
INTRODUCTION

Semen analysis is a first level diagnostic investiga-
tion for male infertility (as well as for the testicular 
function), since it is able to give indication on sperm 
fertility potential. However, the implementation of 
several assisted reproductive techniques (ARTs) has 
led to the observation that normal sperm parameters 
are not always capable of inducing pregnancy in a 
healthy woman. For this reason, several studies on 
sperm functional capability and bio-functional sperm 
parameters have been developed [1,2]. Nonetheless the 
evaluation of these variables is often insufficient to 
identify causes of male infertility [3]. To overcome this 
pitfall, molecular biologists have recently tried to study 

the epigenetic origin of male infertility and embryonic 
anomalies [4]. 

Epigenetics study meiotic and/or mitotic inherited 
changes affecting gene expression without a DNA se-
quence modification [5]. These studies allow in some 
cases to better evaluate cases of so-called idiopathic 
infertility. DNA methylation, chromatin remodeling 
and residual histone modifications represent the major 
epigenetic changes occurring at the sperm level [6,7]. 
Recently, sperm RNAs seem also to play an important 
role [8]. 

This article reviews the implications of epigenetic 
modifications on male fertility, fertilization, embry-
onic development and ART outcomes, highlighting the 
possible mechanisms involved. To accomplish this, we 
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performed a search on Pubmed, Science-direct, Ovid 
and Scopus, using the following key words: sperm DNA 
methylation, sperm DNA methylation and assisted 
reproduction technology, sperm chromatin remodeling, 
sperm chromatin remodeling and assisted reproduction 
technology, sperm histone modification, sperm histone 
modification sperm RNAs and assisted reproduction 
technology.

DNA METHYLATION

DNA methylation is a dynamic mechanism of gene 
expression regulation that occurs on dinucleotides 
formed by cytosine and guanine. These dinucleotides 
are grouped in the so called differently methylated 
regions (DMRs) that are often placed near gene regula-
tory regions, such as the promoter [9]. The methylation 
processes are regulated by DNA methyltransferases 
[9]. Hypermethylation suppresses gene expression, since 
methyl groups prevent the recruitment of transcription 
factors and DNA polymerases. Conversely, hypometh-
ylation promotes gene expression [7,10]. 

DNA methylation includes global DNA methylation, 
methylation of imprinted and non-imprinted genes and 
of methylation of repetitive elements. 

A global DNA hypomethylation seems to occur in as-
sociation with ART [11]. Furthermore, an increased risk 
of imprinted disorders has been reported after these 
procedures, thus leading to the hypothesis that ART 
itself may cause a loss of methylation [11]. Some studies 
described a significantly different global DNA methyl-
ation in sperm from patients with oligoasthenoterato-
zoospermia (OAT) compared to controls [12], indicating 
that such epigenetic abnormality may reflect on hu-
man fertility. It cannot be excluded whether a change 
in sperm global DNA methylation may primary affect 
ART outcome. Indeed, sperm global DNA methylation 
has been related with chromatin injury in samples 
from OAT patients [12,13] and, interestingly, chromatin 
integrity seems to impact on ART (see section “CHRO-
MATIN REMODELING”). Thus, sperm global meth-
ylation may indirectly influence ART outcome. 

Methylation of repetitive elements (e.g., ALU and 
LINE1) at the sperm level has been reported to influ-
ence ART outcome. More in detail, ALU methylation 
impacts on pregnancy and live-birth rates in couples 
with male-factor and combined infertility, being sig-
nificantly lower in sperm samples that led to abortion 

compared to those leading to pregnancy and live-birth 
[14].

Imprinted genes show parent-specific activity (they 
are functionally haploids), which makes them particu-
larly vulnerable to epigenetic dysregulation. In greater 
detail, both paternal and maternal alleles undergo to 
demethylation after fertilization. Then, genetic re-
programming consisting in new specific methylations 
takes place in the embryo [15]. Imprinted genes escape 
epigenetic reprogramming after fertilization, thus al-
lowing the possible transmission of aberrant methyla-
tion patterns into the offspring.

Imprinting has been extensively studied in humans 
and mice. The role of imprinted genes in processes 
involved in embryo and placenta development and 
growth is well recognized in mice (Table 1) [16]. Since 
humans and mice have common placental physiol-
ogy [17], these mechanisms may occur also in humans. 
Knowledge in humans mainly derives from pediatric 
growth disorders. However, epigenetic studies in hu-
man sperm and placenta allow to understand the role 
of imprinted genes in human fertilization. Accordingly, 
impaired methylation of imprinted genes has been 
reported in infertile patients [18]. Furthermore, modifi-
cations in sperm DNA methylation of such genes play 
a role in the development of male infertility and nega-
tively impact on the ART outcomes, leading to abortion 
[19]. Meta-analytic data provide evidence for lower H19 
and higher MEST  and SNRPN sperm methylation in 
infertile patients compared to fertile controls [18]. 

A list of imprinted genes involved in sperm quality 
is shown in Table 2 [18-27]. A focus on the role of H19 
DMR impaired methylation rate in human fertility is 
reported below.

1. H19/IGF2
H19/IGF2 represents the first historically charac-

Table 1. Imprinted genes involved in placenta and embryo develop-
ment and growth in mice [16]

Process Imprinted gene

Placenta establishing Peg10
Nutrient transport capacity and  

surface area for exchange
Igf2, Grb10

Fetal growth Igf2, Igf2r, Cdkn1c, Grb10

Cdkn1c: cyclin-dependent kinase inhibitor 1c, Grb10: growth factor 
bound protein 10, Igf2: insulin-like growth factor 2, Igf2r: insulin-like 
growth factor 2 receptor, Peg10: paternally expressed 10.
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terized couple of imprinted genes [28]. Both H19 and 
IGF2 map on the 11p15.5 chromosome. H19 encodes 
for a long non-coding RNA (lncRNA), which negatively 
modulates human placental trophoblast cell prolifera-
tion [29]. In particular, lncRNA H19 targets miR-675, 
which, in turn, represses IGF1R transcription [30]. 
IGF2 encodes for a growth factor which is able to ac-
tivate the insulin-like growth factor-1 receptor (IGF1R) 
and to promote fetal and placental growth [31-34]. In 
contrast to IGF1, which is preferentially expressed af-
ter birth, IGF2 is mainly produced in the early embry-
onic development. On these basis, it might be hypoth-
esized that a low sperm IGF2 gene expression might 
negatively influence the outcome of pregnancy, though 
no study has investigated this aspect so far. 

IGF2 gene expression is regulated by the H19 DMR 
methylation rate. In the maternal allele, H19 DMR is 

unmethylated, thus allowing H19 expression and pre-
venting the accession to the IGF2 gene enhancer. In 
the paternal allele, the H19 DMR methylation leads 
to IGF2 gene expression [35]. Several studies described 
the occurrence of low H19 DMR methylation rates 
in infertile patients [18,36-39]. At the sperm level, this 
may lead to low IGF2 gene expression, thus affecting 
the outcome of pregnancy. 

A study carried on 119 human placentas (56 from in 
vitro fertilization [IVF], 41 from intracytoplasmic sperm 
injection [ICSI] and 22 from natural conception) found 
1.9 and 1.8-fold higher H19 messenger RNA (mRNA) 
levels, respectively in ICSI and IVF-derived placentas 
compared with those coming from natural conception. 
In addition, IGF2 mRNA levels resulted significantly 
lower in couples undergoing ART compared to that of 
controls. Furthermore, although both birth and placen-
tal weight were lower in the ART group, they were not 
significantly different compared to controls [40]. This 
study provides evidence for abnormal H19 and IGF2 
expression in ART placentas. Due to abnormal H19 
DMR methylation rate observed in infertile patients 
[18], men undergoing to ART programs may likely 
show H19 gene hypomethylation. This might explain 
the abnormal H19 and IGF2 expression in ART pla-
centas [40]. 

Finally, IGF1R has been recognized to play a role in 
human sperm capacitation [41]. Therefore, due to the 
inhibitory effect that H19 has on IGF1R gene tran-
scription [30], it might be hypothesized that low H19 
DMR methylation rates may also impair IGF1R gene 
expression, thus affecting human sperm capacitation.

Taking all this into account, H19/IGF2 gene ex-
pression may influence human fertility (Fig. 1). Other 
studies relating pregnancy rate with IGF2 and IGF1R 
mRNA levels in human spermatozoa may further 
clarify their role. 

CHROMATIN REMODELING

Spermatozoa are highly specialized cells. Dur-
ing spermatogenesis, almost all chromatin histones 
(90%–95%) are replaced by protamines, that are small, 
arginine-rich, nuclear proteins [42]. This process, typical 
of spermatozoa, ensures a significant DNA compac-
tion, a decreased susceptibility to external insults and 
it represents a gene silencing mechanism. During early 
stages of protamination, there is an increased acety-

Table 2. Imprinted genes involved in sperm quality

Gene Evidence Reference

CREM Increased methylation is associated 
with decreased semen quality

20, 21

DAZL Increased methylation in OAT patients 
compared to controls

22

FAM50B Reduced methylation levels are 
associated with asthenozoospermia

23

GNAS Reduced methylation levels are 
associated with asthenozoospermia

23

GLT2 Abnormal methylation levels are 
associated with oligozoospermia

24, 25

H19 Reduced methylation associates with 
male infertility

18

KCNQ1OT1 Increased methylation in patients with 
abnormal sperm parameters

25

MEST Increased methylation associates with 
male infertility

18

RHOX Increased methylation associates with 
male infertility

26

SNRPN Increased methylation associates with 
male infertility

18

ZAC Increased methylation associates with 
oligozoospemia

27

CREM: cAMP responsive element modulator, DAZL: deleted in azo-
ospermia-like, FAM50B: family with sequence similarity 50, member 
B, GNAS: guanidine nucleotide-binding protein, alpha-stimulating 
activity polypeptide 1, GLT2: gene trap locus 2 (also known as MEG3, 
maternally expressed gene 3), H19: imprinted maternally expressed 
non-coding transcript, KCNQ1OT1: KCNQ1-overlapping transcript 1, 
MEST: mesoderm-specific transcript, mouse, homolog of, RHOX: re-
productive homeobox X-linked, SNRPN: small nuclear ribonucleopro-
tein polypeptide N, ZAC: Zac tumor suppression gene (also known as 
PLAGL1, pleomorphic adenoma gene-like 1). 
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lation of histones that firstly promotes the action of 
DNA topoisomerase enzyme, followed by the substitu-
tion of histones with transition proteins (TP1 and TP2) 
[43]. These DNA binding proteins facilitate histones 
removal and subsequent replacement of protamines 1 
(P1) and 2 (P2), which are expressed in equal amounts 
[44]. After sperm chromatin protamination, three levels 
of DNA organization can be recognized: toroidal struc-
tures formed by protamines (90%–95%), nucleosomes, 
involved in the primary phases of embryonic develop-
ment (5%–10%) and DNA segments called matrix at-
tachment regions (MARs), in which neither toroidal 
structures nor nucleosomes are present [43]. MARs 
provide chromatin with structural support, working as 
promoter in paternal pronuclear formation after fertil-
ization, as well as contributing to normal embryogen-
esis. 

Several studies reported that an erroneous sperm 
protamination or an alteration in one of the three 
DNA organization levels leads to a lower sperm qual-
ity and decreased pregnancy rate and embryo quality 
following ARTs [6,42]. In greater detail, a P1/P2 ratio 
ranging from 0.54 to 1.43 has been reported in normo-
zoospermic men [45]. Abnormal low or high P1/P2 ratio 
is associated with poor sperm [45-47] and embryo qual-

ity and with low fertilization and pregnancy rates [48]. 
Indeed, abnormal sperm protamination may result in 
insufficient sperm DNA condensation, thus making it 
susceptible to the oxidative damage [49]. Accordingly, 
impaired sperm protamination has been related to 
increased DNA fragmentation [48,50]. Furthermore, 
several factors negatively affecting male fertility and 
sperm quality have been found to impair sperm chro-
matin compactness, such as overweight and obesity [51], 
nicotine [52,53], male accessory gland infections [54] and 
varicocele [55]. Lower chromatin compactness and poor 
sperm quality have been described in patients with low 
testicular volume [56]. 

In conclusion, recent scientific evidence showed that 
anomalies in protamine content may affect epigenetic 
information transmitted by the paternal DNA [49] 
and, not surprisingly, sperm protamination has been 
already suggested as a target to predict ART outcomes 
[57].

HISTONE MODIFICATION

After protamination, the residual histones (5%–10%) 
are organized into nucleosomes that are octamers com-
posed by two dimers of H3-H4 and two of H2A-H2B 
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Fig. 1. Possible influence of H19/IGF2 ex-
pression on male fertility. (A) In the pa-
ternal allele of healthy fertile men, H19 
DMR methylation leads to IGF2 expres-
sion. The repression of H19 transcrip-
tion increase IGF1R expression. Both 
IGF2 and IGF1R transcripts are involved 
in sperm capacitation, embryo and 
placental growth. (B) In infertile men, 
low H19 DMR methylation rates lead to 
repression of both IGF2 and IGF1R tran-
scription, thus negatively impacting on 
sperm capacitation, embryo and placen-
tal growth. H19: Imprinted maternally 
expressed non-coding transcript, IGF2: 
insulin-like growth, DMR: differentially 
methylated region, IGF1R: insulin-like 
growth factor 1 receptor, factor 2.  
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histones. These residual histones play a crucial role in 
sperm epigenetics. In fact, they might undergo chemi-
cal modifications that might drastically alter their 
DNA binding abilities, favoring the action of transcrip-
tion factors and therefore gene activation or silencing 
[58]. These chemical modifications are mainly referred 
to lysine or serine residues located on the histone tail, 
undergoing to methylation, acetylation, phosphoryla-
tion or ubiquitination [42]. Moreover, histones may 
have variants such as the H2B, that is a testis-specific 
histone variant. Methylation is one of the main histone 
modifications: it is regulated by the enzyme meth-
yltransferases and is generally associated with gene 
silencing [7]. Acetylation is regulated by acetyltrans-
ferase and deacetylates histones: the first one activates 
gene expression whereas the second inhibits it. Histone 
phosphorylation takes place on lysine residues and 
generally promotes gene activation [7]. Lastly, ubiquiti-
nation is a covalent modification that occurs on lysine 
residues and it is capable of activating or repressing 
gene expression [7]. 

Since retained histones are present in imprinted 
gene clusters [49], changes in protamination and in 
residual histones can be co-responsible for male in-
fertility. Accordingly, a study carried out on 291 ART 
cycles described the role of histone-to-protamine ratio 
(HPR) on embryo development and ART outcome. For 
HPR ranging from 6 and 26%, the blastocyst formation 
rate was significantly higher (87.8%) compared to that 
obtained with HPR <6% (71.2%) or >6% (74.6%). There-
fore, HPR seems to influence embryo development [59]. 
On the basis of such evidence, sperm devoid of prot-
amine and residual histones abnormalities should be 
utilized in ART programs [49]. 

SPERM RNA

Sperm carries thousands of different RNAs, includ-
ing coding (mRNA) and non-coding [micro-RNA (miR-
NA), small interfering (siRNA), antisense RNA, piwi-
interacting RNA (piRNA) and lncRNA] RNAs [60], the 
latter known to be involved in the modulation of gene 
expression, interfering with the mRNA translation 
through different mechanisms.

Overall, more than 4,000 different mRNAs have 
been detected in human spermatozoa [61]. Due to sperm 
chromatin compactness, it was thought that sperm 
RNA may unlikely be transcribed from sperm nuclear 

DNA and that it may be a residual of spermatogenesis 
[62,63]. However, there is some evidence of transcrip-
tional activity in spermatozoa [64,65], thus suggesting 
that it may derive from imprinted genes mapping in 
unmethylated histones, where the transcriptional ap-
paratus can access.

Sperm RNAs have been discovered in mammals, 
insects [66] and plants (pollen RNA [67]), suggesting 
that it might represent a conserved characteristic of 
the male gamete [68]. As far for sperm RNA functions, 
they are mostly completely unknown [66,69,70]. Gather-
ing together the available evidence from both animal 
and human studies, three main roles may be hypoth-
esized: transmission of parentally acquired phenotype, 
spermatozoa maturation in the epididymis and embryo 
development, as discussed below.

Mounting evidence has shown that sperm RNAs are 
involved in the transmission of paternally acquired 
phenotypes [8]. Recently, the comprehensive profiling 
of sperm epigenome from obese and lean men resulted 
in a different sperm non-coding RNA expression, sug-
gesting that sperm RNAs may act as a sensitive mark-
er of environmental exposure [71]. Sperm RNAs are 
capable to modulate early embryonic gene expression 
[8]. Therefore, due to the higher risk of developing obe-
sity which children of obese fathers are exposed to, the 
differential sperm RNA content of obese patients has 
been hypothesized as the possible mechanism through 
which obesity is inherited by the offspring [71]. 

Mammalian sperm RNAs are involved in sperm 
maturation [72,73]. This role might be displayed by 
piRNAs, that are 30 nucleotide-long non-coding RNAs 
interacting with the so called Piwi proteins. The Piwi/
piRNA machinery acts in gene silencing that occurs 
in the male gamete [74]. During spermiogenesis, Piwi 
proteins seem to mediate the histone-to-protamine ex-
change in a piRNA-independent manner in mice. Piwi 
germline mutations preventing Piwi ubiquitination 
and degradation have been reported in azoospermic 
patients [75]. Despite further research is needed, the 
Piwi/piRNA machinery may be involved in human 
spermiogenesis, during the phase of late spermatids [75], 
probably acting on sperm DNA protamination. 

Finally, sperm RNAs seem to be play a role in em-
bryo development. Sperm RNAs are carried into the 
oocyte and, hence, translated [68]. A recent study per-
formed in mice reported a significant decrease in blas-
tocyst formation rate after ICSI when an RNase-treat-
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ed sperm was used [76]. The treatment resulted in a 
90% reduction of the sperm RNA, thus supporting that 
the latter is required for mice embryo development [76]. 
No study has explored the relationship between sperm 
specific transcripts and ART outcomes so far. 

In conclusion, sperm RNAs may be involved in sev-
eral important functions. The possible role that they 
may play in human fertilization and embryo growth 
needs to be elucidated. 	

CONCLUSIONS

The study of the epigenetic pattern of spermatozoa 
can help to better understand causes of male infertil-
ity. Indeed, specific epigenetic aberrations can affect 
primary phases of embryonic development and ART 
outcomes. In particular, P1/P2 ratio, HPR and H19 
DMR methylation rate may represent additional tar-
gets to investigate sperm quality before ARTs. Fur-
thermore, sperm IGF2 and IGF1R expression should be 
further investigated. 

In conclusion, imprinted unmethylated paternally-
expressed genes in residual histones may be accessed 
from the transcriptional apparatus. It may be hypoth-
esized that once transcribed, these genes contribute 
to the pool of sperm RNA. Abnormal DMR methyla-
tion rate of imprinted genes, alterations in chromatin 
compactness or in HPR represent possible mechanisms 
through which sperm RNA content, fertilization, em-
bryo growth and, therefore, ART outcomes may be af-
fected. Research characterizing sperm RNAs and their 
role in human fertility is needed. 
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