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BACKGROUND/OBJECTIVES: The aim of this study was to develop Korean food image detection and recognition model for 
use in mobile devices for accurate estimation of dietary intake.
MATERIALS/METHODS: We collected food images by taking pictures or by searching web images and built an image dataset 
for use in training a complex recognition model for Korean food. Augmentation techniques were performed in order to increase 
the dataset size. The dataset for training contained more than 92,000 images categorized into 23 groups of Korean food. 
All images were down-sampled to a fixed resolution of 150 × 150 and then randomly divided into training and testing groups 
at a ratio of 3:1, resulting in 69,000 training images and 23,000 test images. We used a Deep Convolutional Neural Network 
(DCNN) for the complex recognition model and compared the results with those of other networks: AlexNet, GoogLeNet, Very 
Deep Convolutional Neural Network, VGG and ResNet, for large-scale image recognition.
RESULTS: Our complex food recognition model, K-foodNet, had higher test accuracy (91.3%) and faster recognition time (0.4 
ms) than those of the other networks.
CONCLUSION: The results showed that K-foodNet achieved better performance in detecting and recognizing Korean food compared 
to other state-of-the-art models.
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INTRODUCTION*

Nutrition surveys have been widely used to assess food and 
nutrient intake or dietary patterns of a specific target population 
[1]. Accurate methods to assess food or nutrient intake are 
necessary to manage daily personal dietary intake and to 
conduct academic nutritional research. Commonly used dietary 
assessment methods are 24 h recall, food frequency question-
naire (FFQ), and food records. Dietary assessments were 
traditionally completed using Pen-and-Paper interviewing (PAPI) 
and Computer-assisted Personal Interviewing (CAPI), which are 
heavily dependent on memory and cognition of the subject 
[1]. In addition, people may underreport their intake due to 
the recoding burden [2]. Table 1 is a summary of the features 
of representative nutrition survey methods. 

Recently, a self-report method using a mobile device (e.g., 
smartphone) has been extensively used to assess dietary 
intakes. A mobile device camera is used to record meals before 
and after eating to provide a visual food record [3]. However, 

major concerns of this approach are associated with food 
recognition and intake volume (weight) estimation [4,5]. However, 
there are assessment tools available to help people identify their 
dietary intake. The Wellnavi is a dietary evaluation method 
based on a portable personal digital assistant device with a 
phone card and a camera [6,7]. The technology Assisted Dietary 
Assessment (TADA) image analysis tool is useful for identifi-
cation and quantification of food intake in which images taken 
before and after food consumption are used to calculate the 
amount and type of food consumed [8]. The Remote Food 
Photography Method (RFPM) uses a smartphone to capture 
food images before and after consumption, and sends images 
to a server to provide an estimate of food intake [9]. A multi- 
sensor device, the eButton, worn on the chest uses a camera 
to manually capture all relevant images in front of the subjects 
[10]. Many of these tools are being improved and are in use 
in the food intake research field [11]. However, the tools have 
difficulty recognizing food and estimating the amount of food 
accurately [12].
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Method Pros Cons

PAPI (Pen and paper interviewing) Low cost & short time Consumed lots of time and manpower to recoding research data

CAPI (Computer-assisted personal 
interviewing)

Rapid analysis of nutrient intake Computer, PDA, etc. need tools
Program development cost is high

Mobile device + Dietitian Less burden of recall Food photo → Dietitian analyzes and feedback
Takes a lot of times to analyze nutrient intake

Mobile device using photographs Real-time analysis of nutrients in food intake and 
feedback available

Metadata required for accurate nutritional assessment
Image recognition algorithm and system need

Table 1. Features of representative nutrition survey methods

Fig. 1. Sample images of the 23 Korean food groups images unsed in the food recognition dataset

Currently, in Korea, PAPI or CAPI-based nutrition surveys have 
been performed, but there is a growing demand for mobile 
device-based dietary assessment tools. However, Asian foods 
including Korean foods, include a greater variety of cooking 
methods and a higher number of ingredients than those in 
Western foods [13]. Furthermore, some similar Korean foods 
may look different while some entirely different Korean foods 
look very similar, which makes the identification of food items 
from images difficult [14]. 

Most dietary assessment methods using mobile devices have 
been used by dietitians to estimate intakes using food 
photographs taken before and after the meal [15-17]. Many 
approaches to improving dietary intake amount estimation 
have been proposed [18-20]. The vast majority of those 
techniques rely on hand-engineered features and traditional 
signal processing methods. For instance, DietCam [21] uses 
fusion of a nearest-neighbor based best match search and the 
SIFT-based Bag of Visual Words (BoW) classification methods 
to estimate daily food intake. Another food recognition system 
aimed to estimate the calorie and nutrition levels of foods [22]. 
The authors used segmented food item regions in order to 
increase the accuracy of their recognition system: a system that 
recognized foods based on information sources including the 
SURF-based Bag of Features and a color histogram extracted 
from the segmented food item regions. In addition, artificial 
Intelligence (AI)-based algorithms have been used to detect 
food items from images obtained from a wearable device [23]. 
For instance, the Deep Convolutional Neural Network (DCNN), 
a state-of-the-art technology, has been reported to have 

reliable results even on large and diverse image datasets with 
non-uniform image backgrounds [24]. The DCNN to recognize 
images and it provided accurate detection of food items [24]. 

The purpose of this study was to evaluate the applicability 
of food recognition model using DCNN in Korean food items. 
We undertook automatic Korean food classification using a new 
DCNN model that recognizes given images of Korean dishes 
and compared our results using various classification tasks with 
those from other popular models.

MATERIALS AND METHODS

Building a dataset for Korean food recognition
A localized image dataset is required to obtain accurate food 

item recognition results since foods vary by region [14]. To the 
best of our knowledge, there is no publicly available image 
dataset for Korean food item recognition. Therefore, we collected 
more than 4,000 food images by taking pictures of dishes in 
restaurants as well as by searching the Internet for web-based 
images. Sample images from the collected dataset are shown 
in Fig. 1. In order to build a dataset suitable for training the 
complex recognition model for Korean food images, we 
established 23 food groups based on the frequently consumed 
food list of the Korean National Health and Nutrition Exami-
nation Survey; the selected food class names are provided in 
Table 2. 

Since all images were collected from various sources, their 
format, resolution, and quality were different. Moreover, even 
though the number of collected images was more than 4,000, 
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Number Class name Number Class name

1 Kimchi 13 Grilled pork belly

2 White kimchi 14 Stir-fried pork

3 Radish kimchi 15 Fried chicken with sweet and sour source

4 Kimchi stew 16 Seaweed soup

5 Yeolmu-kimchi 17 Stir-fried anchovies

6 Boiled Rice 18 Soybean paste soup

7 Boiled Rice with multi-grains 19 Ramen

8 Omelet with rice 20 Bean sprouts soup

9 Fried egg 21 Dried radish slices seasoned with soy sauce and spices

10 Bibimpab 22 Seasoned spinach

11 Gimbap 23 Seasoned bean sprouts

12 Grilled seaweed

Table 2. Names of the twenty-three food groups included in the dataset

Fig. 2. Examples of artificially generated images used in the for food recognition dataset. Left: a single input image used as the basis for the generation of new images. 
Right: Artificially generated images obatined by using data augmentation and image processing techniques.

it was insufficient for use in training high quality deep-learning 
models. Therefore, to increase the dataset size, data augmen-
tation and image processing techniques were performed on 
more than 4,000 collected images. Data augmentation methods 
were used to generate new images from a single image whereas 
the image processing techniques were used for improving the 
quality and reducing the similarity of the newly generated 
images. During data generation, random contrast, brightness, 
sharpness and color changes were added to each of the 
augmented images in order to decrease image similarity. As 
a result, the data size substantially increased. Examples of the 
artificially generated images are presented in Fig. 2. The final 
dataset contained 92,000 images. After the image collection and 
image processing were finished, the dataset was prepared for 
use in the learning process. All images were down-sampled to 
a fixed resolution of 150 × 150 and then randomly divided into 
training and testing groups at a ratio of 3:1, resulting in 69,000 
training and 23,000 test images.

K-food network Structure
A Convolutional Neural Network (CNN) usually consists of 

convolutional layers and pooling layers [13]. Notations w and 
h represent width and height, ch is the RGB color channels of 
the input image I (w, h, ch). the convolutional layer and 
max-pooling are denoted as C and MP, the convolutional layer 
is C (k, cs, o) and takes kernel size (k), convolutional strides (cs), 

and the number of output feature maps is (o) as arguments. 
The pooling layer MP (r, ps) considers the side length of the 
pooling receptive field (r) and the pooling strides (ps). In 
addition, FC (c) and F (class) correspond to the fully-connected 
layer and the output layers, respectively, where (n) is the number 
of nodes and (c) is one of the food categories. Notation D stands 
for dropout. All convolutional layers use ReLU as an activation 
function. The DCNN model (M) is thus represented by:

M ⇒ I (150, 150, 3) → C (9, 2, 32) → C (7, 2, 64) → [C (1, 1, 
128), C (3, 2, 128), C (5, 2, 128)] → concat → [C (1, 1, 
128), C (3, 2, 128), C (5, 2, 128)] → concat → MP (2, 2) 
→ D → C (3, 2, 256) → MP (2, 2) → C (3, 2, 512) → MP 
(2, 2) → FC (2048) → D → FC (2048) → F (class).

The Softmax function (normalized exponential function) is 
defined as:

Where, Fj is the features of the output layer. The final 
prediction (Prediction) is gained from the maximum value of 
S(F)
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Fig. 3. Schematic architecture of the K-foodNet model that incorporated deep 
convolutional neural networks. 

The schematic architecture of the DCNN used in this study 
is depicted in Fig. 3. In order to achieve improved performance 
we implemented a wider and deeper network. The initial layer 
receives 150 × 150 × 3 tensors (RGB values for a 150 × 150 × 3 
image) as an input and produces 32 feature maps by convolving 
with the kernel size 9 × 9. A 7 × 7 kernel is used to convolve 

the previous output, resulting in 64 feature maps.
Subsequently, every map will be simultaneously convolved 

with 1 × 1, 3 × 3 and 5 × 5 convolutional kernels, in which, there 
are three separate layers. Each of these layers will produce 128 
feature maps. The output tensors will be concatenated before 
feeding the next convolution layers with the same kernels. The 
produced output tensors are down-sampled using a max pooling 
operation after the second concatenation. The first dropout 
layer is used after max pooling to reduce overfitting. 

Convolutional-pooling layers using 3 × 3 kernel and produ-
cing 256 and 512 feature maps are followed by the max polling 
layers. After the last pooling layer, the fully connected (FC) layers 
are activated with 2048 nodes as well as the dropout layer 
between the FC layers. All convolutional and FC layers use ReLU 
activation functions. Finally, there are 23 SoftMax neurons in 
the output layer, which corresponds to the 23 groups of food.

Experimental settings
A high-end server with 64GB of RAM and equipped with two 

Nvidia GeForce GTX 1080 Ti GPUs was used to do the training. 
The training was carried out by using TensorFlow machine 
learning framework and a batch size of 64 was established; the 
batches were randomly shuffled during the training process. 
In addition, two training schemas (20 and 40 epochs) were 
implemented to determine the different behaviors of the model. 
Dropout is used to prevent overfitting in neural networks [13]. 
The dropout layer was used twice within the model to reduce 
overfitting and both dropout layers had a 0.4 equal rate during 
training. We used a placeholder to dynamically control the 
dropout rate when simultaneous training and inference. The 
dropout rate was set to turn off the function to make predic-
tions and inferences.

During the training, TensorFlow’s AdamOptimizer() [25] function 
was used as the optimizer while the sparse_softmax_cross_ 
entropy() [26] function was used as a loss function. In order to 
train the DCNN, choosing suitable hyperparameters is essential 
among those, the leaning rate (η) is the most critical as it 
significantly affects the training performance. However, the use 
of a fixed learning rate for the entire training process is not 
an optimal solution as it does consider the dynamical nature 
of the training behavior of the model. Therefore, the learning 
rate was dynamically updated throughout the training process. 
The function which updated that rate was the exponential 
function of cost η = η0 × exp (loss), where loss was the value 
of the sparse_softmax_cross_entropy() obtained during training 
and η0 was equal to 1e-4. Such a schedule for updating the 
learning rate strongly is related to the training performance. 

The initial speed of the training was high due to the high 
learning rate, but training loss was also large; subsequently, the 
learning rate decreased automatically to avoid overshooting the 
best result.

RESULTS

Accuracies of K-foodNet model
The graphs in Fig. 4 reveal both training and testing 

accuracies as well as the loss functions of the model with 20 
epochs. The loss function decreased rapidly and maintained a 
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(A) Model accuracy (B) Model loss

Fig. 4. Learning results of the proposed K-foodNet model when using 20 epochs. (A) Accuracy functions of the model during training and testing. (B) Loss functions of the 
model during training and testing.

(A) Model accuracy (B) Model loss

Fig. 5. Learning results of the proposed K-foodNet model when using 40 epochs. (A) Accuracy functions of the model during training and testing. (B) Loss functions of the 
model during training and testing.

Model name Test accuracy Prediction time

AlexNet 71.6% 0.46 ms

GoogLeNet 80.5% 0.8 ms

VGG-19 79.22% 0.57 ms

ResNet-18 81.6% 1.2 ms

K-foodNet 91.3% 0.42 ms

Number of food categories = 23
Number of epochs = 40
Size of input image = 150 × 150
Number of training images = 69,000
Number of testing images = 23,000

Table 3. Comparisons of test accuracies and prediction times of the K-foodNet
model and existing state-of-the-art models

steady index around zero. The test accuracy plateaued at 
approximately 88% within just 20 epochs. 

Based on the accuracy and loss curves in the Fig. 5, it is clear 
that the performance of the model could be further improved 
by increasing the number of training epochs. The figure shows 
that the gap between test and training functions is not large 
and that both curves increase over subsequent epochs, during 
which loss rapidly decreases before maintaining a stable rate 
in both training and test cases. The use of 40 epochs resulted 
in a 90% accuracy in the test, which shows the model could 
be trained to achieve higher accuracy. 

In order to evaluate the performance of the proposed model, 
we trained the model 20 epochs. Fig. 4 shows that after the 
training was complete, training and testing accuracy had not 
stabilized. In other words, there was no overfitting, indicating 
that the model is still learning. In further experiments, we trained 
the same network and dataset using the same configurations; 
however, for that additional training case, we have assigned 
40 epochs to determine whether the model still could be 
improved. Interestingly, as shown Fig. 5, after 40 epochs the 
model is still improving without overfitting; moreover, the 

model performance is sufficiently promising for application to 
an artificially extended dataset.

Comparisons of test accuracies and prediction times of the 
K-foodNet model and existing state-of-the-art models

In order to provide a fair benchmark to our K-foodNet, we 
trained other models with the same configurations and the 
same number of epochs (40 epochs) to compare with the results 
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Fig. 6. Performance accuracy of the K-foodNet model compared to a variety 
of existing state-of-the-art models.

Fig. 7. Average test accuracy for each of the 23 Korean food groups. 1 Kimchi 
2 White kimchi 3 Radish kimchi 4 Kimchi stew 5 Yeolmu-kimchi 6 Boiled Rice 7 Boiled 
rice with multi grains 8 Omelet with rice 9 Fried egg 10 Bibimbap 11 Gimbap 12 Grilled 
seaweed 13 Grilled pork belly 14 Stir-fried pork 15 Fried chicken with sweet and sour 
source 16 Seaweed soup 17 Stir-fried anchovies 18 Soybean paste soup 19 Ramen 20 
Bean sprouts soup 21 Dried radish slices seasoned with soy sauce and spices 22 
Seasoned spinach 23 Seasoned bean sprouts.

of our method. A summary of the comparisons is provided in 
the Table 3. Among the tested networks, our model was the 
fastest in term of prediction. In addition, the other models were 
deeper than our network but suffered from overfitting. Finally, 
the overall test accuracy of our method was higher than that 
of the other models.

The Fig. 6 illustrates the performance accuracy between 
K-foodNet and existing state-of-the-art models. It is obvious in 
Fig. 6 that our method consistently outperformed all of the 
current state-of-the-art networks when examining our new 
datasets.

Average test accuracy of the 23 Korean food groups
Fig. 7 illustrates the results of the average testing accuracy 

for each of the 23 individual food groups. Among those groups, 
the model’s classification accuracies for images of white Kimchi, 
boiled rice, and Gimbap were more than 95%. However, the 
classification accuracies for stir-fried pork and radish Kimchi 
were approximately 87%, indication that these latter two food 
groups were more difficult to recognize.

DISCUSSION

Food intake assessment has important roles in chronic 
diseases management and the provision of public healthcare 
services. Recently, there has been a growing demand for 
nutrition management via mobile device applications. Mobile 
phones have been considered the most effective tool for 
gathering and delivering food information [21]. Thus far, many 
mobile device tools and programs have been developed and 
used to estimate food intake. For example, DietCam, an 
automatic food calorie measurement system, was developed for 
use in obesity nutrition management [12]. DietCam consists of 
three parts: image management, food volume estimation, and 
food classification. It uses optical character recognition (OCR) 
techniques and a scale-invariant feature transform (SIFT). A 
feature-based food classification approach and a multi-view 
method to calculate the food calorie and the volumes has also 
been described [21]. In addition, a wearables device, an automatic 
ingestion monitor, and a neural network classifier have been 
used to detect and monitor food intake of participants at a 
resolution of 30 s [27]. NutriNet, which is based on the 
recognition of food images by using DCNN, was developed as 
a dietary assessment applicaion for Parkinson’s patients [14]. 
DeepFood is a food image recognition system that uses deep- 
learning algorithms to evaluate dietary intake [28]. These 
provious studies and the associated investigative tools were 
undertaken to accurately recognize food images and volumes 
by applying various algorithms and deep-learning methods, but 
prior to this study, no such studies have been undertaken in 
Korea.

A novel DCNN model based on real-time recognition of digital 
Korean food images was implemented in this study. The new 
dataset consisted of popular Korean food images and contained 
more than 4,000 original images in 23 food groups and the 
images illustrated mostly common dishes consumed in daily 
life in Korea. After expanding the dataset via data augmen-
tation, the acquired number of images was more than 92,000. 
We applied DCNN in the complex recognition model and 
compared the result with other large-scale image recognition 
networks: AlexNet, GoogLeNet, Very Deep Convolutional Neural 
Network, VGG and ResNet, for large-scale image recognition. 
Our study results showed K-foodNet achieved better performance 
in detecting and recognizing Korean food compared to other 
state-of-the-art models. 

To our best knowledge, there has never been a DCNN-based 
food recognition algorithm developed for Korean food. One of 
the challenges we faced was the unique characteristics of 
Korean foods [13]. Input images were different in terms of 
shape, texture, size and color as the Korean foods lack a typical 
or generalized layout. Korean foods are more complex than 
other types of food such as Indian or Italian food, and recog-
nition of images of Korean food is difficult because images of 
foods within the same food category can appear different. In 
general, Korean food may be cooked with different ingredients 
and using different cooking methods; thus, images of the same 
food item can look dissimilar. Moreover, the same food item 
can look different to the naked eye. In addition, image noise 
from various backgrounds and textures is an obstacle to 
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recognition as all images in the dataset were captured in a 
variety of places and environments, thereby including insuffi-
cient or different image brightness, strong reflection, distracting 
ornaments, etc. 

Our approach had several strengths when compared to the 
aforementioned image recognition approaches. First, we have 
designed a new model on the assumption that CNNs that can 
handle a large artificially extended dataset of food images. More 
images in our dataset were generated from a limited number 
of images by using data augmentation techniques; therefore, 
similarity was very high between images, which, in turn, can 
lead to strong overfitting during training. However, it is clear 
from the results that the model is stable and is capable of 
learning images without overfitting. Although the above 
mentioned approaches use classic off-the-shelf deep learning 
architectures, our novel solution produced better performance 
and robustness with respect to existing approaches. Further-
more, our model is able to accurately distinguish images with 
very complex textures, in other words, images that belong to 
the same food category can appear very different due to 
differences in texture. In spite of these challenges, our model 
achieved excellent results compared to other currently available 
models. Others have noted that in computer vision tasks, 
CNN-based models can outperform traditional methods and 
achieve higher accuracy when using deeper CNNs [14,29,30]. 
A model purposed by Lu [31], obtained an overall 90% accuracy 
using DCNNs and a small dataset with 5,822 images and 10 
food groups. Their model used five convolutional layers to 
recognize food images. Moreover, a DCNN-based model, FoodNet, 
was proposed by Pandey et al. [32]. In that model, the dish 
image recognition system used a large dataset (ETH Food-101) 
that include 101 food categories.

Although our model achieves high performance, its loss 
function is considered too noisy and not capable of a smooth 
reduction due to the use of similar augmented images. This 
problem requires future study to resolve. A possible solution 
to such a problem would be to use reduce the network depth 
and/or to remove very similar food images from the dataset. 

The limitations of this study are as follows. First, the limited 
number of high quality, specific food images. Second, although 
a wide range of food categories exists in Korean food, we only 
included 23 groups of Korean food. Third, there is no publicly 
available image dataset suitable for Korean food recognition 
in Korea. Importantly, the quality of images in a dataset has 
a pivotal role in training the DCNN, and obtaining high 
performance from deep models is still data-driven to some 
extent. Therefore, in order to improve the performance of the 
current model, high-quality images obtained under sufficient 
lighting conditions and from appropriate angles are needed. 
As well, the food should be presented in an appropriate, 
recognizable manner.

The next step in this research is to improve the DCNN 
algorithm’s food image recognition performance level and 
ensure that the recognition process uses high quality, appro-
priate images. Such improvements will produce a model that 
can assess dietary intake accurately and be applied to nutrition 
management programs in Korea.
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