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Introduction

Assisted reproductive technologies (ART) allow for the treat-
ment of most infertile couples with the aim of securing a 
healthy birth. The success of in vitro fertilization (IVF) cycles 
depends on various factors and is generally evaluated by im-
plantation efficiency, clinical pregnancy, and live birth. These 
results are influenced by the ovarian response to stimulation, 
oocyte quality, embryo culture, transfer selections, and the 
age of the patient [1].

It is well established that embryonic aneuploidy is preva-
lent in IVF cycles, especially in women of advanced maternal 
age (AMA) [2]. Most embryos with an abnormal number 
of chromosomes are not compatible with life [3], and these 
fatal genetic defects are responsible for implantation failure 

and early miscarriage after the transfer of a morphologically 
good-quality embryo. This prevalence increases with age; the 
estimated aneuploidy rate increases from 25% for oocytes 
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from women under 35 years old to more than 75% for oo-
cytes from women aged >40 years [4]. On these and many 
other bases, one of the most important challenges for the 
embryologist is to discern which embryo is the most appro-
priate to transfer.

Preimplantation genetic testing (PGT) is a procedure used 
to identify genetic abnormalities in embryos created by IVF 
and can be used as a tool to select embryos of good quality 
for embryo transfer (ET), which, in theory, should improve 
implantation rates, decrease miscarriage rates (MR), and re-
duce the time to achieve a successful pregnancy. However, 
studies that directly compare the outcomes of cycles with 
and without PGT are scarce. Moreover, there are doubts 
about the benefits of using PGT for certain pathologies. 
There are many data points on the benefits of using PGT in 
a distinctive cohort of patients characterized by AMA, recur-
rent implantation failure (RIF) [5], recurrent pregnancy loss 
(RPL), severe male infertility, or elective single ET [6,7]. How-
ever, there are many controversies regarding this topic; thus, 
it needs to be clarified.

Therefore, to fully validate the advantages of PGT for aneu-
ploidy in terms of an increased chance of successful pregnan-
cy and live birth, and to provide an update on the efficacy of 
PGT for aneuploidy (PGT-A) in clinical outcomes, we aimed 
to conduct a systematic review in which we summarized all 
published studies.

Materials and methods

This systematic review was registered with the International 
Prospective Systematic Review Registry of the National In-
stitute of Health Research (PROSPERO). Protocol and regis-
tration number: PROSPERO 2022 CRD42022354697. This 
systematic review was conducted in accordance with the 
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) 2020 guidelines for reporting systematic 
reviews [8]. Institutional Review Board approval was not re-
quired because the present study was a review.

1. Study selection
An electronic database search was conducted using PubMed, 
the Cochrane Library, ClinicalTrials.gov, Scopus, Embase, and 
Google Scholar. The authors used a combination of the fol-
lowing terms: “preimplantation genetic testing”, “PGT-A”, 

“pregnancy”, and “live birth”. The last screening date was 
October 1, 2022.

No restrictions or search filters (publication status, type of 
article, or language of publication) were applied to verify all 
potentially relevant studies.

The search strategy for the PubMed electronic data-
base was as follows: using the advanced search builder in 
PubMed, the following combinations of keywords were 
used: (preimplantation genetic testing) AND (PGT-A) AND 
(pregnancy) AND (live birth), and no filters or limits were 
used.

In addition to PubMed, the Cochrane Library electronic 
database was searched. The search combinations were as 
follows: (preimplantation genetic testing) AND (PGT-A) AND 
(pregnancy); no filters or limits were used.

The electronic databases Scopus and Google Scholar were 
searched using the following words: ((preimplantation AND 
genetic AND testing) AND (PGT-A) AND (live AND birth) AND 
(pregnancy) AND (embryo AND biopsy)).

The search was also conducted in the ClinicalTrials.gov 
electronic database using an advanced search combination 
of “preimplantation genetic testing” and “pregnancy”.

Additionally, the search was conducted using MeSH terms 
in PubMed ((((«Preimplantation Diagnosis”[MeSH]) AND 
“Pregnancy”[MeSH]) AND “Pregnancy Rate”[MeSH]) AND 
“Live Birth»[MeSH]) and in the Cochrane Library (MeSH de-
scriptor: [Preimplantation Diagnosis] explode all trees).

The search was conducted independently by three investi-
gators (L.O., E.K., and S.I.) and the search results were saved 
to a reference manager (Zotero version 6.0.8; Corporation 
for Digital Scholarship, Fairfax, VA, USA). After searching, all 
articles were reviewed based on their titles and abstracts. All 
studies were selected, and each potentially relevant study 
was obtained in full text and independently assessed for 
inclusion by the authors. Additionally, a manual search of 
the references of the articles was performed to identify ad-
ditional studies of interest. Any disagreements regarding the 
inclusion or exclusion of the preselected studies and other 
disagreements during the review process were resolved with 
the help of a fourth author (L.P.).

2. Eligibility criteria and main outcomes
The inclusion criteria for the present systematic review were: 
women of reproductive age who underwent assisted repro-
duction, array comparative genomic hybridization (aCGH) 
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or next-generation sequencing (NGS)-based PGT-A. Fresh 
embryo transfer was considered in groups without PGT-A in-
tervention.

Studies containing information on other molecular meth-
ods used to assess chromosomal content were excluded. The 
use of aCGH or NGS is recommended by the European Soci-
ety of Human Reproduction and Embryology (ESHRE) [9].

Randomized and non-randomized clinical trials published in 
English were included. Papers in languages other than Eng-
lish, case reports, preclinical studies, reviews, opinion articles, 
and studies published as abstracts were excluded.

The primary analysis aimed to assess the risk ratios of the 
clinical pregnancy rate (CPR) and live birth rate (LBR). CPR 
was defined as the number of clinical pregnancies expressed 
per 100 initiated, aspirated, or embryo transfer cycles. LBR 
was defined as the number of deliveries resulting in at least 
one live birth and is expressed per 100 cycle attempts [3]. 

Secondary analyses evaluated MR, implantation (IR), ongo-
ing pregnancy/live birth, and spontaneous abortion rates. MR 
is defined as the spontaneous loss of intrauterine pregnancy 
before 22 weeks of gestational age [3].

The implantation rate was calculated as the number of 
gestational sacs visualized by transvaginal ultrasonography 
(number of implanted embryos) divided by the total number 
of embryos transferred. The ongoing pregnancy/live birth 
rate was defined as the number of ongoing pregnancies 
after the presence of a fetal pole with fetal heart tones and/
or live births, divided by the total number of embryos trans-
ferred.

We grouped these results as “per embryo transfer” and 
“per patient”. “LBR per embryo transfer” refers to the LBR 
calculated based on the number of live births per embryo 
transfer procedure. “LBR per patient” refers to the LBR cal-
culated based on the number of live births per individual 
patient undergoing fertility treatment. “CPR per embryo 
transfer” refers to the percentage of ET procedures that re-
sult in a clinical pregnancy. “CPR per patient” refers to the 
overall percentage of patients who achieve a clinical preg-
nancy following ET. “MR per embryo transfer” refers to the 
percentage of embryos that resulted in miscarriage following 
a transfer procedure. “MR per patient” refers to the likeli-
hood of miscarriage in individual patients undergoing fertility 
treatment.

3. Quality assessment
A risk of bias assessment was performed for each of the in-
cluded studies using the Cochrane Handbook for Systematic 
Reviews of Interventions [10]. Three review authors inde-
pendently evaluated the quality of the selected studies. Any 
discrepancies between the reviewers were resolved through 
discussion or consultation with the fourth review author (L.P.).

Following the Cochrane Handbook for Systematic Reviews 
of Interventions, the risk of bias (RoB) 2 tool [11] was used to 
assess the risk of bias in randomized controlled studies, and 
risk of bias in non-randomised studies-of interventions (ROB-
INS-I) [12] was used for non-randomized studies (prospective 
controlled, prospective cohort, retrospective studies, and 
other types of studies). Additionally, these tools were used to 
assess the risk of bias arising from reporting biases resulting 
from missing synthesis results.

4. Statistical analysis
For quantitative synthesis, a meta-analysis (forest plot) was 
performed using the RevMan 5.4. (Cochrane Collaboration, 
London, UK) (recommended by the Cochrane Society). Ac-
cording to the Cochrane Handbook for Systematic Reviews 
of Interventions, an I2 value of 0 indicates no observed het-
erogeneity, whereas I2 values from 30% to 60% represent 
moderate heterogeneity, I2 values from 50% to 90% repre-
sent substantial heterogeneity, and I2 values from 75% to 
100% represent considerable heterogeneity. Meta-analyses 
with heterogeneity greater than 75% were excluded.

Results 

The entire search strategy and results are presented in the 
flow diagram (Fig. 1). The initial search yielded a total of 321 
articles. After a MeSH search, 120 reports were identified: 
76 from PubMed and 44 from the Cochrane Library. After 
removing duplicates and searching the titles and abstracts of 
the articles, 296 publications were selected. Therefore, 75 re-
ports remained for full-text screening and analysis based on 
our inclusion criteria.

Fifty-six articles did not meet the inclusion criteria for vari-
ous reasons, as detailed in Fig. 1, and were excluded from 
the study. The most common reasons for exclusion were that 
the article concerned a conference abstract [13-19], absence 
of relevant inclusion criteria [20-49], absence of published 
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study results [50,51], absence of a control group [52-63], 
and some studies [64-68] were review articles.

Additionally, 51 articles were found in the references of the 
19 articles included in the qualitative analyses, all of which 
met the eligibility criteria. However, none of these studies 
were included in the systematic review because they were 
duplicates found earlier. Therefore, 19 studies [69-87] were 
retained for qualitative synthesis.

Five publications were randomized studies and 14 were 
nonrandomized studies. The process of inclusion and exclu-
sion is detailed in the PRISMA flow diagram shown in Fig. 1.  
The characteristics of the included studies are provided 
in Table 1. The outcomes of the studies included in the meta-
analysis are presented in Table 2.

According to the Cochrane Handbook, three reviewers 
(L.O., E.K., and S.I.) assessed the risk of bias in each of the 
included studies using RoB 2 for randomized control trials 
and ROBINS-I for non-randomized trials. Disagreements were 
resolved through discussion with a fourth author (L.P.)

Visualization tools were created using ROBVIS App (National 
Insitute of Health Research, Newcastle upon Tyne, UK) [88]. 
This application created “traffic light” graphs of domain-

level judgments for each result and weighted bar graphs of 
the distribution of risk-of-bias judgments within each bias 
domain.

Based on these tools, randomized controlled trials had a 
low risk of bias and nonrandomized trials had a moderate 
risk of bias (Fig. 2).

1. Clinical pregnancy rates per embryo transfer
Eight studies reported results on CPR per ET cycle in women 
aged 35 years or older (risk ratio [RR], 1.44; 95% confidence 
interval [CI], 1.19-1.75; P=0.0002). Heterogeneity in this 
comparison was 55% (Fig. 3A). In this group, PGT-A im-
proved CPR.

2. Live birth rates per embryo transfer
Five studies reported results on LBR per ET cycle in women 
35 years old or younger (RR, 1.32; 95% CI, 1.11-1.57; 
P=0.002). The live birth rate per ET improved after PGT-A 
compared to controls. Heterogeneity in this comparison was 
72% (Fig. 3B).

Fig. 1. Flow diagram of the literature search and study selection process according to the PRISMA guidelines. PRISMA, Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses. 
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3. Live birth rates per patient
Two studies reported results on LBR per patient in women 
38 years of age or younger (RR, 0.97; 95% CI, 0.87-1.09; 
P=0.59). No significant differences were found between 
the two groups. Heterogeneity in this comparison was 30%  
(Fig. 4A).

Two studies reported results on LBR per patient in the over-
35-year-old age group; in this comparison, PGT-A improved 
live birth rates (RR, 1.65; 95% CI, 1.18-2.30; P=0.004). The 
heterogeneity of this comparison was 0% (Fig. 4B).

Among patients aged <35 years, PGT-A resulted in a higher 
LBR per ET than in those who did not undergo PGT-A. How-
ever, no significant differences were observed in the number 
of live births per patient in this age group. In patients aged 
>35 years, PGT-A improved live birth rates compared to 
those without PGT-A. Overall, PGT-A appears to have a more 
positive effect on live birth outcomes in older patients.

4. Effect of PGT-A on the live birth rate in patients 
with a poor prognosis
This meta-analysis of eight studies compared the LBR in pa-
tients with a history of previous miscarriage, RPL, or RIF (RR, 
1.47; 95% CI, 1.14-1.90; P=0.003). The heterogeneity of 
this comparison was 68%. Thus, PGT-A improved LBR in this 
cohort of patients (Fig. 5A).

5. Miscarriage rates per embryo transfer cycle
Four studies reported results on MR per cycle of ET in wom-
en 35 years old or younger (RR, 0.80; 95% CI, 0.49-1.31; 
P=0.37). Consequently, no significant difference was ob-
served between the PGT-A and control groups. Heterogene-
ity in this comparison was 26% (Fig. 5B).

Seven studies reported results on MR in the over-35-year-
old age group. No significant differences between the two 
groups (RR, 0.72; 95% CI, 0.41-1.27; P=0.26). Heterogeneity 
in this comparison was 62% (Fig. 5C).

Conclusion

1. Our results
In this meta-analysis, we evaluated the effectiveness of PGT-A 
in IVF/intracytoplasmic sperm injection (ICSI) cycles in patients 
of different ages and found that PGT improved the efficiency 
of ART, increasing clinical pregnancy and LBR, especially St
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Table 2. Outcomes of the included literature

Study Design Outcome

Randomized control trials

Yang et al. [71] (2012) Randomized pilot study Clinical pregnancy rate

·Morphology+aCGH 39.0 (70.9); P=0.017

·Morphology alone 22.0 (45.8); P=0.017

Ongoing pregnancy rat (≥20 weeks GA)

·Morphology+aCGH 38.0 (69.1); P=0.009

·Morphology alone 20.0 (41.7); P=0.009

Miscarriage rate

·Morphology+aCGH 1.0 (2.6); P=0.597

·Morphology alone 2.0 (9.1); P=0.597

Rubio et al. [78] (2017) Multicenter, prospective, and 
randomized clinical trial

Clinical pregancy rate per ET

·PGD-A 54.4 (37/68)

·Control 43.1 (41/105); P=NS

Live birth rate

·PGD-A 31.9 (44/138)

·Control 18.6 (26/140); P=0.003

Miscarriage rate

·PGD-A 2.7 (1)

·Control 39.0 (16); P=0.0007

Munné et al. [79] (2019) Randomized controlled trial Miscarriage rate

·PGT-A 9.9 (27/274)

·Control 9.6 (30/313); P=0.89

Ongoing pregnancy rate

·PGT-A 50.0 (137/274)

·Control 45.7 (143/313); P=0.317

Ozgur et al. [80] (2019) Randomized controlled trial Clinical pregnancy

·PGT-A: euploid subgroup 61.3 (49/80)

·Morphology group 68.5 (76/111); P=0.301

Miscarriage

·PGT-A: euploid subgroup 6.1 (3/80)

·Morphology group 14.5 (11/111); P=0.148

Live birth

·PGT-A: euploid subgroup 56.3 (45/80)

·Morphology group 58.6 (65/111); P=0.750

Yan et al. [73] (2021) Multicenter, randomized, and 
controlled trial

Cumulative live birth rate

·PGT-A 77.2 (468); P<0.001

·Conventional-IVF 81.8 (496); P<0.001

Cumulative clinical pregnancy

·PGT-A 83.3 (505)

·Conventional IVF 91.7 (556)
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Study Design Outcome

Cumulative pregnancy loss

·PGT-A 8.7 (46/526)

·Conventional-IVF 12.6 (72/571)

Non-randomized trials

Lee et al. [69] (2019) Retrospective study Pregnancy rate

·PGT-A 65.6 (40/61); P=0.067

·Control 49.2 (30/61); P=0.067

Live birth rate

·PGT-A 54.1 (33/61); P=0.018

·Control 32.8 (20/61); P=0.018

Miscarriage rate

·PGT-A 17.5 (7/40); P=0.126

·Control 33.3 (10/30); P=0.126

Implantation rate

·PGT-A 56.1 (55/98); P<0.001

·Control 27.3 (38/139); P<0.001

The maternal age

·PGT-A 39.6±1.7; P=0.003

·Control 38.8±1.1; P=0.003

Masbou et al. [70] (2019) Retrospective cohort study Ongoing pregnancy rate/live birth rate

·FET with PGT-A 54.6 (101/185); P>0.05

·FET without PGT-A 45.1 (64/144); P>0.05

·Fresh without PGT-A 55.4 (62/112); P>0.05

Implantation rate

·FET with PGT-A 63.2 (117/185); P>0.05

·FET without PGT-A 56.3 (81/144); P>0.05

·Fresh without PGT-A 70.5 (79/112); P>0.05

Spontaneous abortion rate

·FET with PGT-A 14.5; P>0.05

·FET without PGT-A 19.8; P>0.05

Lee et al. [72] (2015) Retrospective cohort study Live birth rate

·PGS FET 45.5 (25/55)

·No-PGS FET 19.0 (12/63)

·No-PGS fresh 15.8 (48/303); P=0.0028 (FET vs. euploid FET)

Implantation rate

·PGS FET 50.9 (28/55)

·No-PGS FET 25.4 (16/63)

·No-PGS fresh 23.8 (72/303); P=0.0072 (FET vs. euploid FET)

Deng et al. [74] (2020) Retrospective cohort study Clinical pregnancy rate per retrieval

·PGT-A 7.1 (17/241); P=0.526

·Non PGT-A 8.9 (10/112); P=0.526

Table 2. Outcomes of the included literature (Continued)
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Study Design Outcome

Miscarriage rate per pregnancy

·PGT-A 5.9 (1/17); P=0.047

·Non PGT-A 40.0 (4/10); P=0.047

Live birth rate per retrieval

·PGT-A 6.6 (16/241); P=0.814

·Non PGT-A 5.4 (6/112); P=0.814

Zhou et al. [75] (2021) Retrospective study Clinical pregancy rate per ET

·PGT-A 67.23 (80/119); P=0.01

·Control 51.85 (84/162); P=0.01

Live birth rate per ET

·PGT-A 45.38 (54/119); P=0.44

·Control 40.74 (66/162); P=0.44

Miscarriage rate per CP

·PGT-A 16.25 (13/80); P=0.73

·Control 14.29 (12/84); P=0.73

Sanders et al. [76] (2021) Retrospective cohort analysis Live birth per ET

·PGT-A 38.4 (203/529); P<0.001

·Non PGT-A 30.5 (27,449/90,097); P<0.001

Live birth PTC

·PGT-A 38.5 (203/527); P=0.026

·Non PGT-A 33.9 (27,449/80,097); P=0.026

Tiegs et al. [77] (2021) Multicenter, prospective, blinded, 
and nonselection study

Sustained implantation rate

·PGT-A 47.9 (232/484); P=0.17

·Control 45.8 (553/1,208); P=0.17

Sato et al. [81] (2019) A multicenter, prospective study In patients with a history of RPL

Live births/patients

·PGT-A 26.8 (11/41)

·Non-PGT-A 21.1 (8/38); P=0.60

Live births/embryo transfers

·PGT-A 52.4 (11/21)

·Non-PGT-A 21.6 (8/37); P=0.028

Clinical pregnancies/embryo transfers

·PGT-A 66.7 (14/21)

·Non-PGT-A 29.7 (11/37); P=0.008

Miscarriages/clinical pregnancies

·PGT-A 14.3 (2/14)

·Non-PGT-A 20.0 (2/10); P=0.68 (0.06-6.51)

In patients with a history of RIF

Live births/embryo transfers

·PGT-A 62.5 (15/24)

·Non-PGT-A 31.7 (13/41); P=0.016

Table 2. Outcomes of the included literature (Continued)
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Study Design Outcome

Live births/patients

·PGT-A 35.7 (15/42) 

·Non-PGT-A 26.0 (13/50); P=0.26

Clinical pregnancies/embryo transfers

·PGT-A 70.8 (17/24)

·Non-PGT-A 31.7 (13/41); P=0.003

Miscarriages/clinical pregnancies

·PGT-A 11.8 (2/17)

·Non-PGT-A 0.0 (0/13); P=0.999

Doyle et al. [82] (2020) Retrospective paired cohort study Live birth

First embryo transfer results

·PGT-A 53.8

·No PGT-A 55.8; P=0.44

All embryo transfer outcomes

·PGT-A 48.4

·No PGT-A 47.2; P=0.7

Total pregnancy loss

First embryo transfer results

·PGT-A 13.0

·No PGT-A 15.9; P=0.29

All embryo transfer outcomes

·PGT-A 13.4

·No PGT-A 17.1; P=0.16

Whitney et al. [83] 
(2016) 

Retrospective cohort study Per transfer arm PGS versus no-PGS in <34, 35-37, 38-40, 41-42, and 
43+aged groups

CPR per ET 88.4 (38/43) vs. 51.6 (33/64); P≤0.01

·85.4 (35/41) vs. 62.5 (20/32); P≤0.05; 83.8 (31/37) vs. 37.1 (13/35); 
P≤0.01

·66.7 (8/12) vs. 6.7 (1/15); P≤0.01; 100.0 (1/1) vs. 0.0 (0/7); P=0.11

Live birth per ET in ≤34, 35-37, 38-40, 41-42, and 43+aged groups

·81.4 (35/43) vs. 46.9 (30/64); P≤0.01; 73.1 (30/41) vs. 53.1 (17/32); 
P=0.08; 81.1 (30/37) vs. 28.6 (10/35); P≤0.01; 66.7 (8/12) vs. 6.7 (1/15); 
P≤0.01; 100.0 (1/1) vs. 0.0 (0/7); P=0.111

Implantation per ET in 34, 35-37, 38-40, 41-42, and 43+age groups

·84.6 (44/52) vs. 39.5 (49/124); P≤0.01; 78.6 (44/56) vs. 36.6 (26/71); 
P≤0.01

·81.4 (35/43) vs. 23.6 (17/72); P≤0.01; 2.2 (13/18) vs. 2.6 (1/38); P≤0.01

·100.0 (1/1) vs. 0.0 (0/19); P≤0.05

Live birth/cycle

·76.1 vs. 46.2; P≤0.01; 69.8 vs. 48.6; P=0.07

·63.8 vs. 27.8; P≤0.01; 28.6 vs. 6.3; P=0.124

·12.5% vs. 0.0; P=1.0

Table 2. Outcomes of the included literature (Continued)
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Study Design Outcome

Overall spontaneous abortion rate

·PGS 4.4

·Non-PGS 12.9; P≤0.05

Namath et al. [84] (2021) A retrospective cohort study Live birth rate

·PGT-A 41.2 (80/194)

·Non-PGT-A 43.7 (157/389); P=0.9

Awadalla et al. [85] 
(2022)

In retrospective cohort study Live birth rate per ET

·PGT-A 70.0 (73/104)

·Non-PGT-A 43.0 (88/203); P<0.01

Martello et al. [86] 
(2021)

The paired cohort retrospective 
study

Pregnancy rate

·PGT-A 77.3 (17/22); P=1.0000

·Control 72.7 (16/22); P=1.0000

Live birth rate

·PGT-A 59.1 (13/22); P=0.4646

·Control 45.5 (10/22); P=0.4646

Miscarriage rate

·PGT-A 13.6 (3/22); P=1.0000

·Control 9.1 (2/22); P=1.0000

Implantation rate

·PGT-A 72.0 (18/22); P=0.4040

·Control 60.0 (18/22); P=0.4040

Pantou et al. [87] (2022) Retrospective cohort study In patients with AMA

Pregnancy rate/ET

·PGT-A (26/51)

·Control (63/197)

Live birth rate/ET

·PGT-A (18/51); P=0.116

·Control (48/197); P=0.116

Miscarriage rate/ET

·PGT-A (8/51)

·Control (14/197)

Implantation rate/ET

·PGT-A (27/51); P=0.427

·Control (92/197); P=0.427

In patients with RM

Pregnancy rate/ET

·PGT-A (11/18)

·Control (26/40)

Live birth rate/ET

·PGT-A (9/18)

·Control (5/40)

Table 2. Outcomes of the included literature (Continued)
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in women of AMA and with a poor prognosis. However, 
no benefits were demonstrated when applied to younger 
women. The advantages of these groups of patients can be 
explained by the higher rates of aneuploidy, which is ratio-
nal because it is well established that embryonic aneuploidy 
is the main genetic factor influencing human reproductive 
success, not patient age alone. Poor oocyte quality in these 
patients can be explained by cytoplasmic errors, particularly 
in mitochondrial function [89,90]. According to our results 
in the specific population under 35 years of age, PGT-A did 
not reduce the MR as expected, which can be attributed to 
different factors. MR increase with age, and although this 
population is still relatively young, some age-related factors 
that are not related to chromosomal abnormalities may con-
tribute to miscarriages. For example, pregnancy complica-
tions such as gestational diabetes or preeclampsia are more 
common in older mothers [91-93].   

It is also important to highlight that the PGT-A is not a per-

fect test, and there can be technical limitations that lead to 
false results. For example, mosaic embryos (with both normal 
and abnormal cells) may be incorrectly classified as abnormal 
and not transferred, or vice versa. Additionally, some chro-
mosomal abnormalities, particularly those that affect only a 
small portion of the chromosome, may not be detected by 
PGT-A [77,94,95]. Additionally, studies that have looked at 
the effectiveness of PGT-A in reducing MR in this age group 
may have had small sample sizes, which may limit the gener-
alizability of the results.

In a study conducted by Anderson et al. [96] in 2020, the 
authors suggested that age did not appear to be a factor 
when considering embryo implantation and live birth rates 
between treatment groups.

However, according to published data, aneuploid embryos 
account for at least 10% of human pregnancies and the inci-
dence can exceed 50% in women over 35 years of age [97].

However, these findings remain controversial. One of the 

Study Design Outcome

Miscarriage rate/ET

·PGT-A (2/18)

·Control (21/40)

Implantation rate/ET

·PGT-A (11/18)

·Control (28/40)

In patients with RIF

Pregnancy rate/ET

·PGT-A (14/23)

·Control (12/42)

Live birth rate/ET

·PGT-A (11/23)

·Control (8/42)

Miscarriage rate/ET

·PGT-A (3/23)

·Control (3/42)

Implantation rate/ET

·PGT-A (16/23)

·Control (14/42)

aCGH, array comparative genomic hybridization; GA, gestational age; ET, embryo transfer; PGD-A, preimplantation genetic testing for aneu-
ploidy; NS, not significant; PGT-A, preimplantation genetic testing for aneuploidy; IVF, in vitro fertilization; FET, frozen embryo transfer; PGS, 
preimplantation genetic screening; CP, clinical pregnancy; PTC, per treatment cycle; RPL, recurrent pregnancy loss; RIF, recurrent implantation 
failure; CPR, clinical pregnancy rate; AMA, advanced maternal age; RM, recurrent miscarriages.

Table 2. Outcomes of the included literature (Continued)
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included studies, the Single Embryo Transfer of Euploid Em-
bryo (STAR) study trial [79], was highly debated. For example, 
the published reanalysis of this study revealed significant 
shortcomings in its statistical analyses [98]. Thus, the STAR 
study revealed that PGT-A did not beneficially affect IVF 
outcomes. Moreover, based on the Preimplantation Genetic 
Diagnosis International Society (PGDIS) 2019 analysis of this 
trial, not even reaching statistical significance (P=0.053), the 
authors did not hesitate in reporting that “a significant in-
crease in ongoing pregnancy rate” was observed [99].

2. Stage of embryo biopsy and its influence on 
embryo development
One of the factors that can affect the results is that the stag-
es of embryo biopsy in the enrolled studies were different; 
some of them involved biopsy in the cleavage stage, while 
others involved biopsy in the blastocyst stage. However, the 
role of biopsy duration remains controversial. According to 
the ESHRE recommendations on the most appropriate day, 
blastocyst biopsy is performed on days 5-7 post-insemina-
tion, according to the rate of development, once the inner 
cell mass is clearly visible [100].

Some authors have suggested that blastomere biopsy can 
lead to potential embryonic damage, higher levels of ab-
normality, and mosaicism. In a randomized controlled trial 
conducted by Scott et al. [101] in 2013, the effect of pre-im-
plantation genetic testing for monogenic diseases biopsy on 
developing embryos was assessed, and the results demon-
strated a relative 39% reduction in IR in the cleavage-stage 
biopsy group compared to controls without a reduction in 
the trophectoderm (TE) biopsy group. Only the D5 biopsy 
group showed a statistically significant increase in the LBR 
per ET. In a recent study, Sarkar et al. [102] assessed whether 
embryo biopsy for PGT-A affected the birth weight or pre-
term birth rate. The authors reported that trophectoderm bi-
opsy for PGT-A did not increase the risk of small for gestation 
age, low birth weight, or preterm birth in IVF pregnancies 
[102]. 

3. Comprehensive chromosome screening (CCS)
The types of PGT methods used for complete chromosome 
screening (aCGH and NGS) in the included studies differed, 
which may have affected the results. NGS is the newest 
technique used for incorporation into second-generation 
PGT. Various studies that validated the precision of the NGS 
approach for embryonic CCS have demonstrated 100% 
consistency in the diagnosis of aCGH [103,104]. NGS and 
aCGH results were compared. In a retrospective cohort study, 
Friedenthal et al. [105] compared the IR, ongoing pregnancy/ 
LBR, biochemical pregnancy rate, and spontaneous abor-
tion between NGS and aCGH groups. Preimplantation ge-
netic screening using NGS significantly improves IR and LBR 
compared with PGT using aCGH in single-thawed euploid 
embryo transfer cycles, which might be attributed to the ad-
vantages of NGS in detecting small chromosomal deletions, 
duplications, and mosaicism [105].

Fig. 2. Traffic light plots. (A) RoB2.0 tool for randomized con-
trolled trials; (B) ROBINS-I tool for nonrandomized studies of 
interventions. RoB2, risk of bias-2; ROBINS-I, risk of bias in non-
randomised studies-of Interventions.
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4. Embryo mosaicism
Embryo mosaicism occurring during mitotic division of the 
embryo, giving rise to chromosomally different cell lines, is 

one of the main sources of error when performing PGT-A 
[106-111]. Several studies have shown that mosaic embryos 
theoretically have a reduced IR and an increased risk of mis-

Fig. 4. (A) Forest plot regarding the live birth rate in IVF patients aged <38 years (per patient). (B) Forest plot of the live birth rate in 
IVF patients aged >35 years (per patient). PGT-A, preimplantation genetic testing for aneuploidy; CI, confidence interval; IVF, in vitro 
fertilization.

A
PGT-A Control Risk ratio Risk ratio

Study or subgroup Events Tota  Events Tota  Weight M-H, random, 95% CI M-H, random, 95% CI
Yan, 2021 468 606 496 606 81.4% 0.94 [0.89, 1.00]
Zhou, 2021 54 93 66 124 18.6% 1.09 [0.86, 1.39]

Total (95% CI) 699 730 100.0% 0.97 [0.87, 1.09]
Total events 522 562
Heterogeneity: Tau2=0.00; Chi2=1.42; df=1 (P=0.23); I2=30%
Test for overall effect: Z=0.54 (P=0.59)

B
PGT-A Control Risk ratio Risk ratio

Study or subgroup Events Tota  Events Tota  Weight M-H, random, 95% CI M-H, random, 95% CI
Rubio, 2017 44 100 26 105 70.5% 1.78 [1.19, 2.65]
Sato, 2019 15 42 13 50 29.5% 1.37 [0.74, 2.55]

Total (95% CI) 142 155 100.0% 1.65 [1.18, 2.30]
Total events 59 39
Heterogeneity: Tau2=0.00; Chi2=0.47; df=1 (P=0.49); I2=0%
Test for overall effect: Z=2.91 (P=0.004)
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Fig. 3. (A) Forest plot regarding the clinical pregnancy rate in IVF patients aged >35 years (per embryo transfer cycle). (B) Forest plot of 
the live birth rate in IVF patients aged <35 years (per embryo transfer cycle). PGT-A, preimplantation genetic testing for aneuploidy; CI, 
confidence interval; IVF, in vitro fertilization.

A
PGT-A Control Risk ratio Risk ratio

Study or subgroup Events Tota  Events Tota  Weight M-H, random, 95% CI M-H, random, 95% CI
Deng, 2020 17 241 10 112 5.2% 0.79 [0.37, 1.67]
Lee, 2019 40 61 30 61 14.6% 1.33 [0.97, 1.82]
Martello, 2021 17 22 16 22 13.6% 1.06 [0.75, 1.50]
Munne, 2019 62 122 54 145 16.0% 1.36 [1.04, 1.79]
Pantou, 2022 26 51 63 197 13.7% 1.59 [1.14, 2.23]
Rubio, 2017 37 68 41 95 14.4% 1.26 [0.92, 1.73]
Sato, 2019 31 45 24 78 12.2% 2.24 [1.52, 3.30]
Whitney, 2016 31 37 13 35 10.3% 2.26 [1.43, 3.55]

Total (95% CI) 647 745 100.0% 1.44 [1.19, 1.75]
Total events 261 251
Heterogeneity: Tau2=0.04; Chi2=15.70; df=7 (P=0.03); I2=55% 
Test for overall effect: Z=3.71 (P=0.0002)

B
PGT-A Control Risk ratio Risk ratio

Study or subgroup Events Tota  Events Tota  Weight M-H, random, 95% CI M-H, random, 95% CI
Awadalla, 2022 73 104 88 203 20.8% 1.62 [1.32, 1.98]
Masbou, 2018 101 185 64 144 19.4% 1.23 [0.98, 1.54]
Ozgur, 2019 45 80 65 111 18.1% 0.96 [0.75, 1.23]
Sanders, 2021 203 529 27,449 90,097 26.0% 1.26 [1.13, 1.40]
Whitney, 2016 35 43 30 64 15.6% 1.74 [1.29, 2.34]

Total (95% CI) 941 90,619 100.0% 1.32 [1.11, 1.57]
Total events 457 27,696
Heterogeneity: Tau2=0.03; Chi2=14.54; df=4 (P=0.006); I2=72%
Test for overall effect: Z=3.16 (P=0.002)
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carriage, pregnancy complications, and clinically affected live 
births [112].

According to the PGDIS 2021 statement [112], embryos 
with a mosaicism rate lower than 20% can be considered 
euploid (and transferable), whereas embryos with more than 
80% abnormal cells are classified as aneuploid. The remain-
ing (20-80%) can be classified as mosaics. However, estab-
lishing the thresholds between which embryos can be con-
sidered transferable remains controversial. In a criticism of 
the earlier PGDIS 2019 position statement [99], the authors 
declared that accurate percentages of aneuploid DNA could 
not be calculated because of the inability to determine how 
many cells were damaged during biopsy, contributing to the 

fractional loss of DNA content and sample contamination 
[113].

A single trophectoderm biopsy of on average 5-6 cells, as 
is currently the practice in PGT-A at the blastocyst stage, can-
not mathematically represent the whole embryo. Gleicher et 
al. [114] established two mathematical models to assess the 
probabilities of false-negative and false-positive results of an 
average 6-cell biopsy from approximately 300-cell TE. Both 
models revealed that even under the best-case scenario, 
assuming an even distribution of mosaicism in TE (because 
mosaicism is usually clonal and a highly unlikely scenario), a 
biopsy of at least 27 TE cells would be required to achieve 
minimal diagnostic predictability from a single TEB [114]. 

Fig. 5. (A) Effect of PGT-A on the live birth rate in patients with a poor prognosis (per embryo transfer cycle). (B) Miscarriage rate in IVF 
patients aged <35 years old (per embryo transfer cycle). (C) Miscarriage rate in IVF patients aged >35 years (per embryo transfer cycle). 
PGT-A, preimplantation genetic testing for aneuploidy; CI, confidence interval; IVF, in vitro fertilization.

A
PGT-A Control Risk ratio Risk ratio

Study or subgroup Events Tota  Events Tota  Weight M-H, random, 95% CI M-H, random, 95% CI
Deng, 2020 16 241 6 112 5.7% 1.24 [0.50, 3.08]
Lee, 2019 33 64 20 61 12.9% 1.57 [1.02, 2.42]
Lee, 2015 25 55 12 63 9.9% 2.39 [1.33, 4.29]
Martello, 2021 13 22 10 22 10.0% 1.30 [0.73, 2.31]
Ozgur, 2019 45 80 65 111 17.1% 0.96 [0.75, 1.23]
Pantou, 2022 38 92 61 279 15.2% 1.89 [1.36, 2.63]
Sato, 2019 26 45 21 78 12.6% 2.15 [1.38, 3.34]
Zhou, 2021 54 119 66 162 6.6% 1.11 [0.85, 1.46]

Total (95% CI) 718 888 100.0% 1.47 [1.14, 1.90]
Total events 250 261
Heterogeneity: Tau2=0.08; Chi2=21.82; df=7 (P=0.003); I2=68% 
Test for overall effect: Z=2.96 (P=0.003)

B
PGT-A Control Risk ratio Risk ratio

Study or subgroup Events Tota  Events Tota  Weight M-H, random, 95% CI M-H, random, 95% CI
Masbou, 2018 27 185 29 144 49.0% 0.72 [0.45, 1.17]
Munne, 2019 17 152 14 168 33.6% 1.34 [0.69, 2.63]
Ozgur, 2019 3 80 11 111 13.3% 0.38 [0.11, 1.31]
Yang, 2012 1 55 2 48 4.1% 0.44 [0.04, 4.66]

Total (95% CI) 472 471 100.0% 0.80 [0.49, 1.31]
Total events 48 56
Heterogeneity: Tau2=0.07; Chi2=4.08; df=3 (P=0.25); I2=26% 
Test for overall effect: Z=0.89 (P=0.37)

C
PGT-A Control Risk ratio Risk ratio

Study or subgroup Events Tota  Events Tota  Weight M-H, random, 95% CI M-H, random, 95% CI
Deng, 2020 1 241 4 112 5.5% 0.12 [0.01, 1.03]
Doyle, 2020 35 262 176 1,029 25.7% 0.78 [0.56, 1.09]
Lee, 2019 7 40 10 30 17.5% 0.53 [0.23, 1.22]
Martello, 2021 3 22 2 22 8.1% 1.50 [0.28, 8.12]
Munne, 2019 10 122 16 145 18.9% 0.74 [0.35, 1.58]
Pantou, 2022 8 51 14 197 17.9% 2.21 [0.98, 4.97]
Rubio, 2017 1 68 16 95 6.3% 0.09 [0.01, 0.64]

Total (95% CI) 806 1,630 100.0% 0.72 [0.41, 1.27]
Total events 65 238
Heterogeneity: Tau2=0.30; Chi2=15.69; df=6 (P=0.02); I2=62%
Test for overall effect: Z=1.13 (P=0.26)
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The data did not support an equal distribution of mosaicism 
throughout the trophectoderm and suggesting that mosa-
icism levels may be highly dependent on the biopsy [115]. 
Therefore, the trophectoderm alone cannot reliably represent 
the inner cell mass for biological reasons. Given the nature 
of the biology of mosaicism genesis and propagation, any bi-
opsy piece analyzed as mosaic may not accurately reflect the 
surrounding trophectoderm or the rest of the embryo [116]. 

It is important to assess the efficacy of PGT using the “per 
patient” indicator to avoid excluding patients with poorer 
prognosis whose embryos may never reach ET [99]. Prelimi-
nary data suggested a 50% aneuploidy rate at the blastocyst 
stage (and even higher rates at cleavage stages) and with 
further gradual self-correction downstream [117]. According 
to PGDIS 2019, given the current knowledge base, discarding 
embryos based on a single TE biopsy appears shortsighted, 
and represents another misunderstanding of embryo biology 
[99].

However, the transfer of blastocysts in which mosaic an-
euploidies have been found should only be considered fol-
lowing expert advice and appropriate genetic counseling for 
patients. It is recommended that clinicians inform patients 
that there is currently no evidence-based method available to 
determine which embryos with mosaic results have the best 
chance of resulting in a successful pregnancy or which may 
have the lowest risk of an undesired outcome [118,119]. The 
question of the correlation between transfer of (under PGDIS 
definition) “mosaic” embryos and reduced implantation and/
or increased rates of miscarriage needs further investigation, 
and the current available data clearly dispute these proposi-
tions [99].

Patient counseling should include a discussion of various 
possible explanations for the mosaic results of the PGT-A and 
potential outcomes. In clinical medicine, the responsibility 
of establishing validated evidence in support of a proposed 
treatment and/or test rests with the proponents of the treat-
ments or tests, mandating that such evidence exists before 
such treatments or tests are integrated into routine clinical 
practice [100].  

Embryo mosaicism is another limitation of this study. The 
transfer threshold differed among the enrolled studies, which 
could also affect the results of these studies.

5. Fresh and frozen embryos were transferred
Both fresh and frozen embryos were used in the studies 

included in our meta-analysis. There are still many concerns 
regarding the effect of cryopreservation on the health of 
children born and the outcome data after frozen ET. In their 
systematic review, Maheshwari et al. [120] analyzed obstetric 
and perinatal outcomes after fresh or thawed frozen ET and 
found that frozen-thawed ET was associated with better 
perinatal outcomes than fresh IVF embryos. Based on these 
findings, we assume that the differences in the included 
studies may be confounding factors affecting the results.

6. Male factor
We did not consider the influence of male factor on infertil-
ity; however, some aneuploidies may be derived from sperm. 
Men with an abnormal karyotype and Y chromosome de-
letions tend to produce sperm with an unbalanced set of 
chromosomes. Several other factors such as varicocele, che-
motherapy, age, and lifestyle can also negatively influence 
meiotic division during spermatogenesis [121]. Petousis et al. 
[122] demonstrated that the rate of abnormal spermatozoa 
after fluorescence in situ hybridization examination was sig-
nificantly higher in male patients with infertility (55.8% vs. 
15.0%) and that teratozoospermia was strongly correlated 
with the incidence of chromosome 17 aneuploidy. Recent 
studies examining the effect of advanced paternal age on 
sperm aneuploidy rates have found that men over 50 years 
of age have more DNA-damaged spermatozoa, a lower rate 
of blastocyst development, a higher overall rate of aneuploi-
dy, and a higher rate of trisomy [123,124].

7. Cost-effectiveness
The PGT-A strategy becomes more cost-effective with age. 
Somigliana et al. [125] stated that it is not economically ad-
vantageous to use PGT in women aged <36 years of age. 
Sensitivity analyses that vary the cost of ET, the cost of ge-
netic tests, the magnitude of the adverse effect of PGT-A on 
LBR, and overall LBR alter the efficacy thresholds to some 
extent but generally support the notion that PGT-A may be 
cost-effective in some specific subgroups [125-127].

Our systematic review and meta-analysis evaluated the ef-
fectiveness of PGT-A in IVF/ICSI cycles in patients of different 
ages and included 19 clinical trials that evaluated approxi-
mately 100,000 IVF cycles in quantitative synthesis. Further-
more, well-defined eligibility criteria that prioritized only 
studies using aCGH or NGS were used. Meta-analyses with 
moderate or low heterogeneity were included.
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Nevertheless, there were limitations to our systematic 
review and meta-analysis. First, there was a lack of clinical 
studies with a low risk of bias. Thus, our meta-analysis in-
cluded studies with both moderate and low risk. Additionally, 
we could not perform subgroup analysis in cases of high het-
erogeneity because of the small number of relevant clinical 
studies. The reasons for the high heterogeneity may include 
the inclusion of randomized and non-randomized studies, 
studies with low and moderate risk of bias, patients with 
poor prognosis with different pathologies, and different days 
of embryo biopsy in these studies (Table 1).  

Second, our search strategy included studies published only 
in English; conference abstracts were excluded, limiting our 
electronic search. Additionally, not every study transferred 
mosaic embryos, and this was not mentioned by all of the 
authors. Owing to the known inaccuracy of PGT-A test-
ing and the possible natural resolution of mosaicism, some 
authors have suggested that mosaic embryos should be 
considered normal and transferred [99]. Currently, this is not 
standard practice.

Moreover, the outcome “per embryo transfer” is contro-
versial regarding PGT-A studies. For example, Rubio et al. 
[78] did not use a single ET. However, in the study published 
by Wilkinson [128], participants refused to perform ET in 
cases of poor prognosis.  

The largest trial included in our systematic review and 
meta-analysis by Sanders et al. [76] was rebutted by Roberts 
et al. [129]. These authors argue that the comparator group 
must consist of treatments that could have had PGT-A if the 
option were available. Their analysis obtained estimates of 
the effect of PGT-A, which suggested an overall modest re-
duction in treatment success rates. The treatment effect of 
PGT-A was different, with an overall odds ratio for a live birth 
event of 0.82 (0.68-1.00) using >one transferrable embryo 
control and 0.80 (0.64-0.99) using >five embryo-created con-
trols.

The next limitation is that PGT-A and NGS use frozen ET 
and should not be compared with fresh ET controls. Finally, it 
is more relevant to assess the effectiveness of PGT-A on cu-
mulative LBR. However, there was an insufficient number of 
studies to perform meta-analysis.

Implications for future research may include modern 
techniques for non-invasive PGT. This method may play an 
enormous role in future fertility treatment, as damage to the 
embryo and the associated risks are negligible. Therefore, 

their use in routine practice should be investigated. In addi-
tion, although there are some doubts regarding time-lapse 
techniques, they should be further evaluated for evidence-
based evaluation and decreased controversy. However, we 
need to consider not only embryos, but also gametes for bet-
ter pregnancy rates. Thus, it is essential to develop gamete 
rejuvenation techniques to improve IVF outcomes in couples 
of advanced parental age.

Based on our systematic review and meta-analysis, we eval-
uated the effectiveness of PGT-A in IVF/ICSI cycles in patients 
of different ages and found that PGT improved the efficiency 
of ART, increasing clinical pregnancy and LBR, especially in 
women of AMA and those with a poor prognosis; however, 
no benefits were demonstrated when applied to younger 
women. Nevertheless, further research is needed to fully un-
derstand the effectiveness of PGT-A and to answer all ques-
tions regarding the importance of the validation, accuracy, 
and safety of PGT-A.
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