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ABSTRACT

BACKGROUND/OBJECTIVES: Increased levels of uremic toxins and decreased antioxidant 
capacity have a significant impact on the progression of chronic kidney disease (CKD). 
However, it remains unclear whether they interact with each other to mediate the damage 
of kidney function. The purpose of this study was to investigate whether uremic toxins (i.e., 
homocysteine and indoxyl sulfate [IS]), as well as glutathione-dependent antioxidant enzyme 
activities are dependently or independently associated with kidney function during different 
stages of CKD patients.
SUBJECTS/METHODS: One hundred thirty-two patients diagnosed with CKD at stages 1 to 5 
participated in this cross-sectional study.
RESULTS: Patients who had reached an advanced CKD stage experienced an increase in 
plasma uremic toxin levels, along with decreased glutathione peroxidase (GSH-Px) activity. 
Plasma homocysteine, cysteine, and IS concentrations were all positively associated with 
each other, but negatively correlated to GSH-Px activity levels after adjusting for potential 
confounders in all CKD patients. Although plasma homocysteine, cysteine, IS, and GSH-
Px levels were significantly associated with kidney function, only plasma IS levels still had 
a significant association with kidney function after these parameters were simultaneously 
adjusted. In addition, plasma IS could interact with GSH-Px activity to be associated with 
kidney function.
CONCLUSIONS: IS plays a more dominant role than homocysteine and GSH-Px activity in 
relation to kidney function.
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INTRODUCTION

In patients diagnosed with chronic kidney disease (CKD), solutes are not excreted by the 
kidneys and therefore linger during circulation to cause negative biologic function, these 
solutes are called uremic toxins [1]. Uremic toxins are classified into smaller water-soluble 
molecules (< 500 Da) (i.e., urea, creatinine and phosphorous), middle molecules (≥ 500 Da) 
(i.e., advanced glycation end-products), and protein-bound molecules (i.e., homocysteine, 
indoxyl sulfate [IS] and p-cresol sulfate [PCS]) based upon their biochemical and physical 
properties [1,2]. Amongst the different types of uremic toxins, protein-bound uremic toxins 
have attracted much attention, as they have cytotoxic effects and are less efficiently removed 
during dialysis treatment [3].

One of the protein-bound uremic toxins, homocysteine, is a sulfur-containing amino acid 
biosynthesized from methionine, which can be metabolized through either remethylation 
or transsulfuration pathways. IS is another representative protein-bound uremic toxin 
which is produced from bacterial amino acids (i.e., tryptophan, tyrosine and phenylalanine) 
fermentation into indole in the large intestine mucosa, with the indole then circulated in 
the blood stream to the liver. Indole would then be hydroxylated and sulfated to IS in the 
liver and re-entered into the blood stream [4]. Plasma homocysteine and IS are removed 
during passage through the kidney, with their concentrations having been observed as 
gradually increasing during the progression of kidney dysfunction [2,5-8]. Elevated levels 
of homocysteine [9,10] and IS [11,12] have been shown to induce oxidative stress, which 
would accelerate the deterioration of kidney function, and therefore be associated with the 
risk of CKD [13-16]. Restoring the balance between oxidative stress and antioxidant defense 
capacity would aid in protecting the kidneys from further damage and potentially limit the 
progression of kidney dysfunction.

A glutathione (GSH)-dependent antioxidant system consisting of reduced GSH, oxidized 
glutathione (GSSG), and functionally dependent enzymes (i.e., GSH peroxidase [GSH-Px], 
GSH reductase and GSH S-transferase [GSH-St]), plays a fundamental role in the cellular 
defense against reactive free radicals and other oxidant species in the human body. Under 
normal conditions, GSH and GSH-Px are abundant in the kidney [17,18]. GSH status and 
its dependent antioxidant enzyme activities may be depleted to help cope with increased 
oxidative stress via kidney damage, or their synthesis could be reduced in keeping with the 
loss of kidney function. Previous studies have indicated that plasma or erythrocyte GSH 
concentration, GSH-Px, and/or GSH reductase activities decreased with loss of kidney 
function [19-21]. GSH and its dependent antioxidant enzyme activity, and the GSH/GSSG 
redox ratio have thus been considered as being more informative markers of oxidative stress 
and antioxidant capacity in CKD patients [22-24].

Although increased levels of homocysteine and IS, and decreased GSH-dependent 
antioxidant capacity have been shown to be associated with kidney function loss, it remains 
unclear whether they interact with each other to mediate the damage to kidney function. 
Therefore, we aimed to investigate whether homocysteine, IS, GSH, and its dependent 
antioxidant enzyme activities are dependently or independently associated with kidney 
function at different stages of CKD patients.
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SUBJECTS AND METHODS

Study design and sample size calculation
This was a cross-sectional study. A significant relationship between IS and estimated glomerular 
filtration rate (eGFR) levels (r = −0.7, P < 0.001) was observed in a previous study [6]. We then 
calculated the sample size based on the detection of a significant correlation coefficient of 0.35 
between IS and eGFR levels with a power of 90%, and a 2-sided test with an α of 0.05. A total of 
82 patients was required to match the calculation criteria. The final recruitment number reached 
a total of 132 CKD patients, which was greater than our original calculation.

Subjects
Patients were recruited from the outpatient clinic of the Division of Nephrology at Taichung 
Veterans General Hospital, Taiwan. Inclusion criteria required that the patients’ age be within 
the 20 to 80 year range, and the patients diagnosed with stage 1–5 CKD. Each patient’s CKD 
staging was confirmed by an experienced nephrologist. The 5 CKD stages were classified 
based upon the eGFR levels (stage 1: ≥ 90 mL/min/1.73 m2; stage 2: 60–89 mL/min/1.73 m2; 
stage 3a: 45–59 mL/min/1.73 m2; stage 3b: 30–44 mL/min/1.73 m2; stage 4: 15–29 mL/min/1.73 
m2; stage 5: < 15 mL/min/1.73 m2) [25]. Patients were excluded if they were either pregnant 
or lactating, had received kidney transplantation, or had a history of liver disease, cancer, 
or alcoholism. This study was approved by the Institutional Review Board (IRB) of Taichung 
Veterans General Hospital (IRB TCVGH No. SF15019A and No. CF17272A). Each patient 
signed an informed consent from prior to taking part in the study.

Data collection and biochemical measurements
Data regarding each subject’s age, sex, smoking and drinking habits were recorded. Each 
subject’s height and weight were measured and their body mass index (BMI, kg/m2) calculated. 
Systolic and diastolic blood pressures were measured after a resting period of at least 5 min.

Fasting blood samples were drawn on an appointed day. Blood specimens were collected in 
vacutainer tubes (Becton Dickinson, Rutherford, NJ, USA) either containing an anticoagulant 
or not, as is required when estimating a patient’s hematological and biochemical status. Serum 
albumin, glucose, creatinine, phosphorus, alanine, and aspartate aminotransferase (ALT and 
AST), along with blood urea nitrogen were all measured using an automated biochemical 
analyzer. Plasma homocysteine and cysteine concentrations, along with plasma IS levels were 
quantified by through high performance liquid chromatography using fluorescence detection, 
following the modified methods of Araki and Sako [26] and Cheng et al. [27], respectively. Plasma 
malondialdehyde (MDA) and oxidized low-density lipoprotein (ox-LDL) levels were assessed as 
indicators of oxidative stress. Plasma MDA concentration was measured along with thiobarbituric 
acid reactive substances at an excitation wavelength of 515 nm and an emission wavelength of 555 
nm using a fluorescence spectrophotometer [28]. The plasma ox-LDL level was measured using a 
commercial kit (Mercodia AB, Sylveniusgatan 8A, SE-754 50, Uppsala, Sweden). Trolox equivalent 
antioxidant capacity (TEAC) was analyzed according to the previous method [29]. Plasma GSH 
and GSSG concentrations, along with GSH-Px activities were determined using the respective 
commercial kits (Cayman Chemical Company, Ann Arbor, MI, USA).

Statistical analysis
All data analyses were performed using the SAS statistical software package (version 9.4; 
Statistical Analysis System Institute Inc., Cary, NC, USA). A Shapiro-Wilk test was performed to 
test normal distribution. Demographic characteristics and biochemical data were compared for 
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significance amongst groups using a one-way analysis of variance or the Kruskal-Wallis 1-way 
analysis of variance on ranks. The χ2 or Fisher’s exact tests were implemented for the analyses of 
categorical variables. Partial Spearman’s correlation analysis was used to assess the association 
of homocysteine, cysteine, and IS concentrations with levels of oxidative stress indicators and 
GSH-dependent antioxidant activity after adjusting for potential confounders. Multiple linear 
regression analyses with eGFR levels as the dependent variable, were used to examine the 
association of kidney function with homocysteine, cysteine, IS, oxidative stress indicators, and 
GSH-dependent antioxidant activity after adjusting for potential confounders. The value of P < 
0.05 was considered as being statistically significant.

RESULTS

Demographic characteristics and hematological measurements
A total of 132 CKD patients, with 21 at stage 1, 31 at stage 2, 31 at stage 3a, 20 at stage 3b, 16 at 
stage 4, and 13 at stage 5 were recruited for this study. As the number of patients were too few 
in both stages 4 and 5, and the CKD patients within these stages were determined as having 
similar characteristics, we then combined these 2 stages into one group. The mean and median 
age of all CKD patients was 57.6 years and 59 years, respectively, with a range of 20–78 years. 
There were no significant differences in the values of age, sex, height, weight, BMI, systolic and 
diastolic blood pressures, ALT, AST, albumin, or glucose among the groups (Table 1).

Uremic toxins, oxidative stress and antioxidant capacities
In order to illustrate the levels of homocysteine and IS, and GSH-dependent antioxidant 
capacity in different stages of CKD, the levels of uremic toxins and indicators of oxidative 
stress and GSH-dependent antioxidant activities during different stages of CKD patients were 
measured, with results list in Table 2. Patients at a more advanced CKD stage had stepwise 
increments of plasma uremic toxin levels, while GSH-Px activity tended to decrease stepwise 
across CKD stages. Stage 4-5 CKD patients apparently had the highest serum BUN and 
plasma IS concentrations among the 5 groups. On the other hand, the levels of MDA, ox-LDL, 
TEAC, GSH, GSSG, and GSH/GSSG ratio were similar among groups.
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Table 1. Demographic characteristics and hematological measurements in patients at different stages of chronic kidney disease
Characteristics Stage 1 (n = 21) Stage 2 (n = 31) Stage 3a (n = 31) Stage 3b (n = 20) Stage 4–5 (n = 29)
Age (yrs) 55.19 ± 14.75 56.48 ± 13.64 61.90 ± 11.20 58.10 ± 14.08 55.48 ± 12.45
Sex (male/female) 10/11 22/9 25/6 12/8 21/8
Height (cm) 162.37 ± 6.94 162.69 ± 9.95 164.72 ± 10.21 161.36 ± 5.73 164.09 ± 10.68
Weight (kg) 69.59 ± 13.98 66.10 ± 17.27 71.88 ± 13.38 67.12 ± 8.89 68.19 ± 11.90
BMI (kg/m2) 26.44 ± 5.30 24.77 ± 5.05 26.30 ± 3.08 25.74 ± 2.73 25.28 ± 3.58
SBP (mmHg) 134.48 ± 17.42 132.74 ± 15.98 137.84 ± 14.58 135.85 ± 12.06 134.72 ± 13.70
DBP (mmHg) 81.33 ± 12.69 76.68 ± 9.59 79.03 ± 11.29 76.25 ± 10.58 75.90 ± 12.01
eGFR (mL/min/1.73 m2) 106.81 ± 15.49a 72.52 ± 9.90a 51.92 ± 5.06b 36.85 ± 4.76b,c 16.82 ± 5.95c

ALT (U/L) 28.90 ± 19.49 25.80 ± 19.12 22.55 ± 11.13 22.06 ± 10.70 19.03 ± 9.05
AST (U/L) 26.37 ± 9.46 27.03 ± 21.86 23.10 ± 6.42 24.24 ± 10.32 22.69 ± 14.30
Albumin (mg/dL) 4.03 ± 0.70 4.22 ± 0.32 4.33 ± 0.25 4.22 ± 0.43 4.12 ± 0.35
Glucose (mg/dL) 106.28 ± 18.06 105.03 ± 25.05 112.66 ± 32.39 136.29 ± 60.50 108.12 ± 31.63
Current smoking habit 3 (14.29) 3 (9.68) 4 (12.90) 3 (15.00) 3 (10.34)
Current drinking habit 2 (9.52) 6 (19.35) 4 (12.90) 0 (0.00) 3 (10.34)
Values are means ± SD or number (%).
BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; ALT, alanine aminotransferase; 
AST, aspartate aminotransferase.
a,b,cValues in a row with different superscript letters are significantly different, P ≤ 0.05.



Correlation of uremic toxins with oxidative stress and GSH-dependent 
antioxidant capacities
We then performed partial Spearman’s correlation coefficient analyses to assess the 
association of homocysteine, cysteine, and IS levels with oxidative stress indicators and 
GSH-dependent antioxidant activity after adjusting for age, gender, BMI, albumin, smoking 
and drinking habits in each CKD stage and all CKD patients (Table 3). Plasma homocysteine, 
cysteine and IS concentrations were all observed to be associated with each other after 
adjusting for potential confounders in all CKD patients. These 2 uremic toxins, as well 
as cysteine, negatively correlated to GSH-Px activity levels in all CKD patients. Among 
homocysteine, cysteine and IS, only plasma homocysteine concentration was negatively 
associated with GSH-Px activity in CKD stages 2, 3a and 4–5.

The effects of uremic toxins, oxidative stress and GSH-dependent antioxidant capacity on 
renal function

In order to understand whether uremic toxins, oxidative stress or GSH-dependent 
antioxidant capacity had any influence on kidney function, multiple linear regression 
models, with the eGFR level as the dependent variable after adjusting for age, gender, 
BMI, albumin, smoking and drinking habits were performed, with the results shows in 
Table 4. We observed that the plasma levels of MDA, ox-LDL, TEAC, GSH, GSSG, and 
GSH/GSSG ratio had no association with kidney function in all CKD patients. However, 
plasma homocysteine, cysteine, and IS levels had a significantly negative association with 
kidney function; whereas GSH-Px activity had a significant association with eGFR levels. 
To investigate whether homocysteine, cysteine, IS, and GSH-Px activity are dependent 
or independent with one another when associated with kidney function, the levels of 
homocysteine or cysteine, IS and GSH-Px activities were then further simultaneously 
adjusted in multiple linear regression models (Table 4). Plasma IS levels were negatively 
associated with eGFR levels after adjusting for potential confounders, homocysteine, 
cysteine and GSH-Px activity. In addition, IS levels interacted with GSH-Px activity 
to be associated with kidney function. On the other hand, the association of plasma 
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Table 2. Plasma uremic toxins, indicators of oxidative stress and antioxidant capacities in patients at different stages of chronic kidney disease
Characteristics Stage 1 (n = 21) Stage 2 (n = 31) Stage 3a (n = 31) Stage 3b (n = 20) Stage 4–5 (n = 29) P for trend
Uremic toxins

Blood urea nitrogen (mg/dL) 13.57 ± 3.01c 15.26 ± 4.32c 20.77 ± 5.78b 26.35 ± 6.52b 53.17 ± 14.67a < 0.001
Creatinine (mg/dL) 0.74 ± 0.13c 1.06 ± 0.19c 1.43 ± 0.17b 1.81 ± 0.33a,b 4.09 ± 1.42a < 0.001
Phosphorus (mg/dL) 3.60 ± 0.44a,b 3.50 ± 0.48b 3.43 ± 0.40b 3.48 ± 0.47a,b 4.04 ± 0.69a 0.002
Homocysteine (mmol/L) 12.90 ± 5.97c 16.89 ± 9.82b,c 18.63 ± 7.36a,b 18.44 ± 7.15a,b 23.68 ± 11.67a < 0.001
Cysteine (mmol/L) 235.52 ± 63.10b 234.05 ± 43.97a,b 237.61 ± 41.04a,b 234.28 ± 40.15a,b 273.80 ± 66.39a 0.009
Indoxyl sulfate (mmol/L) 3.19 ± 1.66c 4.19 ± 2.59c 11.53 ± 5.21b 13.24 ± 6.93b 37.17 ± 18.21a < 0.001

Oxidative stress indicators
MDA (mmol/L) 0.73 ± 0.26 0.74 ± 0.21 0.76 ± 0.22 0.72 ± 0.20 0.72 ± 0.44 0.739
ox-LDL (U/L) 33.11 ± 16.50 29.78 ± 13.73 43.98 ± 31.14 42.96 ± 21.26 38.07 ± 21.95 0.113
GSH/GSSG ratio 0.16 ± 0.05 0.15 ± 0.04 0.16 ± 0.05 0.14 ± 0.03 0.14 ± 0.03 0.078

Antioxidant capacities
TEAC (mmol/L) 3,780.29 ± 362.40 3,713.25 ± 495.80 3,768.95 ± 382.98 3,929.99 ± 276.37 3,888.96 ± 339.50 0.069
GSH (mmol/L) 108.76 ± 32.00 99.38 ± 24.22 108.14 ± 40.93 96.09 ± 23.09 95.92 ± 26.75 0.166
GSSG (mmol/L) 672.70 ± 49.76 675.60 ± 53.75 676.17 ± 73.20 679.15 ± 70.75 671.29 ± 72.37 0.958
GSH-Px activity (nmol/mL/min) 154.03 ± 55.27a 165.55 ± 106.18a,b 136.63 ± 42.94a,b 145.58 ± 42.29a,b 110.48 ± 33.08b 0.004

Values are means ± SD.
MDA, malondialdehyde; ox-LDL, oxidized low density lipoprotein cholesterol; GSH, glutathione; GSSG, oxidized glutathione; TEAC, trolox equivalent antioxidant 
capacity; GSH-Px, glutathione peroxidase.
a,b,cValues in a row with different superscript letters are significantly different, P ≤ 0.05.
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Table 3. Partial Spearman’s correlation coefficients (rs) of homocysteine, cysteine, and IS with indicators of oxidative 
stress and glutathione-dependent antioxidant capacities in patients at different stages of chronic kidney disease1)

Parameters Homocysteine (mmol/L) Cysteine (mmol/L) IS (mmol/L)
Homocysteine (mmol/L)

All (n = 132) - 0.571*** 0.339***

Stage 1 (n = 21) - 0.456 −0.378
Stage 2 (n = 31) - 0.512** −0.028
Stage 3a (n = 31) - 0.456* 0.003
Stage 3b (n = 20) - 0.147 0.336
Stage 4–5 (n = 29) - 0.780*** −0.000

Cysteine (mmol/L)
All 0.571*** - 0.240**

Stage 1 (n = 21) 0.456 - 0.069
Stage 2 (n = 31) 0.512** - −0.034
Stage 3a (n = 31) 0.456* - 0.195
Stage 3b (n = 20) 0.147 - 0.125
Stage 4–5 (n = 29) 0.780*** - 0.115

IS (mmol/L)
All 0.339*** 0.240** -
Stage 1 (n = 21) −0.378 0.069 -
Stage 2 (n = 31) −0.028 −0.034 -
Stage 3a (n = 31) 0.003 0.195 -
Stage 3b (n = 20) 0.336 0.125 -
Stage 4–5 (n = 29) −0.000 0.115 -

MDA (mmol/L)
All −0.115 −0.331*** −0.127
Stage 1 (n = 21) −0.163 0.066 0.573*

Stage 2 (n = 31) 0.131 −0.395 −0.32
Stage 3a (n = 31) 0.270 −0.163 −0.204
Stage 3b (n = 20) −0.107 −0.243 −0.149
Stage 4–5 (n = 29) −0.511* −0.496* −0.247

ox-LDL (U/L)
All 0.087 −0.073 0.171
Stage 1 (n = 21) 0.115 −0.306 −0.273
Stage 2 (n = 31) 0.115 −0.162 −0.065
Stage 3a (n = 31) 0.122 −0.003 0.204
Stage 3b (n = 20) 0.107 0.287 0.639*

Stage 4–5 (n = 29) −0.056 −0.212 0.081
GSH/GSSG ratio

All 0.168 0.215* −0.081
Stage 1 (n = 21) 0.242 0.226 −0.020
Stage 2 (n = 31) 0.367 0.165 −0.107
Stage 3a (n = 31) 0.160 0.231 0.225
Stage 3b (n = 20) −0.134 0.175 −0.082
Stage 4–5 (n = 29) 0.232 0.466* 0.204

TEAC (mmol/L)
All 0.146 0.097 0.078
Stage 1 (n = 21) 0.142 0.325 0.329
Stage 2 (n = 31) 0.248 0.242 −0.418*

Stage 3a (n = 31) 0.070 −0.232 −0.280
Stage 3b (n = 20) −0.321 −0.209 −0.680**

Stage 4–5 (n = 29) −0.180 −0.179 0.012
GSH (mmol/L)

All 0.159 0.221* −0.054
Stage 1 (n = 21) 0.177 0.220 −0.061
Stage 2 (n = 31) 0.407* 0.240 −0.051
Stage 3a (n = 31) 0.015 0.178 0.349
Stage 3b (n = 20) 0.087 0.054 0.107
Stage 4–5 (n = 29) 0.306 0.565** 0.225

(continued to the next page)



homocysteine, cysteine, and GSH-Px activity levels with kidney function had disappeared 
after being additionally adjusted for plasma IS levels.
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Table 4. Multiple linear regression of various parameters with estimated glomerular filtration rate as the 
dependent variable after adjusting for potential confounders1)

Covariate model eGFR (mL/min/1.73m2)
MDA + confounders 3.026 (10.400)
ox-LDL + confounders −0.173 (0.124)
Homocysteine + confounders −1.099 (0.286)***

Cysteine + confounders −0.137 (0.054)*

IS + confounders −1.384 (0.124)***

TEAC + confounders −0.010 (0.007)
GSH + confounders 0.105 (0.090)
GSSG + confounders 0.019 (0.044)
GSH/GSSG ratio + confounders 96.852 (68.993)
GSH-Px + confounders 0.090 (0.042)*

GSH-Px + IS + homocysteine + confounders 0.003 (0.032)
GSH-Px + IS + cysteine + confounders 0.016 (0.032)
Homocysteine + IS + GSH-Px + confounders −0.290 (0.238)
Cysteine + IS + GSH-Px + confounders 0.017 (0.043)
IS + GSH-Px + homocysteine + confounders −1.328 (0.135)***

IS + GSH-Px + cysteine + confounders −1.394 (0.135)***

IS + GSH-Px + IS × GSH-Px + homocysteine + confounders −0.383 (0.363)
IS + GSH-Px + IS × GSH-Px + cysteine + confounders −0.499 (0.378)
IS × GSH-Px + IS + GSH-Px + homocysteine + confounders −0.009 (0.003)**

IS × GSH-Px + IS + GSH-Px + cysteine + confounders −0.008 (0.003)*

MDA, malondialdehyde; ox-LDL, oxidized low density lipoprotein cholesterol; IS, indoxyl sulfate; TEAC, trolox 
equivalent antioxidant capacity; GSH, glutathione; GSSG, oxidized glutathione; GSH-Px, glutathione peroxidase; 
eGFR, estimated glomerular filtration rate.
1)n = 132. Values are β, regression coefficient (SE). Adjusted for confounders (i.e., age, gender, body mass index, 
albumin, smoking and drinking habits).
*P < 0.05, **P < 0.01, ***P < 0.001.

Parameters Homocysteine (mmol/L) Cysteine (mmol/L) IS (mmol/L)
GSSG (mmol/L)

All 0.085 0.144 0.059
Stage 1 (n = 21) 0.169 0.212 −0.313
Stage 2 (n = 31) 0.115 0.155 0.153
Stage 3a (n = 31) −0.083 0.163 0.233
Stage 3b (n = 20) 0.325 −0.044 0.260
Stage 4–5 (n = 29) 0.249 0.436* 0.012

GSH-Px activity (nmol/mL/min)
All −0.496*** −0.363*** −0.219*

Stage 1 (n = 21) −0.087 −0.206 0.317
Stage 2 (n = 31) −0.537** −0.350 0.002
Stage 3a (n = 31) −0.438* 0.012 −0.318
Stage 3b (n = 20) −0.379 −0.310 −0.051
Stage 4–5 (n = 29) −0.555** −0.658*** 0.222

IS, indoxyl sulfate; MDA, malondialdehyde; ox-LDL, oxidized low density lipoprotein cholesterol; GSH, glutathione; 
GSSG, oxidized glutathione; TEAC, trolox equivalent antioxidant capacity; GSH-Px, glutathione peroxidase.
1)Values are rs, correlation coefficient. Adjusting for age, gender, body mass index, albumin, smoking and drinking 
habits.
*P < 0.05, **P < 0.01, ***P < 0.001.

Table 3. (Continued) Partial Spearman’s correlation coefficients (rs) of homocysteine, cysteine, and IS with 
indicators of oxidative stress and glutathione-dependent antioxidant capacities in patients at different stages 
of chronic kidney disease1)



DISCUSSION

Increased oxidative stress is well recognized as being an important metabolic 
accompaniment in CKD patients. Previous studies have indicated that CKD patients had a 
higher oxidative stress status than healthy subjects [8,13-16,20]; however, the oxidative stress 
status (i.e., MDA, ox-LDL and GSH/GSSG ratio) of our CKD patients not only remained 
showing no fluctuation among patients at the different CKD stages, but there was also no 
association with kidney function in the present study. It is worth noting that antioxidant 
capacity (i.e., TEAC, GSH and GSSG) also remained steady amongst patients at different 
CKD stages. Cysteine is a major, yet limiting substrate for the synthesis of GSH within cells. 
Although we did not measure other substrates of GSH synthesis (i.e., glycine and glutamate), 
plasma cysteine concentration was not reduced following kidney function loss. In our CKD 
patients, sufficient cysteine concentration may have helped maintain GSH synthesis during 
different CKD stages. As long as CKD patients, including those at an advanced disease stage, 
still possess a capable antioxidant capacity to cope with increased oxidative stress, GSH and 
its dependent antioxidant capacity may not be a significant factor affecting oxidative stress 
status during kidney function loss.

Under an increased oxidative stress condition, GSH is oxidized to GSSG, and along with 
GSH-Px, reduces hydroperoxides. Plasma GSH-Px is synthesized primarily in proximal kidney 
tubular cells [17], an early consequence of active nephron mass reduction, which in turn may 
lead to the reduction of plasma or erythrocyte GSH-Px activity in CKD patients [19,20,30,31]. 
Therefore, it was not surprising to us when we observed that plasma GSH-Px activity 
experienced a significant reduction following different stages of kidney dysfunction in our 
CKD patients. Plasma GSH-Px activity seemed to deplete when catalyzing the reduction 
of hydrogen peroxide and other organic hydroperoxides to water at the advanced stages of 
the disease. In spite of GSH being a substrate of GSH-Px, GSH-Px is a selenium-containing 
enzyme, so its selenium status has thus been recognized as being another key factor affecting 
plasma GSH-Px activity in CKD patients [32], although not all studies have agreed with 
this conclusion [20,33]. Since selenium concentration was not analyzed in our study, the 
relationship between plasma GSH-Px activity and selenium cannot be discussed further here. 
GSH-Px is the first line of cellular defense in the human body, and even though the first line 
of the antioxidant defense system may have been exhausted, secondary antioxidant enzymes 
in the antioxidant defense system, such as GSH-St, may be expected as being capable of 
coping with oxidative stress in CKD patients. Unfortunately, we did not measure GSH-St 
activity, otherwise the overall picture of GSH-dependent antioxidant capacity would be better 
understood during the different stages of CKD in patients.

Even though many factors have been mentioned in association with increased oxidative 
stress during kidney function loss, the accumulation of uremic toxins in the circulation 
is an important contributing factor for increased oxidative stress in CKD patients [9-12]. 
However, an elevation in uremic toxins (i.e., homocysteine and IS) had no relationship with 
oxidative stress indicators, but did have a direct contribution to kidney dysfunction in our 
CKD patients. It seemed that uremic toxins could directly ruin kidney function without 
regulating other mechanisms which affect it. Similarly to our previous study [8], a high 
homocysteine concentration was independent of oxidative stress when associated with 
the risk of CKD. Although the pathogenesis of hyperhomocysteinemia in CKD patients is 
not fully understood, a progressive increase in homocysteine levels has been associated 
with decreased eGFR in patients with CKD [34,35]. In spite of the significant role which 
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homocysteine plays in the risk of CKD, IS (a gut-derived uremic toxin) not only had a 
significant association with kidney function in our CKD patients and those from other 
studies [6,36,37], it also played a more dominant role than homocysteine when associated 
with kidney function.

IS is tightly bound to albumin, and is difficult to efficiently remove during dialysis 
progression [3]. Increased IS concentration has been shown to cause nephrovascular toxicity, 
as well as damage to vascular smooth muscle cells, while also enhancing inflammatory 
gene expression and promoting, renal fibroblast activation, degeneration of kidney tubular 
epithelial cells and kidney interstitial cells [4,11,38,39]. In addition, IS involves itself in 
the progression of vascular and hemostatic dysfunction to cause cardiovascular toxins 
and atherogenesis [40], and thus creates a significant link between CKD and the presence 
of cardiovascular disease [41-43]. Since IS not only exerts profibrotic, prooxidative and 
proinflammatory activities, while also stimulating CKD progression [40,44,45], it could 
interact with GSH-Px to mediate the damage of kidney function. Therefore, plasma IS 
concentrations and GSH-Px activity should be regularly monitored for patients at any stage 
of CKD in order to reduce or prevent kidney dysfunction. In line with the study performed 
by Yu et al. [46], IS was not correlated with GSH, GSSG or GSH/GSSG ratio in our CKD 
patients. Dou et al. [47] indicated that high IS concentrations (497.4 and 994.8 μmol/L) would 
decrease total GSH concentrations by 37% and 67% in human umbilical vein endothelial 
cells, respectively; while lower IS concentrations (99.5 and 199 μmol/L) had no effect on total 
GSH levels. The IS levels of CKD patients were between 6.4 ~ 72.4 μmol/L in the study of Yu et 
al. [46], and between 1.5–93.7 μmol/L in the present study; these IS levels were significantly 
less than the concentrations which were treated in endothelial cells by Dou et al. [47]. This 
may explain why our team and Yu et al. [46] did not observe any association between plasma 
IS concentration and an oxidative stress indicator (GSH/GSSG ratio) in CKD patients. Uremic 
toxin adsorbents (i.e., oral carbonaceous adsorbent AST-120) [4,46], along with an increase 
in dietary fiber intake [48,49] have been shown to effectively reduce IS concentrations. 
Therefore, we might postulate that effective treatment towards lowering IS would not exhaust 
GSH utilization, and could maintain adequate GSH dependent antioxidant capacity during 
any CKD stage.

The strength of this study was due to the recruitment of patients coming from all stages of 
CKD. Therefore, the levels of uremic toxins, along with indicators of oxidative stress and 
antioxidant capacity could be compared amongst all CKD stages. However, there were some 
limitations in the study. First, all patients were recruited from a single center. In addition, 
the causes of CKD were diverse and included diabetes mellitus, hypertension, family history, 
glomerulonephritis, polycystic kidney disease, lupus, obstruction, malformation or repeated 
urinary infection, all of which could cause CKD development and progression. Therefore, the 
association between uremic toxins and antioxidant capacity could vary based on the cause of 
CKD. Additionally, the cross-sectional study design was lacking both a longer observation 
period and more repeated measurements at defined intervals, thus it could not determine the 
cause-and-effect of uremic toxins, oxidative stress and antioxidant capacity on kidney function 
in CKD patients. Therefore, we were unable to clarify whether the interaction of uremic toxins 
and antioxidant capacity could affect CKD development or progression. The other limitation 
within this study was that PCS, another important uremic toxin, was not measured. However, IS 
is highly correlated with PCS levels in Asian CKD patients and displays a higher level than those 
found in the Caucasian population [6]. We believe that the IS level could reflect uremic status 
even though we did not measure PCS levels in our CKD patients.
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In conclusion, our results reveal that plasma IS concentration was independent of oxidative 
stress indicators, homocysteine and GSH, but has synergistic effects with GSH-Px which 
are associated with kidney function. We believe that higher IS concentrations need to be 
monitored and controlled during the different stages of CKD in patients.
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