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BACKGROUND/OBJECTIVES: Inflammation is associated with various types of acute and chronic alcohol liver diseases. In this 
study, we examined whether umbelliferone (7-hydroxycoumarin, UF) ameliorates chronic alcohol-induced liver damage by 
modulating inflammatory response and the antioxidant system. 
METHODS: Rats were fed a Liber-Decarli liquid diet containing 5% alcohol with or without UF (0.05 g/L) for 8 weeks, while 
normal rats received an isocaloric carbohydrate liquid diet. 
RESULTS: Chronic alcohol intake significantly increased serum tumor necrosis factor-α (TNF-α) and interleukin 6 levels and decreased 
interleukin 10 level; however, UF supplementation reversed the cytokines related to liver damage. UF significantly suppressed 
hepatic lipopolysaccharide binding protein, toll-like receptor 4 (TLR4), nuclear factor kappa B, and TNF-α gene expression increases 
in response to chronic alcohol intake. Masson's trichrome staining revealed that UF improved mild hepatic fibrosis caused 
by alcohol, and UF also significantly increased the mRNA expressions and activities of superoxide dismutase and catalase in 
liver, and thus, decreased lipid peroxide and mitochondrial hydrogen peroxide levels. 
CONCLUSIONS: The findings of this study indicate that UF protects against alcohol-induced liver damage by inhibiting the 
TLR4 signaling pathway and activating the antioxidant system.
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Fig. 1. Chemical structures of UF (Umbelliferone).

INTRODUCTION4)

Alcoholic liver disease (ALD) is a major cause of mortality and 
morbidity worldwide [1]. The liver is the main organ affected 
because it is the major site of alcohol metabolism and produces 
toxic metabolites from alcohol, such as, acetaldehyde, acetate, 
and reactive oxygen species [2]. The oxidative metabolism of 
alcohol produced acetaldehyde, which contributes to cell and 
tissue damage and increased oxidative stress [3], and increased 
oxidative stress decreases antioxidant enzymes and glutathione 
(GSH), resulting in DNA damage and the necrosis and apoptosis 
of hepatic cells [4]. 

Alcohol-induced oxidative stress promotes inflammation, 
which is aggravated by an increase in pro-inflammatory cytokines 
levels and by the up-regulation of the inflammatory cascade 
[5]. Circulating levels of the endotoxin, lipopolysaccharide (LPS), 
increase in rodents on a chronic alcohol diet [6]. Furthermore, 
LPS recognition by toll-like receptor 4 (TLR4) results in the 
recruitments of adaptor molecules that activate nuclear factor 
kappa B (NF-κB), which increases the productions of pro-infla-
mmatory cytokines, such as, ‘tumor necrosis factor α (TNF-α)’ 

and ‘interleukin 6 (IL-6)’ [6]. In particular, these two cytokines 
are the principle mediators of early alcohol-induced liver injury. 
Treatment of ALD is accomplished using anti-inflammatory 
agents, antioxidants, and agents directed against the prog-
ression to fibrosis [7]. However, owing to the adverse side effects 
associated with many agents, alternative natural therapeutics 
are needed.

Umbelliferone (UF; 7-hydroxycoumarin; Fig. 1) is present in 
fruits and roots plants, such as, the golden apple, the bitter 
orange, and carrot [8-10], and several studies have shown that 
UF can exert potent antioxidant, antidiabetic and antitumor 
effects [11,12]. Kassim et al. [13] demonstrated the antioxidant 
property of UF by the 1,1-diphenyl-2-picrylhydrazyl free radical 
scavenging, and Ramesh and Pugalendi [11,14] have reported 
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Ingredients
Groups

NC Al Al-UF

Casein 41.4 41.4 41.4

L-Cystein 0.5 0.5 0.5

D,L-Methionine 0.3 0.3 0.3

Corn oil 8.5 8.5 8.5

Olive oil 31.1 31.1 31.1

Dextrin-maltose2) 115.2 25.6 25.6

Cholin bitartrate 0.53 0.53 0.53

Fiber 10.0 10.0 10.0

Xanthan gum 3.0 3.0 3.0

Vitamin mix3) 2.55 2.55 2.55

Mineral mix4) 9.0 9.0 9.0

Ethanol - 50 50

Umbelliferone - - 0.05

1) The liquid diet was mixed in 1 L of distilled water.
2) The ethanol in the alcohol diet was replaced with additional dextrin maltose in 

the NC group.
3) AIN-76 vitamin mixture.
4) AIN-76 mineral mixture.

Table 1. Composition of liquid diet (g/L/1,000 calories)1)

Gene Sequences of forward and reverse primer 5'-3'

LBP Forward CTA TCC TGG GCA TTG ACT ACA G

Reverse CAT CGT TGA CAT CAG GGT AGA G

TLR4 Forward TGG GTC TAG AAG AGC TGG AAT A

Reverse CAC CAA CGG CTC TGG ATA AA

NF-κB Forward GGA TGA CAG AGG CGT GTA TAA G

Reverse CCG TAA GCA GGA AAT CCA TAG T

TNF-α Forward GCA TGA TCC GAG ATG TGG AA

Reverse GGC TGA CTT TCT CCT GGT ATG

IL-6 Forward CCG TTT CTA CCT GGA GTT TGT

Reverse GTT TGC CGA GTA GAC CTC ATA G

SOD Forward GGT CCA CCT CGA ACT ACT TTA TG

Reverse GGT GAT CAG GAA CAT GGA ATC T

CAT Forward CTC AGG TGC GGA CAT TCT ATA C

Reverse GAC TCC ATC CAG CGA TGA TTA C

GSH-Px Forward CAG TTC GGA CAT CAG GAG AAT G

Reverse AGC CAT CAC CAA GCC AAT AC 

GAPDH Forward CAA GTT CAA CGG CAC AGT CAA GG

Reverse ACA TAC TCA GCA CCA GCA TCA CC

LBP: lipopolysaccharide binding protein; TLR4: toll-like receptor 4; NF-κB: nuclear 
factor kappa-light-chain-enhancer of activated B cells; TNF-α: tumor necrosis factor 
alpha; IL-6: interleukin 6; SOD: superoxide dismutase; CAT: catalase; GSH-Px: 
glutathione peroxidase; GAPDH: glyceraldehyde-3-phosphate dehydrogenase.

Table 2. Primer sequences for Real time RT-PCR

that UF has significant glucose reducing and antioxidant 
properties, as demonstrated by reductions in gluconeogenic 
enzyme levels and lipid peroxidation. In a previous study, we 
found that UF supplementation decreased hepatic lipid peroxide 
and activated antioxidant enzymes levels in high-fat fed mice 
[15], and it has also been reported the UF demonstrated potent 
anti-inflammatory activity in an ovalbumin-induced mouse 
model of allergic airway inflammation [16]. However, the anti- 
inflammatory and antioxidant properties of UF have not been 
investigated in the context of alcohol-induced liver damage. 
Therefore, we investigated the effect of UF on chronic alcohol- 
induced inflammation and on the antioxidant system in rats.

MATERIALS AND METHODS

Animals and diets
Twenty-four male Sprague-Dawley rats (4-week-old) were 

purchased from Orient Bio Inc. (Seoul, Korea). After a one week 
adaptation period, animals were randomly divided into a normal 
control group (NC), an alcohol control group (Al), or a UF (0.05 
g/L in diet, Sigma, St. Louis, MO, USA) supplemented with 
alcohol diet group (Al-UF). Animals were placed on these diets 
for 8 weeks, and were individually housed in stainless-steel 
cages in an air-conditioned environment at 20 ± 2°C, and 
relative humidity 50 ± 5% under a 12-h light. The compositions 
of diets are shown in Table 1. The rats in the two alcohol groups 
were given a liquid alcohol diet (36% of energy) in which 
ethanol was introduced progressively. Specifically, animals were 
provided with 3% ethanol for the first 2 days (21% of energy), 
4% for the next 2 days (28% of energy) and 5% (36% of energy) 
thereafter [17]. Normal control rats received an isocaloric liquid 
diet containing dextrin-maltose instead of ethanol. The rats in 
the Al and Al-UF groups received food ad libitum, whereas NC 
group received the same amount of diet that the alcohol control 
rats consumed the previous day. The study was approved by 
the Sunchon National University Institutional Animal Care and 

Use Committee (SCNU-IACUC-2012-7). 
At the end of the 8-week experimental period, animals were 

anesthetized with CO2 gas after a 12-h fast. Blood was then 
drawn from inferior vena cava into tubes, and serum was 
obtained by centrifuging the blood at 900 ×g for 15 min at 
4°C. The organs were then removed, rinsed with physiological 
saline, and immediately weighed. Serum and organ samples 
were stored at -70°C until required for analysis.

Serum cytokines levels
Serum cytokines levels were measured using a multiplex 

detection kit (M60-009RDPD, Bio-Rad, Hercules, CA, USA). Capture 
antibodies directed against the cytokines, TNF-α, IL-6, interleukin 
10 (IL-10), interleukin 1β (IL-1β) and interferon γ (IFNγ), were 
covalently coupled to beads, and then reacted with serum. After 
washing several times to remove unbound protein, a biotinylated 
detection antibody was added to create a sandwich complex. 
The final detection complex was formed by adding streptavidin- 
phycoerythrin conjugate. Phycoerythrin served as a fluorescent 
indicator or reporter. All samples were assayed in duplicate and 
analyzed using a Luminex 200 Labmap system (Luminex, Austin, 
TX, USA). Data analysis was performed using Bio-Plex Manager 
software version 4.1.1 (Bio-Rad, Hercules, CA, USA).

Genes expression of inflammation and antioxidant enzymes
Liver was homogenized in Trizol reagent (Invitrogen Life 

Technologies, Grand Island, NY, USA), and total RNA was then 
isolated according to the manufacturer’s instructions. DNase 
was used to remove DNA contamination, and the RNA was then 
re-precipitated in ethanol to ensure the absence of phenol 
contamination. For quality control, RNA purity and integrity 
were evaluated using an Agilent 2100 Bioanalyzer (Agilent 
Technologies, Palo Alto, USA). Total RNA (1 μg) was reverse- 
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Fig. 2. Effects of umbelliferone on serum TNF-α (A), IL-6 (B), IL-10 (C), IFNγ and IL-1β (D) levels in chronic alcohol-fed rats. Values are expressed as the means ± SE. 
Values are significantly different between groups according to Student’s t-test. * P < 0.05, ** P < 0.01 NC : Al, ## P < 0.01 Al : Al-UF. 

transcribed into cDNA using a QuantiTect® reverse transcription 
kit (Qiagen, Hilden, Germany), and then mRNA expressions were 
quantified by real-time quantitative PCR using a SYBR green 
PCR kit (Qiagen, Hilden, Germany) and the CFX96TM real-time 
system (Bio-Rad, Hercules, CA, UAS). The sequences of the 
primers used are shown in Table 2. Cycle thresholds were 
determined using SYBR green emission intensities during the 
exponential phase. Fold changes were determined using the 
2-△△Ct method [18]. GAPDH was used as the internal control. 

Antioxidant enzyme activities 
Superoxide dismutase (SOD) activity was measured spectro-

photometrically using a method based on the inhibition of 
superoxide-mediated reduction [19]. One unit was defined to 
be the amount of enzyme that inhibited the oxidation of 
pyrogallol by 50%. Catalase (CAT) activity was measured by 
monitoring the disappearance of hydrogen peroxide spectro-
photometrically at 240 nm for 5 min, as previously described 
[19]. Glutathione peroxidase (GSH-Px) activity was also measured 
spectrophotometrically using a reaction mixture containing 1 
mM glutathione, 0.2 mM NADPH and 0.24 units of glutathione 
reductase in 0.1 M Tris-HCl (pH 7.2) buffer. The reaction was 
initiated by adding 0.25 mM H2O2 and absorbance was measured 
at 340 nm for 5 min [19]. Glutathione-S-transferase (GST) activity 
was evaluated, as described by Habig et al. [20] using 1-chloro- 
2,4-dinitrobenzen (CDNB) as substrate. For analysis, the absor-
bances were measured at 340 nm in 0.1 M potassium phosphate 
buffer (pH 6.5) containing 60 mM CDNB, and 10 mM GSH.

Levels of GSH, H2O2, and lipid peroxide
GSH level was measured as previously described by Ellman 

[21]. Mitochondrial hydrogen peroxide (H2O2) levels in liver were 
measured using Wolff’s method [22], and results are expressed 
as micromoles of H2O2 per milligram of mitochondrial protein. 
Malondialdehyde (MDA) concentration in the liver (a marker of 
lipid peroxidation) was measured as described previously [19].

Hepatic histology 
Hepatic tissue was removed from each rat and connective 

tissues were removed. Samples were then fixed in 10% (v/v) 
paraformaldehyde/PBS, embedded in paraffin, and sectioned at 
3-5 μm, and stained with Masson’s trichrome to visualize collagen 
fibers in connective tissues. Sections were viewed under a 
microscope at 200×.

Statistical analysis
All results are presented as means ± SE. The analysis was 

performed using the student’s t-test in SPSS (Chicago, IL). 
Statistical significance was accepted for P values of < 0.05.

RESULTS

Effects on serum cytokines levels
Chronic alcohol intake induced significant increases in serum 

TNF-α and IL-6 levels and decreased IL-10 level; however, these 
changes were prevented by UF supplementation. IL-1β and IFN
γ levels did not differ between groups (Fig. 2). 

Effects on the expressions of inflammatory genes 
The mRNA expressions of LBP, TLR4, and NF-κB in the Al 

group were higher than in the NC group, but these changes 
were attenuated by UF supplementation. TNF-α and IL-6 mRNA 
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Fig. 3. Effects of umbelliferone on hepatic inflammatory genes expression (A) and Masson’s trichrome stain (B) in chronic alcohol-fed rats. Values are expressed as the 
means ± SE. Values are significantly different between groups according to Student’s t-test. * P < 0.05, *** P < 0.001 NC : Al, # P < 0.05, ### P < 0.001 Al : Al-UF. Relative mRNA expression 
of each gene was normalized to the GAPDH and compared with NC level. White arrows indicate collagen deposition (200× magnification).
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Fig. 4. Effects of umbelliferone on hepatic antioxidant enzyme genes expression in chronic alcohol-fed rats. Values are expressed as the means ± SE. Values are significantly 
different between groups according to Student’s t-test. * P < 0.05, ** P < 0.01, *** P < 0.001 NC : Al, # P < 0.05, ## P < 0.01 Al : Al-UF. Relative mRNA expression of each gene was normalized 
to the GAPDH and compared with NC level.

NC Al Al-UF

SOD (unit/mg protein)   6.31 ± 0.23   4.88 ± 0.31**   6.40 ± 0.26##

CAT (μmol/min/mg protein)   8.44 ± 0.51   4.48 ± 0.27**   7.12 ± 1.10##

GSH-Px (nmol/min/mg protein)   8.00 ± 0.23   6.53 ± 0.14***   6.67 ± 0.47

GST (μmol/min/mg protein) 140.87 ± 6.14  98.10 ± 2.69*** 110.75 ± 10.77

GSH (nmol/g)   8.66 ± 0.10   7.98 ± 0.14**   8.81 ± 0.18##

MDA (nmol/g)  20.06 ± 0.36  25.10 ± 0.96**  19.57 ± 0.86##

mitoH2O2 (μmol/mg protein) 317.82 ± 30.99 465.59 ± 21.50** 312.25 ± 17.76###

Values are mean ± SE.
Values are significantly different between groups according to Student’s t-test. ** P < 0.01, *** P < 0.001 NC : Al. ## P < 0.01, ### P < 0.001 Al : Al-UF.
SOD: superoxide dismutase, CAT: catalase, GSH-Px: glutathione peroxidase, GST: glutathione-S-transferase GSH: glutathione, MDA: malondialdehyde.

Table 3. Effects of umbelliferone on hepatic antioxidant defense system in chronic alcohol-fed rats

expressions were up-regulated in the Al group as compared 
with the NC group; however, UF supplementation inhibited 
these up-regulations (Fig. 3A). 

Effects on hepatic histology 
Liver sections in the Al group revealed increased deposition 

of collagen fibers around congested central vein, indicating 
alcohol-induced fibrosis; however, collagen fiber deposition was 

less severe in the Al-UF group (Fig. 3B).

Effects on the genes expression and activities of antioxidant enzymes
The mRNA expressions of SOD, CAT, and GSH-Px were 

significantly down-regulated in the Al group as compared with 
the NC group, but UF up-regulated SOD and CAT mRNA levels 
compared to the Al group (Fig. 4). The activities of SOD, CAT, 
GSH-Px, and GST were also significantly lower in the Al group 
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than in the NC group. However, SOD and CAT activities were 
significantly elevated by UF supplementation (Table 3). 

Effects on levels of GSH, H2O2, and lipid peroxide 
H2O2 levels were significantly lower in the Al-UF group than 

in the Al group, in which levels were similar to those in the 
NC group. Hepatic MDA levels in the Al group were 25% higher 
than in the NC group, whereas GSH levels were by 8% lower 
in the Al group. However, UF supplementation attenuated these 
changes (Table 3). 

DISCUSSION

UF is a coumarin derivative with antioxidant and anti-inflam-
matory effects [23,24]. Mohamed et al. [25] found that UF 
ameliorated CCl4-induced oxidative stress by activating nuclear 
factor erythroid 2-related factor 2-mediated heme oxygenase-1 
in rats. However, anti-inflammatory and antioxidant properties 
of UF have not been previously investigated in the context of 
alcohol-induced liver damage. The current study shows that LBP 
and TLR4 mRNA levels were significantly elevated in the liver 
of chronic alcohol-fed rats, but that these changes were 
attenuated by UF supplementation. LPS is a major factor in the 
pathogenesis of ALD and an inducer inflammation [6]. The 
recognition of this endotoxin is mainly initiated by LBP, a soluble 
serum lipid transfer protein synthesized by the liver, whose 
function is to extract LPS monomers from aggregated endotoxin 
structures for subsequent delivery to membrane-bound or 
soluble CD14 [26]. Thus, the hepatic expression of the LBP gene 
reflects LPS influx into liver. Furthermore, the activation of TLR4 
by LBP leads to the rapid activation of NF-κB, and thus, to the 
production of several inflammation mediators, such as, TNF-α 
and IL-6 [27]. In the present study, NF-κB mRNA levels were 
reduced by UF, which indicates a reduction in inflammatory 
response, as was confirmed by significant decreases in hepatic 
expression of TNF-α mRNA.

Pro-inflammatory cytokines, such as, TNF-α, have recently 
been shown to play major roles in pathogenesis of liver disease, 
and their serum levels have been shown to be enhanced in 
ALD patients and in animal models of alcohol-induced liver 
damage [5]. TNF-α has been suggested to mediate the early 
stage of fatty liver disease and transition to more advanced 
disease [28]. Pro-inflammatory cytokines (IL-1β, TNF-α, IL-6 or 
IFNγ) and anti-inflammatory cytokines (IL-10) are produced in 
response to LPS [29,30]. In the present study, we also found 
that UF supplementation decreased serum TNF-α and IL-6 levels, 
but increased IL-10 levels in chronic alcohol-fed rats. IL-10 is 
one of the most important anti-inflammatory cytokines and has 
been associated with the amelioration of liver inflammation in 
different models [31]. In addition, IL-10 controls the productions 
of other cytokines, such as, IL-6 and TNF-α, decreases T-cell 
activation [32,33], and exerts hepatic protective effects against 
proliferation and fibrosis [34]. On the other hand, elevated 
hepatic and serum levels of IL-6 have been associated with the 
pathogenesis of alcoholic liver injury in animal models and ALD 
patients, in whom serum IL-6 levels were found to be positively 
correlated with disease severity [27,35]. In the present study, 
these augmenting effects of UF on the anti-inflammatory 

cytokine production and pro-inflammatory cytokine suppression 
strongly enhanced its anti-inflammatory effect in chronic 
alcohol-fed rats. Thus, our findings suggest UF could protect 
against alcohol-induced liver fibrosis by suppressing alcohol- 
induced TLR4-mediated hepatic fibrosis.

Excessive chronic exposure to alcohol usually reduces antioxi-
dant defenses in hepatic tissue and blood [36], and thus, 
maintenance of the antioxidant system is essential in relation 
to the prevention of ALD [37]. Our results show that chronic 
alcohol feeding decreased the hepatic genes expression and 
activities of antioxidant enzymes (SOD, CAT and GSH-Px) and 
GSH levels. Previous studies have shown diminished SOD levels 
are associated with the risk of cell injury [38]. SOD may play 
an important role in protecting cells and tissues against the 
toxic effects of superoxide radicals [5]. CAT, a heme protein 
enzyme, has been reported to remove H2O2 [39], and thus, 
reductions in CAT activity might reflect reduced production 
and/or its inhibition as a result of the increased production of 
free radicals [40]. We found that, UF significantly increased the 
activities and mRNA levels of SOD and CAT, but not of GST 
and GSH-Px, as compared with the Al group, and that this was 
associated with reduced mitochondrial H2O2 and MDA levels. 
MDA is a secondary metabolite produced by lipid peroxidation 
in cell membranes, and the amount of MDA is used as an 
indicator of lipid peroxidation [41]. Interestingly, in the present 
study, we found that hepatic MDA levels were lower in the 
UF-supplemented alcoholic rats, which suggests the protection 
afforded by UF against alcohol-induced liver injury via 
enhancement of antioxidant defense system. In our previous 
study, UF supplementation was found to decrease serum ALT 
and γGTP activities effectively and to suppress body weight loss 
by alcohol intake without changing food intake or liver weight 
in chronic alcohol-fed rats [42]. 

In conclusion, the results of the present study indicate that 
UF protected against alcohol-induced liver damage by inhibiting 
the TLR4 signaling pathway and improving the antioxidant 
defense system. Therefore, we suggest UF be viewed as a 
promising therapeutic strategy for the treatment of alcoholic 
liver damage.
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