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ABSTRACT

Vitamin D insufficiency is associated with obesity and its related metabolic diseases. Adipose 
tissues store and metabolize vitamin D and expression levels of vitamin D metabolizing 
enzymes are known to be altered in obesity. Sequestration of vitamin D in large amount of 
adipose tissues and low vitamin D metabolism may contribute to the vitamin D inadequacy in 
obesity. Vitamin D receptor is expressed in adipose tissues and vitamin D regulates multiple 
aspects of adipose biology including adipogenesis as well as metabolic and endocrine 
function of adipose tissues that can contribute to the high risk of metabolic diseases in 
vitamin D insufficiency. We will review current understanding of vitamin D regulation of 
adipose biology focusing on vitamin D modulation of adiposity and adipose tissue functions 
as well as the molecular mechanisms through which vitamin D regulates adipose biology. The 
effects of supplementation or maintenance of vitamin D on obesity and metabolic diseases 
are also discussed.
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INTRODUCTION

Obesity, a state of excess accumulation of white adipose tissues (WATs), and its associated 
metabolic diseases are increasing worldwide. Adipose tissues play important roles in systemic 
metabolism by storing and releasing energy as well as acting as endocrine organ. Adipose 
tissues become dysfunctional in obesity, which is characterized by hypertrophied adipocytes, 
elevated inflammation, hypoxia and fibrosis and reduced angiogenesis [1]. Alterations in 
adipose derived factors, elevated levels of fatty acids (FAs) and proinflammatory cytokines 
along with low level of adiponectin from higher mass of dysfunctional adipose tissues, are 
thought to cause or exacerbate cardiometabolic diseases in obesity.

Adipose tissues are present in multiple locations throughout an organism and largely 
divided into intraabdominal visceral and subcutaneous depots. The major visceral depots 
are omental and epiploic fat and major subcutaneous depots are the upper-body abdominal 
subcutaneous and the lower-body femoral and gluteal fat in humans [2]. In addition to WATs, 
bioenergetically more active brown adipose tissue (BAT) as well as inducible brown-like 
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adipocytes, beige or brite adipocytes, exist. Brown and beige/brite adipocytes contain more 
mitochondria and express uncoupling protein 1 (UCP1) and hence, have higher thermogenic 
capacity [3]. Each adipose depot has differential influence on systemic metabolism. Visceral 
adiposity, over and above total fat mass per se, is independently associated with metabolic 
complications, whereas fat accumulation in the lower-body is protective [2]. The amount of 
BAT or beige/brite fat is reduced in obesity and increasing their amount and activity could 
confer protection against obesity and its associated metabolic diseases [4].

In addition to its well-known effects on calcium homeostasis and bone metabolism, 
vitamin D exerts many other actions including proliferation and differentiation of cells and 
immunomodulatory functions [5]. In adipose tissues, vitamin D has been shown to affect 
adipocyte development and their metabolic and endocrine functions [6]. While obesity is 
associated with low vitamin D status and metabolic diseases, whether deficiency of vitamin D 
predisposes to obesity or vitamin D supplementation improves obesity and metabolic diseases 
is not clear. We will review vitamin D regulation of adipose biology including adipose tissue 
development and metabolic and endocrine properties with emphasis on molecular mechanisms 
that link low vitamin D status with obesity and metabolic diseases. We also discuss the effects of 
supplementation or maintenance of vitamin D on obesity and metabolic diseases.

VITAMIN D METABOLISM AND BIOLOGICAL FUNCTION

Vitamin D metabolism
Vitamin D is synthesized from 7-dehydrocholesterol in the skin (vitamin D3) or ingested 
as food (both vitamin D2 and D3 forms). Ultraviolet B photons cause the photolysis of 
7-dehydrocholesterol to previtamin D3, which thermally isomerizes to vitamin D3. Vitamin 
D (D represents D2 and/or D3) is activated through 2 hydroxylation steps (Fig. 1). In the 
liver, vitamin D is hydroxylated to 25-hydroxyvitamin D [25(OH)D] by 25-hydroxylases 
(CYP2R1, CYP27A1, CYP3A4, CYP2J2) [7]. 25(OH)D is then activated to 1,25 dihydroxyvitamin 
D [1,25(OH)2D] by 1α-hydroxylase (CYP27B1) in the kidneys. Vitamin D binding protein is the 
specific chaperone for vitamin D and its metabolites in the blood and then to the storage sites 
(adipose tissues and skeletal muscle) or target tissues (liver, kidneys or parathyroid gland) 
and cells (monocytes and macrophages). Both 25(OH)D and 1,25(OH)2D are hydroxylated by 
24-hyroxylase (CYP24A1) and degraded. Other tissues including adipose tissues also express 
1α-hydroxylase and 25-hydroxylase and can activate vitamin D locally [8].

Biological functions of vitamin D
In addition to regulation of calcium homeostasis and bone metabolism, vitamin D regulates 
broad biological processes including proliferation, differentiation and maturation of cells, 
immune functions and cellular metabolism. We refer to other reviews for the roles of vitamin 
D and we will briefly describe the molecular details through which vitamin D regulates 
cellular actions.

Most of biological actions of 1,25(OH)2D3 are thought to be mediated through its nuclear 
receptor, vitamin D receptor (VDR) (Fig. 2). Ligand bound VDR translocates into the nucleus 
as a heterocomplex with retinoid X acid receptor and controls gene transcription by binding to 
vitamin D response elements of genes [9]. Through interactions with other nuclear receptors 
including nuclear factor kappa B (NF-κB), SP1 and STAT5 vitamin D controls transcription of 
genes. 1,25(OH)2D3-VDR regulates hundreds of genes in cell- and tissue-specific manners [10].
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VDR localizes in the caveolae structures of plasma membrane where it exerts rapid 
membrane-initiated signaling responses that are referred as non-genomic actions of vitamin 
D [11] (Fig. 2). Once bound to vitamin D, VDR interacts with plasma membrane proteins 
including phospholipase A2, phosphatidylinositol-3 kinase and calcium transporters. These 
lead to generation of secondary messengers, Ca++, cyclic adenosine monophosphate, and 
phosphatidylinositol 3,4,5 triphosphate (PIP3) and activation of downstream protein kinase 
A, protein kinase C, mitogen activated protein kinases (MAPKs) and Ca++-calmodulin kinase 
II [11]. Through these signaling events, vitamin D is known to affect many cellular responses. 
These signaling events can also lead to control of gene expression through modulation of 
transcriptional machinery.

VDR is present in mitochondria where 1,25(OH)2D3 is known to negatively affect respiratory 
capacity in multiple cell types including platelets and keratinocytes [12,13]. Vitamin D can 
also inhibit cell respiration through the nuclear VDR-mediated suppression of transcription 
of mitochondrial respiratory chain complexes. Through regulation of mitochondrial 
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Fig. 1. Metabolism of vitamin D. Vitamin D, synthesized in the skin from 7-dehydrocholesterol as D3 or ingested 
from food in the forms of D2 or D3, are first converted to 25(OH)D (D2 or D3) by 25-hydroxylases (encoded by 
CYP2R1, CYP27A1, CYP3A4, CYP2J2) in the liver. 1α-hydroxylase (CYP27B1) converts and activates 25(OH)D to 
1,25(OH)2D in the kidneys. Other tissues and cells express 1α-hydroxylase and can activate 25(OH)D to 1,25(OH)2D. 
Vitamin D and its metabolites are bound to DBP in the blood. Both 25(OH)D and 1,25(OH)2D are catabolized by 
24-hydroxylase (CYP24A1). 
UVB, ultraviolet B; DBP, vitamin D binding protein.



respiratory capacity, 1,25(OH)2D3-VDR may affect cell growth, proliferation and 
differentiation as well as biosynthetic pathways, especially lipid biosynthesis, as it provides 
bioenergetics required for the processes [13].

Vitamin D metabolism in adipose tissues
Vitamin D accumulates in adipose tissues and skeletal muscle and adipose tissue is thought 
to be the major site of vitamin D storage [14]. Slow releases from adipose tissues, however, 
suggest that adipose tissues may function as a vitamin D buffering system preventing 
uncontrolled synthesis of the active form. Vitamin D metabolizing enzymes, 25-hydroxylase 
(CYP2R1, CYP27A1, CYP2J2), 1α-hydroxylase (CYP27B1) and catabolic 24-hydroxylase (CYP24A1), 
are expressed in adipose tissues [15-18], indicating that adipose tissues also play active roles 
in vitamin D metabolism contributing to the low vitamin D status in obesity.

Expression levels of 25-hydroxylase (CYP2J2) and 1α-hydroxylase (CYP27B1) are reduced in 
obese adipose tissues [16], whereas VDR expression is increased in obesity and is positively 
associated with proinflammatory cytokine expression [16-18]. Visceral than subcutaneous 
adipose tissues express higher levels of CYP27A1 and lower levels of CYP27B1 and CPY2J2 [16]. 
Furthermore, 1,25(OH)2D3 increases VDR expression in visceral adipose tissues from obese 
but not lean subjects [17]. These data indicate that local activation of vitamin D as well as 
their actions in adipose tissues may differ depending on the degree of obesity and adipose 
depots, potentially explaining the contradictory effects of vitamin supplementation on 
obesity and metabolic diseases.

VITAMIN D AND ADIPOSE BIOLOGY

Vitamin D regulation of adipogenesis
Adipose tissues continuously remodel throughout a life-span and mean age of adipocytes 
is estimated to be about 10 years in humans [19]. Adipose tissues remodel by increasing 
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Fig. 2. Vitamin D exerts biological functions through the VDR. The active form of vitamin D, 1,25(OH)2D, is a 
relatively small, lipophilic molecule that easily penetrates the cell membrane by simple diffusion and binds 
to VDR. Upon binding to the ligand, VDR heterodimerizes with RXR and translocates into the nucleus, where it 
controls gene transcription by binding to VDREs. VDR interacts with other nuclear receptors (X) and regulates 
transcription of genes. VDR is present in the cavaeoli of plasma membrane, where it exerts rapid nongenomic 
actions through multiple signaling pathways including PKA and PKC, MAPKs, and Ca++-calmodulin kinase II. VDR 
also has been shown to be present in mitochondria where it affects mitochondrial respiration. 
VDR, vitamin D receptor; RXR, retinoic X acid receptor; VDRE, vitamin D response element; PKA, protein kinase A; 
PKC, protein kinase C; MAPK, mitogen activated protein kinase; cAMP, cyclic adenosine monophosphate.



the size (hypertrophy) and or number (hyperplasia) of adipocytes. Remodeling through 
hyperplasia is considered to be protective as newly-differentiated adipocytes are insulin 
sensitive and contain higher capacity to store excess energy, protecting other organs from 
ectopic fat deposition [20]. In contrast, hypertrophic obesity is associated with impairment 
in adipogenesis, high inflammation and fibrosis, markers of dysfunctional adipose tissues 
[21,22]. Replacing dysfunctional adipocytes during development of obesity and normal aging 
through new adipocyte generation is crucial for the maintenance of metabolic health. We will 
review current understanding of the role of vitamin D in adipogenesis.

Controversial effects of vitamin D on adipogenesis
Adipogenesis is a process through which adipose progenitors differentiate into mature 
adipocytes. Upon treatment with adipogenic stimuli, adipose progenitors start to express 
adipocyte specific genes and significant changes in morphologies occur such that cells 
round up and accumulate neutral lipids in the form of triacylglycerol (TAG) in lipid droplets 
[23]. To assess the direct effects of vitamin D on adipogenesis, the active form of vitamin 
D, 1,25(OH)2D3, has been added to various cell culture models including 3T3-L1, a mouse 
embryonic cell line, and primary cultures of adipose derived stem cells (ASCs). Results from 
these in vitro studies, however, are controversial depending on the experimental conditions, cell 
types or doses used (Fig. 3). In 3T3-L1 cells, 1,25(OH)2D3 inhibits adipogenesis [24,25] while 
enhancing adipocyte differentiation in human and mouse ASCs [15,26,27] and in bone marrow-
derived mesenchymal stem cells (BM-MSC) from mouse [26] and pigs [28]. Differences in 
adipogenic programs between cell types may explain the contradictor results [23].

Preadipocytes are known to express vitamin D metabolizing enzymes and locally activated 
1,25(OH)2D3 may also modulate adipogenesis. We demonstrated that 25(OH)D3 increases the 
expression levels of CYP24A1, a primary target of nuclear VDR, and enhances adipogenesis 
in human ASCs, indicating that they can generate the active form of vitamin D from 25(OH)
D3 [15]. Consistent with this idea, we detected 1,25(OH)2D3 in the culture media when human 
ASCs are incubated with 25(OH)D3 [15]. Vitamin D did not increase CYP24A1 expression, 
suggesting that 25-hyroxyalse may not be functional in human ASCs.

Molecular mechanisms through which 25(OH)D3 regulates adipogenesis
Both pro-adipogenic and anti-adipogenic actions of vitamin D are known to be mediated 
through the VDR. Kong et al. [25] showed that 1,25(OH)2D3 inhibits adipogenesis through the 
VDR-dependent suppression of PPARγ, the master regulator of adipogenesis, in 3T3-L1 cells. 
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Fig. 3. Vitamin D regulation of adipogenesis. Effects of vitamin D on each step of adipogenesis in different cell 
types are summarized (⊕, stimulatory effect; ⊖, inhibitory effect). Vitamin D directs MSCs to adipogenic lineage 
through the vitamin D receptor-dependent mechanisms. Vitamin D has been shown to suppress proliferation in 
both 3T3-L1 and SGBS cells, dose-dependently. In 3T3-L1 cells, vitamin D inhibits adipogenesis by acting on early 
states of differentiation. In contrasts, vitamin D enhances differentiation of primary preadipocytes isolated from 
human and rodent adipose tissues by acting on later maturation steps. 
MSC, mesenchymal stem cell; SGBS, Simpson-Golabi-Behemel Syndrome.



In contrasts, 1,25(OH)2D3 stimulates adipogenesis in BM-MSC derived from the wild-type, but 
not from VDR-knockout mice and introduction of human VDR into the knockout cells rescued 
the pro-adipogenic effects of 1,25(OH)2D3 [26]. Whether 1,25(OH)2D3 promotes adipogenesis 
in human and mouse ASCs through VDR dependent mechanisms has not been demonstrated.

Vitamin D is known to affect cell proliferation dose-dependently in both 3T3-L1 and Simpson-
Golabi-Behemel Syndrome (SGBS) cells, a primary human preadipocytes obtained from subjects 
with SGBS [27,29]. By inhibiting cell proliferation, vitamin D may affect adipogenesis. Consistent 
with this idea, 1,25(OH)2D3 is inhibitory when added during the earlier days of differentiation but 
does not affect when added during later days of adipogenesis in 3T3-L1 cells [25], a cell line that 
post-confluent mitotic clonal expansion is critical for their differentiation into adipocytes. On 
the contrary, we and others have shown that 1,25(OH)2D3 increases lipid accumulation by acting 
on the later periods of adipogenesis without affecting cell commitment in human and mouse 
ASCs [15,30]. 1,25(OH)2D3 may support the differentiated state after induction of adipogenesis is 
consolidated by stimulating FA biosynthesis and lipid accumulation as acetyl-CoAs are directed 
for synthetic pathway from oxidation in mitochondria [13].

Lessons learned from mouse models
To understand roles of vitamin D and VDR in the regulation of adiposity in vivo, animal 
models have been used. Reduced vitamin D signaling through global knockout of 
1α-hydroxylase (CYP27B1) and VDR in mice leads to a lean phenotype when fed a high-fat diet 
or high-calcium rescue diet [31,32]. In contrast, adipocyte-VDR null mice are fatter with sex-
specific effects such that female but not male adipocyte-VDR knockout mice exhibit higher 
growth rates and increased visceral fat mass [33]. These studies imply that the lower fat mass 
in the global italicize VDR here and 1α-hydroxylase knockout models may not be due to the 
direct effects of vitamin D on adipocytes. However, transgenic mice overexpressing human 
VDR in adipose tissues are fatter and exhibit reduced energy metabolism without alterations 
in food intake [34], consistent with the phenotypes of the global knockout mice.

The lean phenotype and defective cellular adipogenesis in the VDR-null mice become 
apparent with age [32] and reduction in adipocyte size is observed in older (1 year) but not in 
young (21 days) mice [35]. Further, maternal vitamin D deficiency does not impact adipose 
tissue development in offspring [35,36]. These results indicate that deficiency of VDR does 
not affect fat deposition during early development. Age-associated lean phenotype in the 
VDR-null mice may be due to the fact that 1,25(OH)2D3-VDR decreases energy expenditure 
through uncoupling process [13] and age-associated alopecia [35].

Role of vitamin D in adipose tissue function
Adipocytes store excess energy in the form of TAG and release them as FAs and glycerol when 
body energy demands increase during fasting or exercise. Adipose tissues are also endocrine 
organs secreting number of peptide hormones and cytokines including leptin, adiponectin 
and interleukin (IL)-6. By acting as both metabolic and endocrine organs, adipose tissues 
play crucial roles in energy homeostasis and alterations in adipose derived metabolic 
and endocrine products are thought to cause or exacerbate insulin resistance and other 
cardiometabolic diseases in obesity [20].

Effects of vitamin D on adipose metabolic functions
The amount of TAG storage in adipocytes is governed by the balance of lipid synthesis and 
breakdown. The role of vitamin D in adipocyte lipid metabolism is relatively unknown. 
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An earlier study by Shi et al. [30] reported that 1,25(OH)2D3 stimulates calcium influx into 
adipocytes affecting lipid metabolism through the membrane bound VDR. Similarly, more 
recent studies showed that 1,25(OH)2D3 reduced TAG accumulation by increasing basal 
and adrenergically stimulated lipolysis [37] and decreasing de novo lipogenesis in 3T3-L1 
adipocytes [38]. 1,25(OH)2D3 stimulates mRNA expression of several genes related to FA 
oxidation including CPT1A, PGC1α and PPARα as well as UCP1 [37] and rates of FA oxidation 
in 3T3-L1 adipocytes [38]. Overall, these data suggest that 1,25(OH)2D3 has catabolic effects 
in adipocytes decreasing lipid accumulation, which could potentially reduce the size of 
adipocytes (Fig. 4A). The non-genomic actions of vitamin D through calcium influx [30] 
may also explain the fact that calcium supplementation alone corrects most of the changes 
mediated by vitamin D deficiency in rats [39].

The phenotypes of VDR-null and overexpression transgenic mice do not support these 
catabolic effects of vitamin D on adipocyte lipid metabolism (Fig. 4B). Both VDR and 
1α-hydroxylase (CYP27B1) knockout mice are lean and express higher levels of UCP1 in both 
white and brown fat and exhibit elevated levels of beta oxidation in WAT [31,32]. Further, 
overexpression of human VDR in mouse adipose tissues reduced expression of genes involved 
in the regulation of FA transport, thermogenesis, and lipolysis and suppressed FA oxidation 
and lipolysis [34]. Some of these phenotypes may have been mediated by indirect catabolic 
effects of VDR on whole body energy homeostasis [13,35].

Vitamin D is known to affect insulin actions and glucose metabolism in adipocytes. 
1,25(OH)2D3 enhances insulin-stimulated AKT phosphorylation, GLUT4 translocation and 
glucose transport in 3T3-L1 adipocytes [40,41]. In addition, vitamin D supplementation 
stimulates glucose uptake in adipose tissue of high fat diet-fed mice [42]. Results from 
transcriptome analysis in human adipocytes show that vitamin D increases oxidative stress 
[43], suggesting that it may impair insulin signaling pathway. Further studies of dissecting 
the role of vitamin D and VDR in human adipocyte metabolism are warranted.

Effects of vitamin D on adipose inflammation and endocrine function
Anti-inflammatory actions of vitamin D are well-known and most of studies showed that 
vitamin D decreases inflammation in adipose tissues. In both preadipocytes and adipocytes, 
1,25(OH)2D3 suppresses expression levels of multiple cytokines including IL-6, IL-1β, IL-8, 
macrophage chemoattractant protein-1 and leptin [40,41,44-49]. Further, 1,25(OH)2D3 
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stimulate adiponectin, an anti-inflammatory and insulin sensitizing adipokine, in 3T3-
L1 adipocytes [41]. Contradictory results showing vitamin D increasing IL-6 and IL-8 in 
adipocytes [10] and leptin in mouse adipose tissues [50] have been also reported.

1,25(OH)2D3 decreases cytokines through the VDR in 3T3-L1 adipocytes [40] and in preliminary 
experiments, we found that 1,25(OH)2D3 suppresses proinflammatory cytokines through the 
VDR-dependent mechanisms in human adipocytes (unpublished observation, Nimitphong H 
and Lee MJ). Further, 1,25(OH)2D3 increases mRNA expression levels of dual specificity protein 
10 and IκBα and inhibits NF-κB and p38 MAPK signaling pathways in 3T3-L1 adipocytes [40]. 
The proinflammatory actions of 1,25(OH)2D3 in 3T3-L1 adipocytes are known to be mediated 
through non-genomic actions of VDR in calcium signaling pathway [10].

Adipose tissues contain other cells including several types of immune cells and endothelial 
cells. In immune cells, vitamin D inhibits cytokine expression through the VDR-mediated 
suppression of proinflammatory NF-κB and MAPK signaling pathways [51,52]. By 
suppressing chemokine production from multiple cell types, vitamin D-VDR blocks 
monocyte migration into adipose tissues, as demonstrated in mouse models in vivo [48]. In 
addition, 1,25(OH)2D3 also regulates the function of macrophages and other immune cell 
populations within adipose tissues [53,54]. Overall, these results from in vitro studies and 
in vivo mouse models support that the anti-inflammatory actions of vitamin D in adipose 
tissues. By suppressing adipose tissue inflammation, vitamin D could improve systemic 
metabolism in obesity.

The in vivo effects of supplementation of vitamin D on serum levels of inflammatory cytokines 
in humans are controversial. Meta-analysis of vitamin D supplementation in obese and 
overweight subjects with mean baseline 25(OH)D levels from 12 to 32.6 ng/mL reported no 
significant changes in C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α) and 
IL-6 concentrations [55]. Another meta-analysis in 484 subjects with obese/overweight with 
or without type 2 diabetes also reported no significant effect of vitamin D supplementation 
on adiponectin and leptin levels [56]. On the contrary, a recent meta-analysis of 6 clinical 
trials with a mean baseline 25(OH)D of 24 ng/mL showed that vitamin D supplementation 
significantly increased serum leptin with a pool mean difference of about 5 ng/mL [57]. In a 
systematic review and meta-analysis, Yu et al. [58] reported that vitamin D supplementation 
significantly decreased CRP levels by 0.45 μg/mL without affecting TNF-α and IL-6, when 
studies in type 2 diabetes were exclusively considered. Therefore, different doses, duration and 
populations employed between studies may have contributed to the contradictory results.

LOW VITAMIN D STATUS IN OBESITY AND METABOLIC 
DISEASES
Vitamin D status is assessed by serum 25(OH)D as levels of 1,25(OH)2D do not reflect vitamin 
D status [59]. Vitamin D status is influenced by diets, sun exposure, races, and genetic factors 
and the optimal serum 25(OH)D level for skeletal health is accepted to be above 20 ng/mL by 
the Institute of Medicine [60] or 30 ng/mL by the National Osteoporosis Foundation [61] and 
the International Osteoporosis Foundation [62].

Numerous studies have shown that low vitamin D status is associated with obesity and 
metabolic diseases [16-18,63-65]. Several factors including lower vitamin D intake and sun 
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exposure have been proposed to explain the lower vitamin D status in obesity. Others suggest 
that reduced serum levels are caused by both sequestration and volumetric dilution of vitamin 
D in larger amount of adipose tissues in obesity [66,67]. Lower expression levels of CYP2J2 and 
CYP27B1 in adipose tissues [16] may also contribute to the vitamin D inadequacy in obesity.

Clinical effects of vitamin D supplementation on obesity
Interventional studies of vitamin D supplementation and adiposity measures and metabolic 
diseases remain inconclusive. We summarize results from human studies that had primary 
or secondary objectives to investigate the effect of vitamin D supplementation on obesity 
and metabolic diseases. In a systemic review and meta-analysis of 12 randomized controlled 
trials (RCTs) that had supplemented vitamin D without caloric restriction [68], Pathak et al. 
[68] showed that supplementation of various doses of vitamin D for 6 to 52 weeks resulted in 
neutral effects on standardized mean difference for body weight, fat mass, % fat mass or lean 
body mass. Another systemic review and meta-analysis investigated the effects of vitamin D 
supplementation alone (vitamin D3 in all except for one that used vitamin D2 and another that 
used alpha-calcidiol) or with calcium on adiposity measures [69]. This analysis included 26 
RCTs and 42,430 participants with median treatment duration of 12 months and found no 
significant effects of vitamin D supplementation, compared to placebo or calcium control, on 
body mass index (BMI), body weight or fat mass. However, vitamin D plus calcium compared 
to placebo showed a small but significant reduction in body weight without effects on BMI or 
fat mass. The significant reduction in body weight was largely driven by the inclusion of the 
Women's Health Initiative Calcium/Vitamin D Supplemental Trial [70]. Of note, only changes 
in body weight, but not BMI and fat mass, were reported in the trial. An analysis for a dose-
response effect by vitamin D3, from < 1,000 IU/day to > 4,000 IU/day, revealed no effect on 
any of the adiposity outcomes in any dosage groups [69].

Since those 2 reviews were published, there have been 6 RCTs that examined the effects 
of vitamin D supplementation on adiposity [71-76]. Results from these studies also do not 
support the role of vitamin D in reducing adiposity. Further, in a bi-directional genetic 
approach using Mendelian randomization to limit confounding, Vimaleswaran et al. [77] 
showed that although a higher BMI was causally related to lower 25(OH)D, vitamin D 
deficiency was not a causal factor for the development of obesity. Therefore, RCTs of vitamin 
D supplementation have not provided evidence of cause-effect relation between vitamin D 
status and body weight control.

Clinical effects of vitamin D on metabolic disorders
A meta-analysis consisted of 1,181 individuals with BMI > 23 kg/m2 and normal or impaired 
fasting glucose levels showed that vitamin D and/or calcium supplementation has no 
significant effect on fasting glucose and insulin levels as well as homeostatic model 
assessment-insulin resistance (HOMA-IR) index [78]. Importantly, the results were similar 
when the supplemented doses (low dose: 125–2,000 IU/day vs. high dose: 3,571–4,000 IU/
day), durations of supplementation (short: until 15-weeks vs. long: > 15 weeks) or baseline 
of 25(OH)D concentrations (deficiency: < 50 nmol/L [20 ng/mL] vs. insufficiency: 52.5–72.5 
nmol/L [21–30 ng/mL]) were taken under consideration in subgroup-analysis. Similarly, 
in a recent systematic quantitative review on findings from meta-analyses, Rejnmark et 
al. [79] also showed null-findings in the risk of cardiometabolic diseases with vitamin D 
supplementation. A meta-analysis of 24 RCTs, however, showed that a significant reduction 
in HbA1c, fasting plasma glucose and HOMA-IR following vitamin D supplementation 
in type 2 diabetic patients [80]. The authors suggest that a minimum dose of 4,000 IU/
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day of vitamin D which brings serum 25(OH)D values to higher than 100 nmol/L (40 ng/
mL) may be recommended as an adjunct therapy to improve glycemic measures in type 2 
diabetic patients. In addition, combined supplementation of calcium plus vitamin D for 
eight weeks significantly improved glucose and lipid metabolism in overweight to obese, 
vitamin D-deficient women with polycystic ovary syndrome [81]. Differences in study 
designs including doses, durations, baseline vitamin D status and study subjects may explain 
contradictory results and more studies investigating in a specific group of participants with 
or without true vitamin D deficiency are needed.

CONCLUSION

Adipose tissues act as a storage or buffering site of vitamin D but also participate vitamin 
D metabolism. Vitamin D affects new fat cell formation as well as metabolic and endocrine 
functions of adipose tissues. Results from cell culture and mouse models assessing the 
role of vitamin D in adipogenesis are inconsistent. Both suppression and promotion of 
adipogenesis have been reported depending on the cell culture models and conditions 
used. Both CYP27B1 and VDR knockout mice are lean while transgenic mice overexpressing 
human VDR in adipocytes are obese, supporting the positive actions of vitamin D-VDR on 
adipogenesis in vivo. However, results from more careful studies suggest that the phenotypes 
of the transgenic mice are due to vitamin D actions on systemic energy metabolism, rather 
than direct effects on adipocyte development. Although vitamin D actions on adipose 
metabolism are relatively unknown, several studies show that it regulates lipolysis and lipid 
synthesis and improve insulin signaling pathways. In addition, vitamin D may improve 
adipose tissue inflammation. These results suggest that vitamin D may ameliorate adipose 
tissue dysfunctions, linking low vitamin D status to metabolic disease in obesity as shown 
in many association studies. Whether maintenance or restoration of vitamin D status has 
beneficial effects on systemic metabolism is not known and more studies are warranted to 
establish a causal relationship. Further elucidation of the role of vitamin D and mechanisms 
through which vitamin D regulates adipose biology may lead to discovery of therapeutics to 
improve metabolic health in obesity.
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