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Deep learning has been applied to various medical data. In particular, current deep learning models 
exhibit remarkable performance at specific tasks, sometimes offering higher accuracy than that of 
experts for discriminating specific diseases from medical images. The current status of deep 
learning applications to molecular imaging can be divided into a few subtypes in terms of their 
purposes: differential diagnostic classification, enhancement of image acquisition, and image-
based quantification. As functional and pathophysiologic information is key to molecular imaging, 
this review will emphasize the need for accurate biomarker acquisition by deep learning in 
molecular imaging. Furthermore, this review addresses practical issues that include clinical 
validation, data distribution, labeling issues, and harmonization to achieve clinically feasible deep 
learning models. Eventually, deep learning will enhance the role of theranostics, which aims at 
precision targeting of pathophysiology by maximizing molecular imaging functional information.
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Introduction

Deep learning rapidly begins to be applied in the medi-

cal field. Recently, several deep learning-related medical 

devices and softwares have been developed and started to 

be applied in the clinical fields.1) The major contribution 

of deep learning to medical data was to objectively evalu-

ate high-dimensional medical data and remarkably reduce 

laborious works such as segmentation and object detection 

from high-resolution images. The major medical applica-

tion is medical imaging fields as a boom of deep learning 

was started from the computer vision field initiated by 

ImageNet Challenge.2,3) The methods and neural network 

architectures developed for ImageNet Challenge have been 

applied to medial images including radiologic and path

ologic exams as well as natural photographic images. These 

approaches based on computer vision fields have showed 

remarkable performance in differential diagnosis. For natu-

ral photographic images such as skin images and fundosco-

py deep learning techniques were relatively easily adopted 

as convolutional neural network (CNN) models developed 

for ImageNet Challenge were directly transferred to such 

images.4,5) Moreover, CNN which show good performance 

on image classification and processing have been applied 

to radiologic exams such as chest X-ray and mammog-

raphy.6-8) Subsequently, CNN models have been used for 

image-based diagnosis as well as image processing.9) The 

application of deep learning included 3-dimensional im-

ages such as CT, PET and MRI data as well as 2-dimension-

al radiologic exams. The purpose of clinical use was also 

expanded to include various applications such as image-

based differential diagnosis, segmentation, and image en-
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hancement. Because of the substantial different features of 

molecular imaging including PET and SPECT from natural 

images, there have been various concerns with regard to 

application of deep learning. Nonetheless, various deep 

learning techniques have suggested feasible applications to 

enhance molecular imaging and solved problems such as 

image resolution and sensitivity.10) In this review, current 

deep learning models for nuclear medicine and molecular 

imaging are summarized according to the clinical purposes. 

In order to develop robust deep learning models and guide 

their appropriate direction for clinical use, practical issues 

of current deep learning are introduced in this review. 

Current Deep Learning Models 
for Molecular Imaging

Current deep learning models particularly for molecular 

imaging have focused on various different applications: 

Image-based diagnosis, enhancing image reconstruc-

tion and image quality, and deep learning application for 

image-based quantification (Table 1). 

Intuitively, one of the most important applications of 

deep learning in medical fields was differential diagnosis. 

For molecular imaging studies, as deep learning models 

generally require a large dataset for the training, several 

models have used PET or SPECT images which routinely 

acquired in the clinical setting. One of the major applica-

tions was differentiating disorders from normal status. 

Recently, using FDG PET images, a few deep CNN models 

for the differential diagnosis were suggested. For example, 

using FDG PET images, a deep learning model was devel-

oped to differentiate metastatic mediastinal lymph nodes 

from benign lymph nodes in lung cancer.11) Using a deep 

CNN, diagnostic accuracy for differentiating metastatic 

lymph nodes was 86%, which was higher than conven-

tional machine learning algorithms.11) Another CNN model 

to differentiate T-stages from lung cancer showed com-

parable results to identify pathologic T-staging.12) Area of 

receiver-operating-characteristic curve (ROC) was 0.68 for 

differentiating advanced T-stage tumors in an independent 

test set. Deep CNN models have been developed for dif-

ferential diagnosis of brain disorders using brain SPECT or 

PET images. As a binary classification problem, dopamine 

transporter imaging has been interpreted by experts’ read-

ing, thus, it was a good candidate for the deep CNN appli-

cation. A 3-dimensional CNN model showed high accuracy 

for differentiating 123I-FP-CIT SPECT images of Parkinson’s 

disease from those of controls.19) As accurate image-based 

diagnosis and the prediction of future cognitive decline in 

Alzheimer’s disease (AD) and mild cognitive impairment 

(MCI) patients have been clinically important issues, sev-

eral deep learning models using MRI and PET have been 

suggested. One of the first research of deep learning appli-

cation to medical images was representation learning for 

PET and MRI images for diagnosing AD.17,18) Though these 

pioneer studies did not use CNN, regarded as a de facto 

standard model in recent application, these models extract 

discriminative features automatically and showed higher 

performance for classifying brain images of AD compared 

with conventional algorithms. Recently developed models 

use deep CNN models for differentiating AD from controls, 

and showed high accuracy for the differentiation.13,45)

Another important application is enhancement of image 

reconstruction and image quality. For example, CNN mod-

els were incorporated into iterative reconstruction frame-

work and showed better performance than conventional 

denoising algorithms.27) As a generalized approach, deep 

learning was used to solve the inverse function of signals 

encoded by sensors including MRI and PET with regard to 

Table 1. Types of current deep learning applications for nuclear 
medicine and molecular imaging

Types of applications Examples References

Image-based 
diagnosis

Cancer staging (T- and 
N-staging)

11,12

Diagnosis of Alzheimer’s 
disease using PET  
and/or MRI

13-18

Diagnosis of Parkinson’s 
disease using dopamine 
transporter imaging

19-21

Prediction of coronary  
heart disease

22-24

Enhancement 
of image 

reconstruction  
and image quality

Image reconstruction 25-29

Attenuation correction 30-34

Recovery of low-dose  
PET images

35-37

Image-based 
quantification

Segmentation 38-42

Image generation for 
quantification

43,44
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the image reconstruction, which resulted in fully-automat-

ed and flexible reconstruction framework.28) Furthermore, 

attenuation correction, a crucial step of PET image recon-

struction, was aided by deep learning-based attenuation 

maps. While CT incorporated in fusion PET/CT scanners 

can provide attenuation information, recent PET/MR re-

quires synthetic CT attenuation maps. Because of the dif-

ficulty in the estimation of attenuation map without CT, 

there have been various issues regarding PET quantifica-

tion.46,47) Recently suggested deep learning-based CT image 

synthesis using MR or PET images is promising to solve the 

quantification issues caused by attenuation correction.30-34) 

Additionally, deep learning has been used to enhance im-

age quality for low dose PET images.35-37) By combining the 

algorithms for image reconstruction with low-dose radio-

tracers and PET- or MR-based attenuation correction can 

dramatically reduce radiation exposure in the future. Such 

an ultra-low dose PET may be used for new clinical pur-

poses including disease screening which has been difficult 

to obtain benefits due to radiation hazards. 

As molecular imaging provides quantitative value related 

to pathophysiology, studies have focused on the applica-

tion of deep learning to obtain accurate quantification. 

The most common application of deep learning to medical 

images is segmentation.9) The segmentation methods are 

usually based on anatomical images such as CT and MRI. 

As recent clinical molecular imaging modalities provides 

fusion images such as PET/CT, PET/MR, and SPECT/CT, 

deep learning-based segmentation methods can be used 

to calculate quantitative values such as the accumulation 

of radiotracer in a specific tissue delineated by anatomi-

cal imaging.39,48) The quantification can be improved by 

generative models such as generative adversarial networks 

(GAN). For example, pseudo-MR images were generated 

by AV-45 PET using GAN for the quantification of cortical 

radiotracer uptake without structural MR acquisition.43) 

Clinically Feasible Deep Learning-Based 
Biomarkers and Practical Issues

Necessity of deep learning-based biomarker

Even though various deep learning techniques have ap-

plied to molecular imaging for differential diagnosis, image 

enhancement, and accurate quantification, there are many 

issues that need to be solved in order to be clinically used. 

One of the gaps between deep learning approaches for 

natural image recognition and medical images, particularly 

molecular imaging, is placed on the purpose of imaging. 

While the image recognition task has simple labels, clini-

cians often require various types of information from medi-

cal images. They include prediction of prognostic outcome 

and treatment response as well as differential diagnosis.10) 

In a narrower range, differential diagnosis is similar with 

labels of natural images; however, many diagnostic clas-

sifications are not simple classification. Because many 

disorders have a spectrum ranged from healthy to fully-

blown disease status, ground-truth labels widely used in 

deep learning training are ambiguous in medical images. 

Furthermore, a gold standard of diagnostic classification is 

variable according to disease types as well as clinical situ-

ations.49) Thus, if we think more deeply, the eventual pur-

pose of deep learning application to the medical field is not 

just for simple diagnosis, but for looking to play a critical 

role in clinical decision.50) As molecular imaging intrinsi-

cally provides molecular and pathophysiologic properties 

with noninvasive manner, deep learning algorithms should 

more emphasize on the acquisition of objective quantita-

tive value which can predict future outcome and treatment 

response. Instead of the achievement of the state-of-the-art 

in classification accuracy, we should find appropriate clini-

cal application of the output of deep learning. For example, 

a deep learning model was developed for discriminating 

Alzheimer’s disease and normal aged subjects, however, 

the importance of the application of this model was to 

transfer to the MCI subjects who would rapidly progress 

to full-blown dementia.13) The output of the CNN model 

represents a probability of Alzheimer’s disease in a cohort 

consisting of Alzheimer’s disease and normal subjects. As 

the output of the CNN was estimated by patterns of FDG 

and amyloid deposit in the brain, these patterns could be 

associated with a predictive biomarker for the outcome of 

MCI subjects (Fig. 1). 
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Data distribution and validation 

Even though many deep learning models show remark-

able performance on the classification problem, such as 

discriminating fundoscopy images or brain PET images, 

most models are not validated in the real-world clinical 

settings. It is related to the evaluation of the performance 

when a suggested deep learning model tries to be used in 

the clinical setting. To achieve this validation issue, deep 

learning models should be tested in an independent test 

set from the training and internal validation data. The most 

commonly used method is the application to datasets ob-

tained from different centers.51) Even though deep learning 

models are validated in an external dataset and show good 

performance on diagnostic classification or prediction for 

clinical outcome, they can hardly guarantee the same per-

formance in the heterogeneous clinical environment. That 

is because the cohort used for the development of deep 

learning models are different from clinical trials, in which 

subjects are recruited with specific criteria defined for a 

clinical setting.52) The problem is placed on the fact that pa-

tients in the clinical setting are highly heterogeneous and 

clinical decision should be made under various situations. 

For example, deep learning models were mostly developed 

by a training cohort which consists of patients with a par-

ticular disorder and healthy controls. Training and even 

more validation cohorts usually include similar number 

of patients and controls. However, in the clinical situation, 

differential diagnosis or clinical decision is made under the 

patients’ symptoms and signs instead of the simple clas-

sification. There are different disorders similar to a given 

disease status which aims at a deep learning model, even 

more, a few types of rare disorders. The ratio of disease sta-

tus and healthy status can be considerably different from 

the cohort for the training. The problem with data distribu-

tion is a bigger factor when we use the deep learning model 

for disease screening purposes in general population (Fig. 

2). This is the reason why deep learning models should be 

subjected to clinical trials in spite of the high accuracy, and 

Fig. 1. The output of deep learning model as a predictive bio
marker. A deep convolutional neural network (CNN) model was 
developed to differentiate brain PET of Alzheimer’s disease from 
healthy subjects. This model was applied to another cohort, 
mild cognitive impairment patients to predict future cognitive 
outcome. The output of the model represents a probability of 
Alzheimer’s disease, which can be used as a predictive biomarker 
for predicting cognitive outcome in preclinical disorders.

Fig. 2. A gap between training and real-world data. Most of deep learning models are developed by patients’ data with specific disorders 
and controls. The problem of deep learning application to the clinic is the difference between real-world data and the training cohort. 
Real-world data in the clinic included heterogeneous patients different from training cohorts. Furthermore, the distribution of disease 
and normal is considerably different. This data distribution issue become a bigger factor when deep learning aims at general population.
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it is necessary to make appropriate use criteria and use it 

clinically under limited clinical situations. 

Uncertainty and unseen data

The issues regarding data distribution and ‘unseen data’ 

in training cohorts can be extended to uncertainty. Under 

the current approaches of supervised learning from big 

data and their labels, deep learning-based diagnosis and 

clinical outcome prediction requires diagnostic uncer-

tainty due to unseen and rare cases. Furthermore, clinical 

decision is not made by differential diagnosis of high prob-

ability, but the exclusion of critical diagnosis related to life-

threatening. Lowering the uncertainty of a fatal disease is 

one of the most important factors in diagnostic testing and 

one of the most important elements of clinical decision to 

be achieved through biomarkers.53) Thus, deep learning 

models should provide uncertainty in its decision to de-

termine whether subjects need additional diagnostic tests. 

Bayesian approximation with DL for uncertainty measure-

ment is a good example for supervised learning models.54) 

Another way to bypass the issue regarding uncertainty 

and unseen data, particularly rare disorders, is to employ 

unsupervised learning for the anomaly detection. As deep 

learning is representation learning, latent features in imag-

ing data could show distribution according to training da-

tasets. After the definition of distribution of latent features 

in the training data, unseen data can be identified by the 

definition in the latent space.55,56) As conditional generative 

models such as conditional generative adversarial net-

works (GAN) or variational autoencoders (VAE) synthesize 

virtual data of specific conditions, it can be used to define a 

population distribution of specific conditions. For example, 

by training a generative model for normal aging changes 

in brain metabolism, a pseudo-population distribution 

of brain metabolism at each age can be generated.57) This 

generated population distribution will be used to find ab-

normal patterns taking age information into consideration 

from a given brain image. This type of anomaly detection 

can bypass the issue related to deep learning models for 

heterogeneous disorders. 

Labeling of data: leveraging unlabeled data

Unsupervised learning is an important approach to solve 

practical issues in labels of imaging data. The labeling of 

image data, particularly for medical imaging is expansive 

as well as time-consuming. It requires experts to interpret 

the images or to decide clinical diagnosis. To obtain ‘gold 

standard’ diagnosis, many cases require clinical follow-up 

interpretations, which need a complex professional review 

process for medical records. Obviously, ethical issues with 

regard to the acquisition of large data and their label are 

inevitable. It is a big obstacle to deep learning application 

that the data with such labels are limited and labeling as a 

large scale is much more difficult. In addition, many nucle-

ar medicine and molecular imaging data are more difficult 

to obtain with large scale with labels as various imaging 

techniques are used according to the clinical purposes. 

One of the ways to overcome this labeling issue will be 

found in the property of medical imaging data. It is rela-

tively easy to collect heterogeneous image data obtained 

for clinical routine. By using these clinical routine data and 

unsupervised learning methods, representative features 

can be obtained. These representative features will be vi-

sualized by dimension reduction methods to intuitively 

identifying patterns of large imaging data. Furthermore, 

these features obtained by unsupervised learning can be 

transferred to relatively small datasets which contain both 

labels and images. This transfer learning can produce a 

robust deep learning model even if the well-labeled data is 

relatively small (Fig. 3).58,59) The flexible application of un-

supervised learning and transfer learning can be extended 

to semi-supervised learning. As aforementioned, a data-

base clinically routinely obtained can be relatively easily 

obtained and a few data in the large unlabeled data can be 

labeled with the clinical outcome or diagnosis. In spite of a 

small labeled samples, various deep learning approaches 

employ unlabeled data to find discriminative representa-

tions for small labeled samples.60,61) For example, a study 

was aimed at prediction of FDG uptake estimated by PET 

using gene expression data for lung cancer, while a small 

number of subjects include both PET and gene expres-

sion data. By employing a larger gene expression dataset 

without PET data, a prediction model of FDG uptake can 
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be developed.62) As many clinical data are placed on the 

situation of ‘large unlabeled data and small labeled data’, 

the deep learning model which can enhance performance 

through unsupervised learning and unlabeled data will be 

widely used in future molecular imaging and medical data 

research.

Another feasible way to overcome the labeling issue is 

to employ multiple unstructured data corresponding to 

imaging data. For example, clinical imaging data include 

text reports which included human interpretation results 

with natural languages. Even though these reports are 

mostly unstructured, they have a lot of information of im-

age labels, including differential diagnosis, abnormal find-

ings and disease locations. Data mining of the semantic 

interactions of medical images and texts will be a feasible 

approach to develop a deep learning model based on 

real-world clinical data.63) As self-supervised learning of 

imaging representations using a deep learning model for 

semantic context can be already used in natural image 

data, medical imaging data will be trained by representa-

tions of text reports.64) The learning of representations of 

the imaging data and finding their clinical significance can 

be a data-driven approach to develop biomarker without a 

priori knowledge. The self-supervised learning will be one 

of the future directions of a data-driven approach and will 

be achieved by using a text report or intrinsic information, 

such as age and gender matched with image data. 

Data harmonization

One of the overlooked practical issues is data harmoni-

zation. Molecular imaging routinely used in the clinical 

setting has various types. Numerous tracers can be used to 

obtain imaging data according to their clinical purposes. 

Furthermore, image acquisition protocols are varied ac-

cording to the centers, which may reduce the accuracy of 

deep learning models when they aim at generalized ap-

plication for multiple centers. Different imaging textures 

related to different detector types and image reconstruc-

tion algorithms can affect the performance of deep learn-

ing. Furthermore, the distribution of tracer has temporal 

dynamics, image acquisition at different time points may 

influence on the acquisition of deep learning-based bio-

markers. Recently, deep learning has been used to analyze 

kinetics of dynamic imaging data,65) however, most imag-

ing data routinely obtained in the clinic are static images, 

which require harmonization for multiple centers. The 

different tracers which aim at same molecular targets also 

cause a harmonization problem. For example, to obtain the 

information of brain amyloid deposits, several radiotracers 

are available, e.g. 11C-PIB, 18F-Florbetapir, 18F-Florbetaben, 

and 18F-Flutemetamol. These PET imaging show similar 

results though different quantification results.66,67) While 

classical amyloid quantification can be overcome by linear 

correction, deep learning models using heterogeneous im-

age data with these different tracers are challenging. 

Fig. 3. Leveraging unlabeled data as a clinical routine for facilitating deep learning development. As labeling for medical data is too 
expensive and time-consuming, it is a bottleneck for developing deep learning models. Since it is relatively easy to collect heterogeneous 
image data obtained for clinical routine, unsupervised learning can leverage these unlabeled ‘dirty’ data. Unsupervised learning-based 
feature extraction can be transferred to relatively small cohorts which contain both labels and images to predict clinical outcome as well 
as differential diagnosis according to the clinical purposes.
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Future Direction to Data-Driven Theranostics

In this review, current deep learning models developed 

for molecular imaging have been briefly introduced in 

terms of their purposes. As molecular imaging has infor-

mation of molecular changes regarding pathophysiology, 

accurate and objective quantification is a critical step to 

use in the clinic. This quantitative information is linked to 

clinical decision and prediction of outcome as well as dif-

ferential diagnosis. Thus, instead of simple diagnostic clas-

sification, we should focus on the discovery of biomarkers 

by extracting functional information of molecular imaging 

using deep learning. This information can contribute to 

theranostic approaches, which aim at the combination of 

diagnostics and therapeutics using same molecular tar-

gets. Deep learning models will summarize the status of 

patients with quantitative value. The models should be 

clinically validated under the clinical situation with unbi-

ased data instead of limited datasets. Clinically validated 

molecular imaging-based biomarker can be used to moni-

tor the disease status in terms of functional information. 

By predicting the outcome of the patient at the individual 

level using imaging data, therapeutic plans including dose 

and schedule as well as treatment methods can be per-

sonalized. To facilitate the clinically feasible deep learning 

models, it is promising to leverage unlabeled data and un-

supervised learning. This approach will be used to consid-

erably untangle the issues induced by supervised learning 

approaches which have been employed by most of deep 

learning models for imaging data. These issues included 

the heterogeneous data distribution, unseen data and un-

certainty of decisions. Furthermore, unsupervised learning 

followed by transfer learning can develop various types 

of deep learning models with relatively small samples. 

Because of the distinctiveness of the medical field and the 

various purposes of molecular imaging, the development 

of a deep learning model that meets the particular clinical 

goals will be necessary, and the result will be an objective 

biomarker that plays an important role in objective clinical 

decision. 
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