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Introduction

Ovarian cancer is one of the most fatal malignancies and 
the leading cause of mortality in cancers associated with 
the female genital tract, with an estimated 184,799 deaths 
reported worldwide in 2018 [1]. More than 70% of ovarian 
cancer cases are diagnosed at an advanced stage and are ac-
companied by disseminated peritoneal diseases [2]. Distinct 
molecular phenotypes in ovarian cancer show heterogeneous 
treatment responses and biological behaviors. For instance, 
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although the high-grade serous subtype is more sensitive to 
chemotherapy, it is also more aggressive than low-grade sub-
types. Thus, identification of gene expression signatures with 
key clinicopathological parameters may facilitate the precise 
estimation of survival, and consequently lead to the develop-
ment of personalized treatment strategies. Based on recent 
advances in genomic sequencing techniques, it is possible to 
explore the significant genetic variants and expression char-
acteristics of ovarian cancer.

Arylacetamide deacetylase (AADAC) is a protein-coding 
gene located in human chromosome 3. The translated prod-
uct of AADAC competes with cytosolic arylamine N-acet-
yltransferase activity in the cytochrome P450 pathway and 
is associated with the biotransformation, hydrolase activity, 
triglyceride lipase activity, and hydrolysis of clinical drugs [3-5]. 
AADAC is a tissue-specific protein-coding gene that is mainly 
expressed in normal liver tissues and shows extremely low 
expression in normal ovarian tissues [6]. However, the role of 
AADAC in the prognostication of ovarian cancer remains in-
conclusive. Thus, our study aimed to identify and validate the 
correlation between AADAC expression and survival in ovar-
ian cancer cases using integrated bioinformatics analyses. 
The results of the present study indicated that ovarian cancer 
cases with high AADAC expression signatures were associ-
ated with better overall survival. Furthermore, upregulation 
of AADAC was correlated with increased CD4+ memory T 
cell infiltration in the tumor microenvironment. Finally, by 
integrating the signature score of AADAC expression with 
clinicopathological parameters, we constructed a nomogram 
to demonstrate its potential utility in predicting the survival 
of patients with ovarian cancer.

Materials and methods

1. Acquisition of multi-omics data on ovarian cancer
Gene expression profiles (RNA-sequencing data) of The 
Cancer Genome Atlas-ovarian cancer (TCGA-OV) cohort 
were retrieved from TCGA using the University of California, 
Santa Cruz, Xena browser (USCS Xena) datahub (https://
xenabrowser.net/; accessed on October 12, 2020), which is 
a high-performance visualization and analysis tool for both 
large public repositories and private datasets [7]. The data in-
cluded HTSeq-counts and fragments per kilobase of transcript  
per million values of 379 cases with patient follow-up infor-
mation. TCGA-OV cohort was used as the training dataset. 

Raw microarray data of the GSE18520 and GSE26712 
datasets were accessed from the Gene Expression Omnibus 
(GEO; https://www.ncbi.nlm.nih.gov/geo/). The GSE18520 
dataset comprised of gene expression profiles from 53 high-
grade primary papillary serous ovarian adenocarcinoma 
specimens and 10 normal ovarian surface epithelium brush-
ing specimens, which were evaluated using the Affymetrix 
Human Genome U133 Plus 2.0 Array (Affymetrix, Inc., Santa 
Clara, CA,USA); while the GSE26712 dataset comprised of 
185 primary ovarian tumour samples and 10 normal ovar-
ian surface epithelium samples, which were detected using 
the Affymetrix Human U133A microarray (Affymetrix, Inc.). 
For the validation studies, we used the GSE140082 dataset, 
which comprised of data on the gene expression arrays from 
380 formalin-fixed paraffin-embedded ovarian cancer sam-
ples and overall survival information of the patients, which 
was also obtained from the GEO database and evaluated 
using Illumina HumanHT-12 WG-DASL V4.0 R2 Expression 
BeadChip Array (GEO; NCBI, Bethesda, MD, USA). Details of 
the primary data used in this study are presented in Table 1.

Table 1. Characteristic details for the primary dataset

Source GEO accession Platform
No. of tumor 

samples
No. of normal 

samples
Gene expression 

profiling
Purpose

TCGA - TCGA-OV 379 - RNA-seq Training cohort

GEO GSE140082 GPL14951 380 - Microarray Validation cohort

GEO GSE18520 GPL570 53 10 Microarray DEA

GEO GSE26712 GPL96 185 10 Microarray DEA

GEO, Gene Expression Omnibus; TCGA-OV, The Cancer Genome Atlas-ovarian cancer; DEA, differentially expression analysis.
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2. Quality control and processing of the multi-omics 
data

The quality of the raw data obtained from the GSE18520 
and GSE26712 datasets was assessed using the “array-
QualityMetrics” (version 3.44.0; Bioconductor) package [8]. 
A robust multi-array average algorithm was used for data 
normalization and background correction. Different microar-
ray scanning times were considered as a known batch effect, 
which was examined using the ComBat function of the “sva” 
(version 3.36.0; Bioconductor) package [9]. Batch effect con-
trol was performed by using a principal component analysis 
through the “FaceFactoMineR” (version 2.4; Bioconductor) 
package [10]. The gene annotation file (gencode.v35.an-
notation.gtf..gz, https://www.gencodegenes.org/; accessed 
on October 12, 2020) of the human genome was used to 
extract data on protein-coding genes and was downloaded 
from GENCODE (https://www.gencodegenes.org/; accessed 
on October 12, 2020). Quality annotations of TCGA-OV 
samples were performed according to the merged_sample_
quality_annotations.tsv file (https://gdc.cancer.gov/about-
data/publications/pancanatlas). The workflow of the quality 
control process of TCGA-OV samples is shown in Supple-
mentary Fig. 1. A variance inflation factor was used to detect 
the severity of multicollinearity between the gene signature 
and clinicopathological parameters.

3. Differential expression analysis of the protein-
coding genes

Differential expression analysis of the protein-coding genes 
between the normal and cancerous ovarian samples ob-
tained from the GEO datasets was performed using the “lim-
ma” (version 3.44.3; Bioconductor) package [11]. The batch 
effects of the scanning time in the microarray datasets were 
integrated into the limma model design to conduct further 
differential expression analysis. Genes with |logFC| >1 and 
adjusted P<0.05, were considered differentially expressed.

4. Identification of survival-associated protein-coding 
genes

The value of protein-coding gene expression on survival 
was determined using a univariate Cox proportional hazards 
model analysis (log-rank P<0.05) in the TCGA-OV training 
cohort.

5. Univariate and multivariate Cox regression model 
analyses and validation

The intersection data between the potential survival-associ-
ated genes and differentially expressed genes were filtered 
using a least absolute shrinkage and selection operator 
(LASSO)-penalized Cox regression analysis. Only genes with 
non-zero coefficients via the minimum criteria (a λ value of 
0.066 with log [λ]=-2.718 were selected by a 10-fold cross 
validation) in the LASSO regression model were chosen to 
further estimate the prognostic significance using univariate 
and multivariate Cox regression analyses. Next, Kaplan-Meier 
survival curves were plotted and the log-rank method was 
used to estimate the prognostic significance. The signature 
score of a specific gene was calculated by multiplying the 
gene expression values by the coefficients. A time-dependent 
receiver operating characteristic (ROC) curve was plotted to 
investigate the predictive accuracy using the “survivalROC” 
(version 1.0.3; CRAN) package [12]. Finally, the validation 
cohort GSE140082 was used to verify the prognostic signifi-
cance of the gene signature.

6. Estimation of immune infiltration and 
immunological signature gene set enrichment in 
ovarian cancer

xCell [13], a webtool and gene signature-based method was 
used to perform cell type enrichment analysis based on the 
gene expression data of 64 immune and stromal cell types. 
Data on immunological signature gene sets, which repre-
sent the cellular states and perturbations within the immune 
system, were downloaded from the Molecular Signatures 
Database v7.2 (MSigDB), Broad Institute (https://www.gsea-
msigdb.org/; accessed on October 12, 2020).

7. Construction of the nomogram for the gene 
signature

In the TCGA-OV cohort, the following parameters were se-
lected to construct a nomogram using the “survival” (version 
3.2-10; CRAN) [14] and “rms” (version 6.1-1; CRAN) pack-
ages: age, stage, grade, and residual disease along with the 
gene signature score [15]. Calibration curves were plotted 
to assess the concordance between the actual and predicted 
survival. A time-dependent ROC curve was plotted to investi-
gate the predictive accuracy of the nomogram.
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8. Statistical analysis
An adjusted P-value <0.05, with |logFC| >1, was consid-

ered significant for differential gene expression analysis. The 
Kaplan-Meier method and log-rank test were used to esti-
mate the impact of the gene signature on survival. Statisti-
cal significance was set at P<0.05. A significant Spearman’s 
correlation coefficient was estimated with a P-value <0.05. 
All data were processed using the R software (version 4.0.2 
[×64]; R-project) platform.

Results

1. Clinicopathologic characteristics in the training and 
validation cohorts

The clinicopathologic characteristics (including age, stage, 
grade, residual disease, and/or debulking surgery) of the 
training and validation cohorts are summarized in Table 2.

2. Differentially expressed protein-coding genes in 
ovarian cancer

Normal ovarian samples and ovarian cancer samples from the 
GSE18520 and GSE26712 datasets were compared accord-
ing to the adjusted P-value <0.05, and |logFC| >1. The batch 
effect, which was the scanning time in the two microarray 
profiles, was integrated into the differential expression analy-
sis model and visualized using principal component analysis 
(Fig. 1D, E, respectively). In the GSE18520 dataset, 1,226 
and 712 protein-coding genes were significantly upregulated 
and downregulated, while in the GSE26712 dataset, 552 
and 765 protein-coding genes were upregulated and down-
regulated, respectively. Volcano plots of the differentially 
expressed genes are shown in Fig. 1A. Based on the data of 
these genes, an intersection of 502 differentially expressed 
(227 upregulated and 275 downregulated) protein-coding 
genes was observed, and these genes were selected for fur-
ther analysis (Fig. 1B, C).

3. Survival-related differentially expressed protein-
coding genes in ovarian cancer

The correlation between the differentially expressed protein-
coding genes and survival in the TCGA-OV cohort was ana-
lyzed using a univariate Cox regression analysis (P<0.05). 
A total of 1,354 protein-coding genes were significantly 
associated with survival in ovarian cancer, and 32 intersect-

ing protein-coding genes from TCGA-OV, GSE18520, and 
GSE26712 datasets were screened for prognostic value in 
ovarian cancer (Fig. 1F). Furthermore, data on these 32 genes 
were filtered using the LASSO-penalised Cox regression anal-
ysis (Fig. 1G, H). Moreover, seven genes, including isocitrate 
dehydrogenase (IDH2), FA complementation group I (FANCI), 
C-X-C motif chemokine receptor 4 (CXCR4), PRAME nuclear 

Table 2. Clinicopathologic characteristics of the training and vali-
dation cohort in ovarian cancer

Training  
cohort

Validation 
cohort

Total No. of patients 304 380

Age (yr) 59.5 (30-87) 59 (21-80)

Stage

II 16 (5.26)

III 242 (79.61)

IV 44 (14.47)

Unknown 2 (0.66)

FIGO stage

I 20 (5.26)

II 31 (8.16)

III 266 (70.00)

IV 63 (16.58)

Grade

G2 26 (8.55)

G3 269 (88.49)

Low 74 (19.47)

High 281 (73.95)

Unknown 9 (2.96) 25 (6.58)

Residual disease

NMD 55 (18.09)

1-10 mm 141 (46.38)

11-20 mm 19 (6.25)

>20 mm 55 (18.09)

Unknown 34 (11.18)

Debulking surgery

Optimal 290 (76.32)

Sub-optimal 88 (23.16)

Inoperable 2 (0.52)

Median survival time (months) 31.5 (1.0-182.7) 25.7 (0.03-44.2)

Values are presented as number (range) or number (%).
FIGO, The International Federation of Gynecology and Obstetrics; 
NMD, no macroscopic disease.
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Fig. 1. Differentially expressed protein-coding genes in ovarian cancer. (A) Volcano plots of the differentially expressed genes. (B, C) In-
tersection of the upregulated and downregulated protein-coding genes in the GSE18520 and GSE26712 datasets. (D, E) Principal compo-
nent analysis plots for performing the batch effect control. (F-H) LASSO-penalised Cox regression analyses for differentially expressed and 
survival-related protein-coding genes. DEG, differentially expressed gene; LASSO, least absolute shrinkage and selection operator; TCGA-
OV, The Cancer Genome Atlas-ovarian cancer.
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receptor transcriptional regulator (PRAME), praja ring finger 
ubiquitin ligase 2 (PJA2), enoyl-CoA delta isomerase 2 (ECI2), 
and AADAC, were identified for conducting further univari-
ate and multivariate Cox regression validation analyses. 
Finally, univariate and multivariate Cox proportional hazard 
regression analyses performed using both the training and 
validation cohorts verified that AADAC was significantly and 

independently correlated with prognosis in ovarian cancer 
(Table 3, Fig. 2).

4. AADAC expression signature is associated with 
prognosis in ovarian cancer

The samples were classified according to the median AA-
DAC expression score then grouped as high -and low-score 

Table 3. Univariate cox analysis of the protein-coding genes

Gene
Training cohort Validation cohort

β HR (95%CI) Wald test P-value β HR (95%CI) Wald test P-value

IDH2 -0.005 0.995 (0.991-0.999) 5.60 0.018 -0.323 0.724 (0.470-1.115) 2.15 0.143

FANCI -0.089 0.915 (0.857-0.976) 7.25 0.007 0.027 1.027 (0.801-1.317) 0.04 0.833

CXCR4 -0.005 0.995 (0.991-0.998) 7.38 0.007 -0.403 0.668 (0.456-0.979) 4.28 0.039

PRAME -0.007 0.993 (0.986-1.000) 3.66 0.056 0.021 1.022 (0.924-1.129) 0.17 0.678

PJA2 0.042 1.043 (1.014-1.073) 8.66 0.003 0.286 1.331 (1.026-1.726) 4.63 0.032

ECI2 -0.054 0.948 (0.912-0.985) 7.62 0.006 Not available Not available Not available Not available

AADAC -0.065 0.937 (0.892-0.984) 6.72 0.010 -0.383 0.682 (0.525-0.885) 8.27 0.004

HR, hazard ratio; CI, confidence interval; IDH2, isocitrate dehydrogenase; FANCI, FA complementation group I; CXCR4, C-X-C motif chemokine 
receptor 4; PRAME, PRAME nuclear receptor transcriptional regulator; PJA2, praja ring finger ubiquitin ligase 2; ECI2, enoyl-CoA delta isomer-
ase 2; AADAC, arylacetamide deacetylase.

Training cohort 

Gene
No. of 

patients
Hazard ratio 

(95% CI)
P value

IDH2 (n=304)
1.00 

(0.99-1.0)
0.512

FANCI (n=304)
0.94

(0.87-1.0)
0.146

CXCR4 (n=304)
1.00 

(0.99-1.0)
0.036*

PRAME (n=304)
0.99 

(0.99-1.0)
0.158

PJA2 (n=304)
1.03

(1.00-1.1)
0.057

ECI2 (n=304)
0.97

(0.94-1.0)
0.09

AADAC (n=304)
0.95 

(0.91-1.0)
0.047*

	 0.9	 0.95	 1.0	 1.05

Fig. 2. Univariate and multivariate Cox regression analyses in (A) the training and (B) validation cohorts. CI, confidence interval; IDH2, iso-
citrate dehydrogenase; FANCI, FA complementation group I; CXCR4, C-X-C motif chemokine receptor 4; PRAME, PRAME nuclear receptor 
transcriptional regulator; PJA2, praja ring finger ubiquitin ligase 2; ECI2, enoyl-CoA delta isomerase 2; AADAC, arylacetamide deacetylase. 
*P<0.05, **P<0.01.

A B Validation cohort

Gene
No. of 

patients
Hazard ratio 

(95% CI)
P value

PRAME (n=380)
1.06 

(0.95-1.19)
0.271

PJA2 (n=380)
1.17 

(0.89-1.54)
0.253

IDH2 (n=380)
0.78

(0.48-1.29)
0.335

FANCI (n=380)
1.05 

(0.79-1.38)
0.751

CXCR4 (n=380)
0.70 

(0.45-1.10)
0.124

AADAC (n=380)
0.69 

(0.53-0.89)
0.005**

	 04	 0.6	 0.8	 1.0	 1.2	1.4	1.6
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Fig. 3. Kaplan-Meier plot and evaluation of the arylacetamide deacetylase (AADAC) signature score in ovarian cancer. (A, D) Kaplan-
Meier plot of the AADAC signature score in the training and validation cohorts. (B, E) Time-dependent ROC curve of the AADAC signature 
score. (C, F) Multivariate Cox regression analysis of the AADAC signature score. ROC, receiver operating characteristic; CI, confidence inter-
val; FIGO, The International Federation of Gynecology and Obstetrics. *P<0.05, **P<0.01, ***P<0.001.
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Fig. 4. Correlation of the arylacetamide deacetylase (AADAC) expression with immune infiltration and immunological signature in ovar-
ian cancer. (A, B) An increased extent of CD4+ memory T cell infiltration was significantly correlated with the upregulation of AADAC. (C) 
Kaplan-Meier plot illustrating CD4+ memory T cell infiltration. (D) CD4+ T cell enrichment analysis in the immunological signature. CI, 
confidence interval; NES, normalized enrichment score.
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signature groups. The Kaplan-Meier analysis revealed a sig-
nificant difference in the outcome of the patients with ovari-
an cancer between the high- and low-score signature groups 
(log-rank test P<0.05; Fig. 3A, D). A better survival outcome 
was significantly correlated with the high-score AADAC ex-
pression signature in the subgroup analysis (Fig. 3C, F). The 
time-dependent area under the ROC curves (AUC) for 1-, 
3-, and 5-year survival in the training and validation cohorts 
are illustrated in Fig. 3B, E, respectively. After combining the 
AADAC signature score with the clinicopathological param-
eters (age, stage, grade, residual disease, and/or debulking 
surgery) in both cohorts, multivariate Cox regression and 
subgroup analyses were conducted, which further indicated 
that the high-score AADAC expression signature was signifi-
cantly and independently correlated with favorable prognosis 
in ovarian cancer (Fig. 3C, F). The evaluation of the variance 
inflation factor suggested that the AADAC expression signa-
ture showed less collinearity with the other clinical variables 
in the model (Supplementary Fig. 2). In order to illustrate the 
reliability of the signature, we sudivided the groups based 
on the upper and lower quantiles of the AADAC expression 
signature score into the following: top 25%, bottom 25%, 
and 25-75% subgroups, and the results still demonstrated 

a favorable prognosis in the top 25% high-score subgroup 
(Supplementary Fig. 3).

5. Immune infiltration and immunological signature 
enrichment in ovarian cancer

Immune infiltration in ovarian cancer was estimated using 
the xCell algorithm. We found that an increased extent of 
CD4+ memory T cell infiltration was significantly correlated 
with the upregulation of AADAC (ρ=0.18; P<0.001; 95% 
confidence interval [CI], 0.22-0.42; Fig 4A, B), and was asso-
ciated with a better survival outcome (Fig. 4C). Furthermore, 
the immunological signature enrichment analysis demon-
strated that upregulated AADAC expression was significantly 
enriched in genes that were overexpressed in the T cell re-
ceptor pathway and CD4+ T cell regulation (Fig. 4D).

6. Nomogram model for the AADAC expression 
signature with clinicopathologic parameters based 
on TCGA-OV cohort

We combined the AADAC expression signature score with 
feasible clinicopathologic parameters, including age, stage, 
grade, residual disease, and signature score (Fig. 5A). Each 
patient was assigned one point for each prognostic param-

Fig. 5. Nomogram model and evaluation of the arylacetamide deacetylase (AADAC) expression signature with clinicopathologic param-
eters in ovarian cancer. (A) Nomogram model of the AADAC expression signature with clinicopathologic parameters. (B-D) Calibration 
curves of the nomogram model for 1-, 3-, and 5-year survival. (E) Time-dependent ROC curves of the nomogram model for 1-, 3-, and 
5-year survival. OS, overall survival; ROC, receiver operating characteristic.
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eter: the higher the total number of points, the poorer the 
outcome. The calibration plots of the nomogram and an 
ideal model were compared; the nomogram showed moder-
ate performance (Fig. 5B-D). Moreover, the time-dependent 
AUC of 1-, 3-, and 5-year overall survival demonstrated that 
our model had a moderate predictive ability (Fig. 5E).

Discussion

Ovarian cancer is the most fatal malignancy associated 
with the female genital tract [2,16]. Most patients are 
diagnosed at an advanced stage with early peritoneal dis-
semination at the primary diagnosis. Patients encounter a 
disastrous relapse even after undergoing primary debulking 
cytoreduction surgery and adjuvant platinum-based chemo-
therapy [16]. Exploration of the significant gene expression 
characteristics in cancerous samples can directly indicate the 
inherent molecular heterogeneity in ovarian cancer cells [17-
19]. With the development and advancement of multiple 
“omics” sequencing techniques, the processing of consider-
able and complex sequencing data using comprehensive and 
integrated bioinformatics methodologies can help us better 
understand the underlying molecular characteristics of the 
cancer genome. In this study, we utilized bioinformatics ap-
proaches to estimate the prognostic impact of AADAC in 
ovarian cancer.

AADAC is a tissue-specific protein-coding gene in humans 
[5] that is highly expressed in the liver but not in the ovarian 
tissues [3,5,6]. The translated product of AADAC participates 
in various activities related to enzymatic bioactivation reac-
tions [5,20]. Jiang et al. [21] demonstrated that intestinal 
AADAC is involved in vicagrel hydrolytic bioactivation to 
further influence platelet function. The platelet-lymphocyte 
ratio has been associated with survival outcomes in various 
cancer subtypes [22-24]. Recently, Toyohara et al.[25] found 
that elevated AADAC expression in vascular smooth muscle 
cells was correlated with cell proliferation, migration, and 
apoptosis.

In the present study, univariate and multivariate Cox regres-
sion analysis results indicated that AADAC overexpression 
was significantly associated with better survival in patients 
with ovarian cancer. Furthermore, survival analysis revealed 
that, compared with a low-score signature, a high-score sig-
nature of AADAC expression was significantly and indepen-

dently related to better outcomes in patients with ovarian 
cancer. Similarly, Liu et al. [26] suggested AADAC expression 
(hazard ratio, 1.112; 95% CI, 1.042-1.186) as a prognostic 
gene signature with applicability in predicting the overall sur-
vival in gastric cancer via an integrated analysis of multiple 
gene expression profiles. Finally, we constructed a nomogram 
based on TCGA-OV cohort and clinicopathologic parameters, 
including the signature score of AADAC expression, age at 
diagnosis, tumor grade, tumor stage, and residual disease 
status. The nomogram constructed in the present study dem-
onstrated a moderate potential for predicting ovarian cancer 
prognosis in clinical practice.

Immune infiltration is highly heterogeneous in ovarian 
cancer [27,28]. The T cell population participates in the 
elicitation of an anti-tumor immune response and is associ-
ated with survival outcomes in patients with ovarian cancer 
[29,30]. Similar to the findings of a previous study [30], we 
observed that a lack of CD4+ memory T cell infiltration in the 
tumor microenvironment was significantly correlated with a 
worse outcome. The results indicated that tumor infiltration 
by the T cell population reflected a tumor-related immune 
response. Thus, reversal of the immunosuppressive tumor 
microenvironment provides the possibility of adopting immu-
notherapy strategies for ovarian cancer treatment. 

The limitations of our study must be acknowledged. First, 
our study lacked the experimental data necessary to validate 
the findings derived from the bioinformatics analyses. Sec-
ond, the mechanisms underlying the regulation of AADAC 
expression, as underlined in the comprehensive molecular 
network, should be further explored. In summary, we iden-
tified and validated the correlation between the AADAC 
expression signature and survival outcome in ovarian can-
cer, highlighting its potential prognostic value. However, 
future research is warranted to validate these findings. The 
AADAC expression was integrated with age, tumor grade, 
tumor stage, and residual disease in clinical practice based 
on the model assessment performed herein; consequently, 
this might promote the stratification of survival prediction in 
ovarian cancer. Finally, upregulated AADAC expression was 
correlated with CD4+ T cell infiltration and regulation, pro-
cesses that participate in the development of adaptive anti-
tumor immunity in the ovarian cancer microenvironment, 
thereby suggesting its potential utility in the prediction of 
immunotherapy efficacy in ovarian cancer.

In conclusion, the AADAC expression signature was as-



www.ogscience.org62

Vol. 65, No. 1, 2022

sociated with better survival outcome and demonstrated a 
favorable prognostic potential for ovarian cancer. Overex-
pressed AADAC correlated with an increased extent of CD4+ 
memory T cell immune infiltration in the tumor microenviron-
ment. Thus, integration of AADAC expression with feasible 
clinicopathological parameters has potential clinical value in 
the prediction of prognosis and immunotherapy efficacy in 
ovarian cancer. 
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