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The purpose of this study is to install a system that compensated for the respiration motion using 
an articulated robotic manipulator couch which enables a wide range of motions that a Stewart 
platform cannot provide and to evaluate the performance of various prediction algorithms including 
proposed algorithm. For that purpose, we built a miniature couch tracking system comprising an 
articulated robotic manipulator, 3D optical tracking system, a phantom that mimicked respiratory 
motion, and control software. We performed simulations and experiments using respiratory data of 
12 patients to investigate the feasibility of the system and various prediction algorithms, namely 
linear extrapolation (LE) and double exponential smoothing (ES2) with averaging methods. We 
confirmed that prediction algorithms worked well during simulation and experiment, with the ES2-
averaging algorithm showing the best results. The simulation study showed 43% average and 49% 
maximum improvement ratios with the ES2-averaging algorithm, and the experimental study with 
the QUASARTM phantom showed 51% average and 56% maximum improvement ratios with this 
algorithm. Our results suggest that the articulated robotic manipulator couch system with the ES2-
averaging prediction algorithm can be widely used in the field of radiation therapy, providing a 
highly efficient and utilizable technology that can enhance the therapeutic effect and improve 
safety through a noninvasive approach.
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Introduction

The main aim of radiation therapy is to kill cancer cells to 

the greatest extent possible while protecting normal tissues 

from damage. To achieve this, radiation should be precisely 

targeted. In recent years, more advanced techniques for 

radiation therapy, such as stereotactic body radiation 

therapy (SBRT) and image-guided radiotherapy (IGRT), 

require to be delivered with even greater accuracy. 

There are various approaches for managing respiratory-

induced motion of organs and tumors.1) Breath-holding 

methods, including active breathing control (ABC) and 

deep-inspiration breath-holding (DIBH), are based on 

the patient controlling his/her own breathing with or 

without the assistance of appropriate devices. However, 

many patients with lung cancer have pulmonary function 

insufficiency and may, therefore, have difficulty with 

breathing control and experience discomfort during 
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treatments. Methods of adapting the beam to tumor 

motion while the patient breathes freely are useful for 

such cases. Respiratory gating is widely used in clinical 

treatment; this technique involves holding back the beam 

until the target returns within a certain gating window. 

However, drawbacks of this method are the prolonged 

treatment time and a low duty cycle, normally of <30%.2,3) 

Irregular breathing or baseline shifts also reduce the accu

racy of gating.4) Unlike the breath-holding and gating 

techniques, real-time tumor tracking with a dynamic 

multi-leaf collimator (DMLC) enables a 100% duty cycle 

and allows the patient to breathe freely, but a limitation is 

the delay in leaf positioning when the direction of tumor 

motion has a component perpendicular to the direction of 

leaf motion. This DMLC tracking technique best maintains 

tracking performance when the tumor and leaf motions are 

in a similar direction.3) However, studies have shown that 

lung tumors can move several centimeters in any direction 

during irradiation, regardless of the tumor size, location, 

and pulmonary function.5)

Thus, couch-based real-time correction methods are 

being studied by many groups. Real-time tumor tracking 

via couch control involves detecting respiratory motion 

and dynamically repositioning the treatment couch to 

track the tumor’s changing position. Because of difficulty 

in detecting the tumor itself, surrogate markers (external 

fiducials on the skin surface or internal fiducials directly 

implanted into the tumor) are used. Effective prediction 

algorithms predict the displacement of the marker, 

including compensation for the latency between the 

measurement and robot operation. Many prediction 

algorithms have been studied and published, including the 

Kalman filter,6-8) artificial neutral networks,6,9) probabilistic 

approaches,10) the autoregressive moving average mo

del,11) the multi-step linear method,12) and wavelet-based 

multiscale autoregression.13) Most of the previous studies 

implemented a parallel robotic manipulator, which con

sists of a rigid body top plate, connected to a fixed base 

plate and is defined by at least three stationary points on 

the grounded base connected to six independent kinematic 

legs. It is also known as the Stewart platform, where all the 

actuators move simultaneously. PerfectPitchTM (Varian, 

USA), ProturaTM Robotic Patient Positioning System (CIVCO 

Medical Solutions, IA), and HexaPODTM evo RT System 

(Elekta, Sweden) are examples of this kind of 6-DOF 

couch.14) However, the Stewart platform couch itself has 

physical limits on its motion, corresponding to 3~4 cm 

in each of the three physical dimensions; once a limit is 

reached, the couch simply cannot move any further, even 

though it is enough to cover the organ movement.15,16)

In this study, therefore, we built a miniature couch 

tracking system comprising an articulated robotic 

manipulator enables a wide range of motions that a Stewart 

platform cannot provide. We performed simulations and 

experiments for investigating the feasibility of the system 

and proposed ES2-averaging prediction algorithms.

Materials and Methods

Main components of a treatment couch-based real-time 

motion compensation system are the tracking system, 

robot controller, and articulated robotic couch. Fig. 1 

shows a schematic illustration of such a system. 

1. General setup

1) An optical 3D tracking system

An optical 3D tracking system was used to simul

taneously track the motions of a phantom that mimicked 

respiratory motion and a robotic couch. To achieve this, 

external markers were placed on the phantom and couch. 

If a passive-type infrared reflective marker was attached to 

an object, the tracking system could determine its relative 

coordinates by measuring the signal reflected from the 

object. We used Polaris SpectraTM (NDI Medical, Canada) 

as the tracking system; this is a proven device that has 

been tested and used with various medical devices. It has 

a root-mean-square accuracy of 0.25 mm and a sampling 

frequency of 30 Hz, and it communicates with the robot 

control personal computer (PC) through a USB serial port 

at up to 1.2 Mbps maximum transmission speed. It has a 

pyramidal measurement range of up to 2,400 mm (with 

some options offering 3,000 mm), and 6-DOF information 

can be extracted and saved as a log file to allow checking. 

The tracking system measured the position of the mar

kers relative to the center of the coordinate space by 
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measuring the spatial coordinates and rotation of each 

marker. The center of the coordinate space is the location 

of the tracking system. The rotation of the marker was 

represented as a quaternion; a method for describing the 

rotation using a rotation vector and the rotation angle. If 

an object is rotated at an angle θ  about a unit vector ( ẑ    ŷ   x̂
  

, ẑ    ŷ   x̂
  

, 

and ẑ    ŷ   x̂
  
), then the rotation can be described by the following 

quaternion: 
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Quaternions are less intuitive than Euler angles, but 

they avoid the gimbal lock problem that arises with Euler 

angles. This method is, therefore, widely used in the field of 

robotics as a representation of rotation.17)

The output, saved as a text file, had a total of seven 

parameters: three spatial coordinates and four for the 

quaterion. These defined the position and rotation of the 

marker, which could then be used by motion detection and 

control software.

2) Robotic couch and controller

A six-axis articulated robotic manipulator (HA006-04, 

Hyundai Heavy Industries Co., Ltd., Korea), optical 3D 

tracking system, and robot controller were connected to 

PC and controlled as an integrated system. The treatment 

couch, made of carbon fiber, was connected to the last 

link of the articulated robotic manipulator. The weight 

capacity of the industrial six-axis vertical articulated robot 

was 6 kg. The couch system was capable of translational 

as well as rotational motion. Mechanical parameters and 

specifications were summarized in our previous study.2) 

To control the robotic couch, we modified the software 

for measuring the signal using the tracking system so that 

it sent the couch a displacement signal. The software used 

the same framework as the tracking system to measure 

the position of the marker. We modified the software to 

measure and predict the position of the marker and send 

an appropriate compensation signal to the robotic couch.

To determine the displacement signal to be sent to the 

couch, the tracking system first measured the position of 

the marker and then used this to calculate its predicted 

position; the displacement signal for the predicted position 

was then sent to the robotic couch for the compensation. 

A simplified description of the motion compensation 

algorithm is presented as the dashed-line rectangle in Fig. 1.

Because the tracking system measured the marker po

sition, coordinates needed to be calibrated with those of 

the couch. For this calibration, coordinates were measured 

at seven different positions: the center and at 10 cm from 

the center in each of the superior–inferior, medial–lateral, 

and anterior–posterior directions. This resulted in seven 

measured coordinates and seven actual coordinates of the 

marker (N=7). We used singular value decomposition to 

establish the rotation matrix. For the measured coordinates 

set {mi} and real coordinates set {ri}, we minimized the 

least-square error (E) between them through a rotation (R) 

and translation (T) matrix as follows:

Fig. 1. Schematic illustration of a 
couch-based real-time motion com
pensation system.

Measure the
marker position

Motion
detection

Motion signal

Optical tracking system

Robotic arm Couch

Motion compensation
algorithm

1. Current measurement
at time ( )

2. Predict the position
of marker at time

( )
3. Calculate

displacement of
marker from
to

t x

t x

t

pred pred

pred-1

pred

x

x

Control PC

Robot controller



Minsik Lee, et al：Simulation and Experimental Studies of Real-Time Motion Compensation Using an Articulated Robotic Manipulator System174

www.ksmp.or.kr

N

i ii TRrmE
1=

2
   -   -    =  	 (2)

We first removed the translational dependency by 

subtracting the centroid of each set to calculate R. 

The centroid of each set was calculated as in Eq. 3 and 

subtracted from each coordinate according to Eq. 4:
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The error then only depended on the rotation matrix (R). 

The rotation matrix minimized error can be calculated by 

matrix multiplication (*) of the lower and upper matrices of 

the singular value decomposition (SVD) result of H in Eq. 

(5)
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After calculating the rotation matrix, we calculated the 

translation matrix by applying the rotation matrix to the 

centroid of measured and real coordinates as follows:

cc r*R -  m = T  	 (6)

The calibration was performed immediately before 

sending the predicted displacement signal to the robotic 

couch.

2. Prediction algorithm

For the couch control to compensate for breathing-

induced motion, we used the method of predicting the 

next position of the phantom. When patient motion data 

detected by the tracking system was sent to the robot 

controller as an input signal, there was a delay time bet

ween the measurement and robot operation, which 

depended on the work environment or specification. 

It was, therefore, necessary to measure the latency for 

making appropriate predictions for a given environment. 

Some related studies have proposed the main qualitative 

criteria for choosing the prediction algorithm.18) A pre

diction algorithm needs to allow fast calibration for each 

new patient and should be able to reflect, in real time, 

the movement of the tumor with the patient’s respiration. 

In addition, the method should preferably be easy to 

implement with any hardware system. In this study, we 

applied linear extrapolation (LE) and a slightly modified 

double exponential smoothing (ES2) algorithm. 

1) Linear extrapolation 

Linear extrapolation (LE) is a prediction method based 

on the most recent measurement values. No calibration 

or conditions are required, and the calculation is sim

ple, allowing it to be easily applied to any hardware or 

equipment. If the current time is t and the time the pre

diction is required for is t+h, then it is assumed that the 

signals from t−h to t are of the same size and in the same 

direction. This can be expressed as follows:

 )(   x - x +  x =   x̂ h-ttth+t  	  (7)

2) Double exponential smoothing 

Exponential smoothing is a type of moving average, 

where the importance of past observations decreases 

exponentially.2) The double exponential smoothing (ES2) 

method needs no patient-specific calibration and can 

predict the position at the desired time immediately when 

motion is detected. It reflects the tumor motion and is easy 

to implement. This method operates well when there are 

trends in data. ES2 computes an evolving trend equation 

using a special weighting function that places the greatest 

emphasis on the most recent time. Instead of a global trend 

equation, this technique uses a local trend equation. It 

calculates a  to measure the level which can be called the 

y-intercept of the trend and it also incorporates β  to create 

a linear trend for the prediction. The ES2 algorithm can be 

expressed as follows:
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where α  is the level smoothing factor and β  is the trend 

smoothing factor, which are both between zero and one; 

in this study, α=0.7 and β=0.6 were used. The parameter st 
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gives the y-intercept (level), whereas bt is the slope at time t. 

The both smoothing factors determine how fast the weights 

of the series forgets. A smoothing factor near one puts 

almost all weight on the most recent observations, whereas 

a smoothing factor near zero allows the past observations 

to have a greater effect. ES2 requires initialization because 

the prediction for time 1 requires the data value for time 

0, which would not be available. Thus, s0=x0 and b0=0 were 

used as initial values. A structural limitation of this method 

is that a change in direction in the signal from positive to 

negative or vice versa results in excessive prediction.

In this study, we used a slight variation of the ES2 model 

to include noise reduction by applying the average filter 

before the prediction. Because the phantom and couch 

motions constantly affect each other, even a small amount 

of noise or jitter tends to be amplified, depending on the 

patient conditions. Fig. 2 schematically shows the method 

of applying a filter to the results prior to the prediction 

(ES2-averaging). The prediction algorithm starts with the 

measured position of the marker on the phantom relative 

to that of the marker on the couch at times t and t−1. The 

dashed lines indicate the averaging process. The new 

averaged position at t (

pred

t

x̂
x̂

 ) was obtained by averaging the 

measured positions at times t and t−1 and the position 

predicted for time t+1 by the ES2 algorithm at t. This value 

was then used as the input to the ES2 algorithm to predict 

the final value pred

t

x̂
x̂

 
.

3) Test phantom

To ensure that the robotic couch appropriately compen

sated for the movement of the phantom by following that 

motion, we tested prediction algorithms described above 

with a stage rotation phantom (Varian, USA) which moved 

in a regular cycle, allowing the latency to be measured, 

and a QUASARTM respiratory motion phantom (Modus QA, 

Canada), which could import and mimic patient breathing 

data. 

The stage rotation phantom performed sinusoidal 

motion that rotated a flat circular shape plate at a constant 

speed and amplitude. We used this phantom separate 

from the couch to measure the latency. The QUASARTM 

phantom could be operated so that it followed actual 

patient breathing motion loaded via a PC. Patient motion 

data were acquired from 12 patients using the Varian RPM 

system (Varian, USA) during four-dimensional computed 

tomography simulation over 300 s. We assumed that the 

movement of a marker placed on the objects accurately 

represented the movement of the tumor. The experiments 

were performed by attaching a marker to the couch and 

Fig. 3.  Marker displacement on 
the rotation phantom and couch, 
obtained using the tracking system 
w i t h ou t  ap p l y i ng  a  p re d i c t i o n 
algorithm. The inset shows a seg
ment of the same signal. 
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another to the phantom.

Results and Discussion

1. Analysis of couch dynamics (latency)

The experiment using the stage rotation phantom 

showed the average latency between the measurement 

and robot operation to be 200 ms. Fig. 3 shows the marker 

displacement data acquired by the tracking system without 

applying a prediction algorithm. This shows that the 

movement of the couch followed that of the phantom with 

an interval corresponding to the latency.

2. Patient respiratory motion

We firstly performed simulations based on the patient 

respiratory data to ensure that prediction algorithms per

formed how accurately in the absence of external influ

ences. Without the prediction algorithms, the average 

root-mean-square error (RMSE) value for the 12 patients 

was 1.96±0.29 mm, whereas using the LE algorithm it was 

1.29±0.23 mm. And with the simple ES2 and ES2-averaging 

algorithms were 1.23±0.20 and 1.10±0.17 mm, respectively. 

Table 1. Three-dimensional RMSE values and improvement ratios in the simulation study

Patient 
number

3D RMSE (mm) Improvement ratio (%)

No Prediction LE ES2 ES2 (averaging) LE ES2 ES2 (averaging)

1 2.22 1.56 1.48 1.34 29.77 33.24 39.86

2 2.21 1.58 1.51 1.35 28.23 31.47 39.07

3 1.81 1.18 1.13 1.02 34.89 37.57 43.71

4 1.83 1.19 1.13 1.05 35.03 38.52 42.86

5 1.34 0.85 0.81 0.73 36.96 39.72 45.71

6 1.82 1.20 1.17 1.03 34.29 35.86 43.67

7 2.42 1.54 1.42 1.24 36.23 41.34 48.87

8 1.90 1.14 1.10 1.01 40.19 42.15 47.04

9 2.04 1.39 1.33 1.20 31.92 34.95 40.98

10 1.70 1.15 1.09 0.98 32.46 35.81 42.32

11 2.19 1.54 1.41 1.21 29.62 35.89 44.81

12 1.97 1.22 1.18 1.08 38.00 40.02 45.18

Mean±SD 1.96±0.29 1.29±0.23 1.23±0.20 1.10±0.17 33.97±3.66 37.21±3.26 43.67±2.88

Table 2. Three-dimensional RMSE values and improvement ratios for the experimental study using the QUASARTM phantom

Patient 
number

3D RMSE (mm) Improvement ratio (%)

No Prediction LE ES2 ES2 (averaging) LE ES2 ES2 (averaging)

1 2.78 2.33 1.79 1.55 16.19 35.61 44.09 

2 2.76 2.43 2.09 1.57 11.96 24.28 43.27 

3 2.26 1.83 1.43 1.02 19.03 36.73 54.99 

4 2.29 1.87 1.33 1.06 18.34 41.92 53.58 

5 1.68 1.17 1.03 0.91 30.36 38.69 45.58 

6 2.28 1.82 1.68 1.05 20.18 26.32 53.88 

7 3.02 2.69 1.68 1.37 10.93 44.37 54.59 

8 2.38 1.78 1.36 1.30 25.21 42.86 45.29 

9 2.55 2.26 1.62 1.20 11.37 36.47 52.94 

10 2.13 1.78 1.27 0.96 16.43 40.38 54.93 

11 2.74 2.44 1.64 1.20 10.95 40.15 56.20 

12 2.46 1.89 1.36 1.12 23.17 44.72 54.47 

Mean±SD 2.44±0.36 2.02±0.42 1.52±0.28 1.19±0.22 17.84±6.20 37.71±6.53 51.15±4.97
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The LE algorithm showed a 34% average improvement in 

RMSE and a 40% maximum improvement compared with 

the results without a prediction algorithm. The simple 

ES2 algorithm showed 37% average and 42% maximum 

improvements, and the ES2-averaging algorithm showed 

44% average and 49% maximum improvements. The 

ES2-averaging method showed the best results out of 

the prediction algorithms in the simulation study. In the 

experimental tests using the QUASARTM phantom with 

patient breathing data, the mean RMSE value of the 12 

patients without applying any prediction algorithm was 

2.44±0.36 mm, whereas that with the LE algorithm was 

2.02±0.42 mm. And that with the simple ES2 and ES2-

averaging algorithms were 1.52±0.28 and 1.19±0.22 mm, 

respectively. The LE algorithm showed an 18% average 

and a 30% maximum improvement in RMSE compared 

with the results using no prediction algorithm. The simple 

ES2 algorithm showed 38% average and 45% maximum 

improvements and the ES2-averaging algorithm showed 

51% average and 56% maximum improvements. The 

detailed simulation and experimental results are presented 

in Tables 1 and 2, respectively.

RMSE values have meaning when obtained under the 

same conditions to compare the absolute accuracy, but 

comparing values acquired from different conditions is 

meaningless. In other words, absolute RMSE values of the 

simulation and experiments need not be considered, but 

improvement ratios calculated for each of the prediction 

algorithms (i.e., the ratio of the mean RMSE value for the 

algorithm to the mean RMSE value when no algorithm 

was applied) are of significance. Fig. 4 shows improvement 

ratios for the simulation and the experimental studies. In 

all simulation cases, the ES2-averaging algorithm was the 

best; on an average, 6% better than the simple ES2 and 10% 

better than the LE algorithm. Similarly, the ES2-averaging 

was also the best in all experimental cases; on an average, 

13% better than the simple ES2 and 33% better than the LE 

algorithm.

Among the three prediction algorithms that we com

pared, it may be intuitively expected that ES2 would 

perform better than LE. The LE algorithm can predict 

relatively accurate results with a regular signal, but it is 

difficult to guarantee reasonable results with irregular 

signals, such as patient respiratory motion, because the LE 

algorithm is based on the assumption that the signal will 

maintain the same velocity and direction as last observed. 

Conversely, the ES2 method is used when there is a trend 

in the signal and it provides a more reasonable prediction 

by calculating the two parameters; the level and slope of 

the predicted value. In addition, the analysis of the ES2-

averaging algorithm is also important. We tried to reduce 

the amplified noise or jitter by using the averaging filter. 

ES2-averaging outperformed simply ES2; we consider this 

to be because the ES2-averaging algorithm can reduce 

random errors in original data by averaging the three 

values before the prediction. Because the final prediction 

value has been predicted in that state, it can be regarded 

as having only prediction errors. Conversely, in simple ES2 

Fig. 4. Improvement ratios for the simulation and experimental studies.
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methods, random errors in original data still present and 

the errors of the algorithm itself also remain intact.

During the qualitative evaluation, the couch moved in 

the opposite direction to the phantom motion to com

pensate for its movement motion; the ideal result would, 

therefore, be one showing no relative motion between the 

phantom and couch. Fig. 5 shows marker displacements for 

one (patient 5) out of 12 patients studied with the various 

prediction algorithms in the experimental study. Only 60 s 

of total breathing is displayed. As can be observed from the 

phantom movements (indicated by the thick line), results 

for the ES2-averaging algorithm approached the closest 

to zero relative movement; this exhibited the smallest 

amplitude, although there existed noise at the plateau 

region with every patient. 

A point to consider is the reason why the improvement 

ratio differed between patients for the same prediction 

method. Comparing the cases with the best and the worst 

improvement ratios shows that the respiratory cycles of the 

patients differed. The best patient case took approximately 

nine and half breaths over a 60 s period, whereas the worst 

case took approximately 14 breaths in the same time. 

As described earlier, one feature of the ES2 prediction 

algorithm is a tendency to excessively predict when the 

signal direction reverses. A possible explanation of the 

variation, therefore, is that a smaller number of changes 

from expiration to inspiration (a longer respiratory cycle) 

may result in a lower RMSE value and higher improvement 

ratio. Indeed, the rest of the cases showed similar results, 

with the patients with shorter respiratory cycles having 

higher RMSE values and lower improvement ratios. In 

addition, the reason that the improvement ratio of the 

Fig. 5. Marker displacements for one (patient 5) out of 12 patients when applying the various prediction algorithms in the experimental 
study. The thick line indicates the phantom motion; ideally, this should appear still, indicating no relative movement between the 
phantom and couch. 
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experimental results is better than the simulation is the 

RMSE value of no prediction, which is the standard, is 

about 0.5 mm lower in the simulation on average. And it is 

considered that the generated noise in the experiments is 

reduced by the averaging effect. In the simulation without 

the mechanical vibration, as mentioned, the difference of 

improvement ratio between the ES2 and ES2-averaging 

is about 6%, whereas the experiment shows a noticeable 

difference of improvement ratio 13%.

Conclusion

The purpose of this study was to install a system that 

compensates for the movement of a tumor due to the 

patient’s respiration by moving the articulated robotic 

manipulator couch and to evaluate the performance of the 

proposed prediction algorithms. We applied LE, simple 

ES2 and ES2-averaging algorithms which can predict the 

latency in advance. We confirmed that the prediction 

algorithms worked properly in simulation and experiments 

and that the ES2-averaging algorithm showed the best 

results.

Our results suggest that the articulated robotic mani

pulator couch system with the ES2-averaging prediction 

algorithm could be widely used in the field of radiation 

therapy because it is a highly efficient and utilizable 

technology that can enhance the therapeutic effect and 

improve safety through a noninvasive approach. 

However, because of limitations of the current prediction 

algorithm, we are planning to develop a method for 

predicting the location of a tumor using one of the machine 

learning techniques for better prediction results. At the 

same time, we plan to test the current system in a real 

treatment environment and evaluate the dosimetric effects 

on the treatment of couch tracking. 
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