.matrix(read.table("sdtab", skip=1, header=TRUE))

IDs     = unique(DATA[,"ID"])
nID     = length(IDs)

CWRES   = vector()
OFVi    = cbind(IDs, rep(NA, nID))

for (i in 1:nID) {
  cID   = IDs[i]
  EBEi  = EBE[EBE[,"ID"] == cID, c("ETA.1.", "ETA.2.", "ETA.3.")]
  DATi  = DATA[DATA[,"ID"] == cID, ]
  Yi    = DATi[, "DV"]
  Fi    = DATi[, "IPRE"]
  Gi    = DATi[, c("G11", "G21", "G31")]
  Hi    = DATi[, "H11"]
  Ci    = Gi %*% OM %*% t(Gi) + diag(diag(Hi %*% SG %*% t(Hi)))
  Ri    = mat.sqrt.inv(Ci) %*% (Yi - Fi + Gi %*% EBEi)
  CWRES = append(CWRES, Ri)
  OFVi[i,2] = log(det(Ci)) + t(Ri) %*% Ri
}

sum(OFVi[,2]) # 103.4961 vs. 103.4947
all.equal(EBE[,"OBJ"], OFVi[,2]) # Mean relative difference: 2.673653e-05
all.equal(DATA[,"CWRES"], CWRES) # Mean relative difference: 4.893101e-05
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siders the gradients. Other software programs usually regards 
the minimization process as successful if differences in objective 
function values or parameter values between adjacent itera-
tions are smaller than a specified amount. However, NONMEM 
includes one more criterion to judge minimization success or 
failure – the SIGDIG. Where the minimization process can-
not reach the predefined SIGDIG criterion (Default is 3), it 
ends with a ‘rounding error’, which is considered as ‘success’ by 
other software. Because this SIGDIG is calculated in the scaled 
and transformed parameter (STP) space, there are usually 
more actual significant digits in the original scale. One simple 
explanation for this could be that the modeler specifies in the 
control file as constrained (bounded) optimization of which the 
maximum bound is (–1e6,1e6), but in the background optimi-
zation process, it uses unconstrained minimization of which the 
bound is (–inf, +inf). Therefore, even if one uses SIGDIG = 1, 
one usually obtains more significant digits in the original scale. 
This means that during the model building process, one does 
not need to place too much emphasis on SIGDIG, and it could 
even be reduced to 1. One more tip for covariate screening is 
that the OMEGA matrix could even be fixed during the covari-
ate screening and this does not cause much difference in covari-
ate selection.

FOCE with INTERACTION
  To consider the interaction of eta and epsilon, we need to use 
at least a second-order approximation of observation function 
(Y) or likelihood function (accurate objective function).
  The Taylor series expansion of observation function (Y) for the 
calculation of E(Y) and V(Y) is too complex. Because they are 
no longer normally distributed, we cannot use the MLE formula 
for normal distribution. Therefore, it is better to use the Lapla-
cian approximation, which is the second-order Taylor series ap-
proximation of the likelihood (an exponential function).

eq. 19

eq. 20

eq. 21

where
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Figure 3. NONMEM control file for FOCE with INTERACTION method
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Figure 4. R script for FOCE with INTERACTION method

CtlName = "THEOFOCEI" # Control file name without extension
EXT     = as.matrix(read.table(paste0(CtlName, ".ext"), skip=1, header=TRUE))
OM      = ltv2mat(EXT[2, c("OMEGA.1.1.", "OMEGA.2.1.", "OMEGA.2.2.", 
          "OMEGA.3.1.", "OMEGA.3.2.", "OMEGA.3.3.")]) # Omega matrix
SG      = diag(EXT[2, c("SIGMA.1.1.", "SIGMA.2.2.")]) # Sigma matrix

EBE     = as.matrix(read.table(paste0(CtlName, ".phi"), skip=1, header=TRUE))
DATA    = as.matrix(read.table(paste0("sdtab",CtlName), skip=1, header=TRUE))

IDs     = unique(DATA[,"ID"])
nID     = length(IDs)

Term4   = determinant(OM, logarithm=TRUE)$modulus[[1]]
invOM   = solve(OM)

CWRES   = vector()
OFVi    = cbind(IDs, rep(NA, nID), rep(NA, nID))

for (i in 1:nID) {
  cID     = IDs[i]
  DATi    = DATA[DATA[,"ID"]==cID, ]
  EBEi    = EBE[EBE[,"ID"]==cID, c("ETA.1.", "ETA.2.", "ETA.3.")]
  Yi      = DATi[,"DV"]
  Fi      = DATi[,"IPRE"]
  Gi      = DATi[, c("G11", "G21", "G31")]
  Hi      = DATi[, c("H11", "H21")]
  Vi      = diag(diag(Hi %*% SG %*% t(Hi)))
  invVi   = solve(Vi)

  Term1 = determinant(Vi, logarithm=TRUE)$modulus[[1]] # log(det(Vi))
  Term2 = t(Yi - Fi)%*% invVi %*%(Yi - Fi)
  Term3 = t(EBEi) %*% invOM %*% EBEi
# Term4 = determinant(OM, logarithm=TRUE)$modulus[[1]]
  Term5 = log(det(invOM + t(Gi) %*% invVi %*% Gi))
  OFVi[i,2] = Term1 + Term2 + Term3 + Term4 + Term5

  Ci        = Gi %*% OM %*% t(Gi) + diag(diag(Hi %*% SG %*% t(Hi)))
  CWRESi    = mat.sqrt.inv(Ci) %*% (Yi - Fi + Gi %*% EBEi)
  OFVi[i,3] = log(det(Ci)) + t(CWRESi) %*% CWRESi
  CWRES     = append(CWRES, CWRESi)
}

CWRES
OFVi

sum(OFVi[,2]) # 92.22962 vs. 92.83087
sum(OFVi[,3]) # 88.18747 using the formula and script in Fig. 2.
all.equal(EBE[,"OBJ"], OFVi[,2]) # Mean relative difference: 0.006000912
all.equal(EBE[,"OBJ"], OFVi[,3]) # Mean relative difference: 0.04634464
all.equal(DATA[,"CWRES"], CWRES) # Mean relative difference: 4.541912e-05
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The objective function for LAPL is equation 19.[6,7] Addition-
ally, its approximation is equation 20, which can be used for the 
objective function of FOCE with or without INTERACTION. A 
more complete explanation of equation 20 will be made in the 
next article of this tutorial series.
  Interestingly, the first two terms of equations 19 and 20 are the 
same as those in the objective function for EBE (eq. 21).
  To show the calculation results of objective function values 
from the FOCE with INTERACTION method in NONMEM, 
the combined error model (epsilon 1 for proportional error and 
epsilon 2 for additive error) was chosen as shown in Figure 3.
  The difference in objective function values between NON-
MEM and R (Fig. 4) becomes larger, which might be the result 
of a more complex calculation of matrices. One can also see 
larger differences in individual objective function values in 
OFV,[3] in the code. If one uses the INTERACTION option 
in the FOCE method in NONMEM and the combination of 
formulae in equations 1, 4, and 5 in R, one will get a different 
objective function value: 88.187 in R compared with 92.831 
in NONMEM. This shows that NONMEM uses equation 20 
for the FOCE with INTERACTION method, and not a direct 
extension of the FO method. A theoretical proof and numeri-
cal examples are provided in Wang’s article.[7] The method of 
calculating CWRES in FOCE with INTERACTION is known 
to be the same as FOCE without INTERACTION method.
  If one does not use the INTERACTION option when the error 
model is other than additive, a residual plot could show a pecu-
liar trend as seen in Figure 5.

Conclusion
  Mathematical formulae and R scripts for FOCE with or with-
out INTERACTION are shown in this article. For an additive 
error model, we can use the FOCE without INTERACTION 
method, while for other error models, we should use the FOCE 
with INTERACTION method. The FOCE formula that was ob-
tained by the approximation of LAPL usually gives results very 
similar to those using the LAPL method. Therefore, we recom-
mend using FOCE with INTERACTION method as a work-
horse in population modeling.
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