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ABSTRACT

Among various vaccines against Actinobacillus pleuropneumoniae, subunit vaccines using 
recombinant proteins of ApxI, ApxII, and ApxIII as vaccine antigens have shown good efficacy 
in terms of safety and protection. Therefore, subunit vaccines are being applied worldwide 
and the development of new subunit vaccines is actively being conducted. To evaluate the 
efficacy of the subunit vaccines, it is important to measure immune responses to each Apx 
toxin separately. However, the cross-reactivity of antibodies makes it difficult to measure 
specific immune reactivity to each toxin. In the present study, specific antigen regions 
among the toxins were identified and cloned to solve this problem. The antigenicity of each 
recombinant protein was demonstrated by Western blot. Using the recombinant proteins, 
we developed enzyme-linked immunosorbent assay (ELISA) methods that can detect 
specific immune responses to each Apx toxin in laboratory guinea pigs. We suggest that the 
ELISA method developed in this study can be an important tool in the evaluation of vaccine 
efficiency and vaccine development.

Keywords: Actinobacillus pleuropneumoniae; Apx toxins; vaccines, subunit; ELISA

INTRODUCTION

Porcine pleuropneumonia is a highly contagious respiratory disease that causes massive 
economic losses in the global pork industry [1-3]. Actinobacillus pleuropneumoniae is known 
to be the major causative pathogen of this disease [1,2]. It has been reported that there 
are 15 serotypes of A. pleuropneumoniae, showing susceptibility to pigs of all ages [4-6]. Pigs 
recovered from acute infection and chronically infected pigs can be carrier animals that shed 
the pathogen continuously without clinical symptoms. Thus, it is difficult to control and 
eradicate this disease in infected herds [4,7].

Apx toxins, which belong to the pore-forming repeat-in-toxin (RTX) family of A. 
pleuropneumoniae, are known to play an important role in the pathogenesis of A. 
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pleuropneumoniae as major virulence factors [4,8]. The importance of Apx toxins in protective 
immunity against A. pleuropneumoniae infection has also been reported in many studies 
[4,9,10-12]. There are four different Apx toxins, ApxI, ApxII, ApxIII, and ApxIV, each of 
which are encoded by the apx operon. The apx operon includes four genes, the activator gene 
of apxC, the pretoxin structural gene of apxA, and the secretion-apparatus-encoding genes 
of apxB and apxD [4,11,12]. Among these toxins, ApxI is strongly hemolytic and cytotoxic, 
while ApxII is weakly hemolytic and moderately cytotoxic, and ApxIII is nonhemolytic and 
strongly cytotoxic. The toxins of ApxI, ApxII, and ApxIII, which are secreted by different 
serotypes in various combinations, mainly determine the virulence of the 15 serotypes of A. 
pleuropneumoniae [4,10,11]. The ApxIV toxin is produced by all serotypes of A. pleuropneumoniae 
in infected pigs, but not under in vitro culture conditions; therefore, antibody response to 
ApxIV toxin has been used as a marker for infected pigs [4,10,11,13,14].

In an effort to control the disease, vaccination has been actively conducted in the 
swine industry around the world. Currently available vaccines can be classified based 
on the antigens such as bacterins (killed whole bacteria), purified toxoid vaccines, and 
mixed vaccines (killed whole bacteria and purified toxins) [10,14,15]. Most of these 
A. pleuropneumoniae vaccines are primarily based on immunization against Apx toxins, 
which could be achieved effectively using subunit vaccines with recombinant proteins 
of ApxI, ApxII, and ApxIII [10,15]. It has also been reported that subunit vaccines using 
recombinant Apx toxins showed safety and cross-protection against different serotypes of 
A. pleuropneumoniae [16]. Therefore, subunit vaccines are being applied worldwide and the 
development of new subunit vaccines is actively being conducted [16-20].

It is important to measure immune responses to each Apx toxin separately when evaluating 
vaccine efficiency during the development of subunit vaccines containing the recombinant 
toxin antigens of ApxI, ApxII, and ApxIII [4,7,21]. Immune responses to A. pleuropneumoniae 
could be detected using various diagnostic methods such as radioimmunoassay, hemolysin 
neutralization, the microplate agglutination test, and complement fixation [5,22,23]. However, 
these approaches are not suitable for evaluation of the immune responses to each Apx toxin. 
Enzyme-linked immunosorbent assay (ELISA) using purified recombinant protein antigens is 
more sensitive than other methods and is able to determine antibody titers against each antigen 
[5,24-26]. Thus, ELISA methods have an advantage in evaluating vaccine efficiency for the 
development of subunit vaccines of A. pleuropneumoniae [3,19,20,26]. However, currently available 
commercial ELISA methods are difficult to apply to the evaluation of vaccine efficiency because 
they have been developed only to diagnose serotypes of A. pleuropneumoniae, while they cannot 
measure antibody titers against ApxI, ApxII, and ApxIII, respectively [11,24,25]. Moreover, 
antibodies against Apx toxins have been reported to have cross-reactivity to each other, making 
the determination of levels of immune responses to each toxin more difficult [21,27-29]. 
Therefore, the development of ELISA methods that can detect specific antibodies against each 
toxin should take precedence for the development of A. pleuropneumoniae subunit vaccines.

In this study, we developed ELISA methods that can evaluate specific antibodies against each toxin 
of ApxI, ApxII, and ApxIII. Specific peptide regions in each toxin were identified and candidate 
partial Apx toxins for ELISA were purified. The ELISA conditions using the recombinant partial 
toxins were then established. Using the sera of guinea pigs vaccinated with each toxin of ApxI, 
ApxII, and ApxIII of the commercial vaccine, the identified ELISA conditions were assessed to 
determine if they could be used in vaccine development as a tool for vaccine efficiency evaluation 
based on the quantification of ApxI, ApxII, and ApxIII-specific antibody responses.
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MATERIALS AND METHODS

Bacterial strains and culture conditions
A. pleuropneumoniae serotype 2, isolated in Korea, was used for the genes of apxIIA and apxIIIA 
[12]. The apxIA gene was obtained from A. pleuropneumoniae serotype 5 isolated from a Korean 
pig with pleuropneumonia. The bacteria were cultured in Luria-Bertani (LB) broth (Difco, 
USA) with 0.01% β-nicotinamide adenine dinucleotide for 24 h at 37°C.

Homology analysis of apxIA, apxIIA, and apxIIIA
Protein sequence information regarding apxIA (AF363361), apxIIA (AF363362), and apxIIIA 
(AF363363) was retrieved from the National Center for Biotechnology Information database. 
Homology and conserved domains were investigated using multiple sequence alignment 
of the ClustalW2 program (http://www.ebi.ac.uk/Tools/clustalw) to identify specific gene 
regions among toxins.

Identification and cloning of specific genes
The gene sequence of each toxin was divided into four regions, the N-terminal (Nt), middle 
part 1 (M1), middle part 2 (M2), and C-terminal (Ct), for investigation of specific gene 
regions. Specific gene regions showing low levels of homology were determined based on 
the results of alignment of the four gene regions of each toxin. The specific gene regions 
identified for each toxin (partial Apx toxins) were amplified by polymerase chain reaction 
(PCR) using the primers described in Table 1. Total genomic DNA extracted from A. 
pleuropneumoniae serotype 2 and 5 was used for PCR templates (GenElute; Sigma-Aldrich, 
USA). The PCR products were electrophoresed in 1.0% agarose gel and then purified with a 
gel extraction kit (QIAquick; Qiagen, Germany). Amplified gene regions for each toxin were 
cloned with the Chapion pET100 vector (Invitrogen, USA) into Top10 chemical-component 
Escherichia coli cells (Invitrogen) according to the manufacturer's protocols. To confirm gene 
insertion, DNA sequencing was conducted using an automated DNA sequencer (ABI377L; 
Applied Biosystems, USA). Following confirmation of gene insertion by DNA sequencing, the 
cloned partial Apx toxins were transformed into component E. coli M15 cells for expression.
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Table 1. Primers for recombinant partial toxins of ApxIA, ApxIIA, and ApxIIIA
Region Sequence Size Location
ApxIA

Nt F CACCatggctaactctcagctcgatagag 525 1–525
R cgaaccactgacgtcctcacc

Ct R CACCtttgagtgtcaatacaacgtattattagg 660 2,407–3,066
R agcagattgtgttaaataattactgaa

ApxIIA
Nt F CACCatgtcaaaaatcactttgtcatcat 522 1–525

R ttctaattgattaggatctttattttgaa
M2 F CACCgtacagctagataacaaaaacgtattat 582 1,543–2,124

R cgtcacagtataaccagtatgaaaac
Ct F CACCgatatttatgtccataaaacaggcg 507 2,359–2,865

R agcggctctagctaattgaatatt
ApxIIIA

Nt F CACCatgagtacttggtcaagcatgttag 549 1–549
R gagctctgaaccgccactaata

M2 F CACCgactttagcaaagtagttttcgatcc 600 1,576–2,175
R attacctgattgcgttaattcataatc

Ct F CACCttaggcaatggttttaatgtgct 705 2,452–3,156
R ttaagctgctctagctaggttacctag

Nt, N-terminal; M1, middle part 1; M2, middle part 2; Ct, C-terminal.

http://www.ebi.ac.uk/Tools/clustalw
https://vetsci.org


Expression and purification of the recombinant proteins
E. coli M15 cells were grown in LB broth with ampicillin (100 µg/mL) at 37°C. When the 
culture reached an optical density (OD) of 0.6 nm, isopropyl β-D-1-thiogalactopyranoside 
(1 mM; Duchefa Biochemie, the Netherlands) was added and then cultured continuously 
for 4 h. The harvested cells were subsequently re-suspended in lysis buffer (20 mM Tris-
hydrogen chloride, 500 mM sodium chloride, 8 M urea, 40 mM imidazole, pH 7.0). Nickel-
nitrilotriacetic acid chelate affinity chromatography (GE Healthcare, UK) was conducted 
based on the manufacturer's protocols, after which the bound proteins were eluted with 
elution buffer (20 mM Tris-hydrogen chloride, 500 mM sodium chloride, 8 M urea, 500 
mM imidazole, pH 7.0). The concentration of the purified recombinant proteins was then 
determined using a BCA Protein Assay kit (Pierce, USA)

Sodium dodecylsulfate-polyacrylamide gel electrophoresis and Western blot 
analysis
The purified partial-Apx toxins were separated by 12% sodium dodecylsulfate-polyacrylamide 
gel electrophoresis (SDS-PAGE) and stained with Coomassie blue R-250. For Western blot 
analysis, the separated proteins from the SDS-PAGE were electrotransferred onto an iBlot Gel 
Transfer Stacks nitrocellulose membrane (Invitrogen), which was then immunoblotted with 
sera (1:1,000) of guinea pigs vaccinated with subunit vaccines containing ApxI, ApxII, and 
ApxIII toxoids, respectively. An alkaline phosphatase-conjugated rabbit anti-pig IgG (H+L) at 
1:2,000 dilution was used as the secondary antibody and the specific reaction was detected 
using an AP-conjugated substrate kit (BioRad, USA). The predicted size of the purified 
partial-Apx toxins matched the results of the SDS-PAGE and Western blot analyses based on 
amino acids constitution.

Guinea pig vaccination with ApxI, ApxII, and ApxIII toxoids
The full-length ApxIA, ApxIIA, and ApxIIIA are recombinant proteins and major components 
of the A. pleuropneumoniae vaccine newly developed by Choong Ang Vaccine Laboratories 
Company (Daejeon, Korea). Guinea pig vaccination was carried out three times with these 
full-length Apx toxoids by intramuscular injection of 200 µg of each toxin at two-week 
intervals, respectively. Sampling of sera was performed two days after the last administration. 
All experiments using guinea pigs were conducted in accordance with the procedures 
permitted by the Institutional Animal Care and Use Committees of Choong Ang Vaccine 
Laboratories Company (No. 160129-01).

Development enzyme-linked immunosorbent assays for ApxIa, ApxIIa, and 
ApxIIIa-specific detection
The assays were developed through checkerboard titration of 96-well microplates utilizing 
representative positive and negative sera. Sensitization of partial recombinant ApxIA, 
ApxIIA, and ApxIIIA antigens was performed using a two-fold serial dilution of each antigen 
at levels ranging from 3.125 ng/well to 200 ng/well. Antigens of partial-recombinant Apx 
toxins were coated onto 96-well microplates with 50 mM coating buffer (15 mM sodium 
carbonate and 35 mM sodium bicarbonate, pH 9.6), then incubated at 4°C overnight. Next, 
microplates were washed with a solution of phosphate-buffered saline containing 0.05% 
Tween 20 (PBST), after which they were blocked at room temperature for 2 h using 3% 
bovine serum albumin fraction V (BSA; Fisher Scientific, USA) in PBST. Sera from vaccinated 
guinea pigs with each full-length Apx toxin and serum from a nonvaccinated guinea pig 
were used as positive and negative controls, respectively. The microplates were incubated 
at room temperature for 2 h with 100 µL of two-fold serial diluted sera, after which they 
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were incubated with 100 µL of 1:10,000 diluted horseradish peroxidase-conjugated goat 
anti-guinea pig IgG (H+L) (BioRad) at room temperature for 1 h. Sera and antibody used 
in ELISA were diluted with 1% BSA in PBST. Color development was performed with 
3,31,5,51-tetramethylbenzidine liquid substrate (Sigma-Aldrich) at room temperature for 10 
min. The color development was stopped with 1 N sulfuric acid, after which the microplates 
were read at 450 nm. Based on the optimal ELISA conditions confirmed by checkerboard 
titration, ApxI, ApxII, and ApxIII-specific ELISA conditions were established under the same 
conditions of the checkerboard titration; however, 5% (for blocking) and 3% (for dilution of 
sera and antibody) skim milk in PBST were used.

Statistics
Data are presented as the means ± standard deviation. Statistical significance was determined 
by Student's t-tests using SPSS version 23.0 (SPSS, USA). A p < 0.05 was considered to 
indicate statistical significance.

RESULTS

Homology among apxIA, apxIIA, and apxIIIA
All of the Apx toxins showed > 40% homology with each other (Table 2). The results of 
homology analysis between regions within each toxin (Nt, M1, M2, and Ct) are presented in 
Table 3. The M2 region was considered to be inadequate for the specific gene region based 
on high levels of homology. Based on the low percent identity observed upon homology 
analysis, specific gene regions were determined for ELISA antigen candidate peptides as 
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Table 2. Homology among ApxIA, ApxIIA, and ApxIIIA
Proteins and accession No. Percent identity (%)

ApxIA ApxIIA ApxIIIA
ApxIA (1022aa)

AF363361 - 44.0 50.9
ApxIIA (956aa)

AF363362 44.0 - 44.6
ApxIIIA (1052aa)

AF363363 50.9 44.6 -

Table 3. Homology among the Nt, M1, M2, and Ct regions within Apx toxins
Region Percent identity (%)

ApxIA ApxIIA ApxIIIA
ApxIA

Nt (1–250) - 47.4 40.0
M1 (251–515) - 59.1 62.6
M2 (516–774) - 41.0 59.7
Ct (775–1022) - 23.5 39.5

ApxIIA
Nt (1–250) 47.4 - 44.6
M1 (251–514) 59.1 - 60.6
M2 (515–772) 41.0 - 44.1
Ct (773–956) 23.5 - 25.7

ApxIIIA
Nt (1–261) 40.0 44.6 -
M1 (262–526) 62.6 60.6 -
M2 (527–789) 59.7 44.1 -
Ct (790–1052) 39.5 25.7 -

Nt, N-terminal; M1, middle part 1; M2, middle part 2; Ct, C-terminal.

https://vetsci.org


follows: Nt and Ct regions in ApxIA; Nt, M2, and Ct regions in ApxIIA; Nt, M2, and Ct regions 
in ApxIIIA. The determined sequence regions are shown in yellow in Fig. 1.
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Fig. 1. Multiple sequence alignment of the Apx proteins of Actinobacillus pleuropneumoniae. Multiple alignment was 
performed using ClustalW2. The selected sequences, which showed a lesser degree of similarity, are shaded yellow.
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Production of the recombinant partial toxins of ApxIA, ApxIIA, and ApxIIIA
Based on the results of homology analysis, all selected specific gene regions except ApxIIA 
Ct were amplified using the primers shown in Table 1 and then cloned for production of 
recombinant proteins. As shown in Fig. 2, the molecular masses of the recombinant proteins 
were in concordance with the predicted molecular weights (ApxIA Nt, 19.3 kDa; ApxIA 
Ct, 24.2 kDa; ApxIIA Nt, 19.1 kDa; ApxIIA M2, 21.3 kDa; ApxIIIA Nt, 20.1 kDa; ApxIIIA 
M2, 22 kDa; ApxIIIA Ct, 25.9 kDa). Upon Western blot analysis, the recombinant proteins 
were found to be responsive to the positive control of guinea pig sera, with cross reactions 
observed between the purified partial toxins upon homology analysis as expected.

Development of ApxIA, ApxIIA, and ApxIIIA-specific enzyme-linked 
immunosorbent assays
Checkerboard titration was performed to establish the optimal ELISA conditions making 
a clear distinction between positive and negative sera. The optimal concentrations of 
recombinant partial toxins used to coat the microplates were as follows: 100 ng for ApxIA 
Nt, 200 ng for ApxIA Ct, 200 ng for ApxIIA Nt, 50 ng for ApxIIA M2, 200 ng for ApxIIIA Nt, 
200 ng for ApxIIIA M2, and 100 ng for ApxIIIA Ct (Supplementary Figs. 1-3). To establish 
ELISA conditions for measuring ApxIA, ApxII, and ApxIIIA-specific antibody levels using 
the recombinant partial toxins, purified proteins of ApxIA Ct, ApxIIA Nt, and ApxIIIA Nt 
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Fig. 1. (Continued) Multiple sequence alignment of the Apx proteins of Actinobacillus pleuropneumoniae. Multiple 
alignment was performed using ClustalW2. The selected sequences, which showed a lesser degree of similarity, are 
shaded yellow.
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Fig. 2. Confirmation of purification and antigenicity or recombinant partial Apx toxins by SDS-PAGE and Western blot. Upper and lower panels represent SDS-
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SDS-PAGE, sodium dodecylsulfate-polyacrylamide gel electrophoresis.
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were selected as ELISA antigens considering the cross-reactivity (Fig. 3). Based on the 
checkerboard results and selected antigens, a 1:320 dilution ratio of guinea pig sera was 
found to show the most precise results. As shown in Fig. 3, ApxIA Ct (200 ng/well) had higher 
reactivity with ApxIA positive guinea pig sera than ApxIIA Nt (200 ng/well) and ApxIIIA Nt 
(200 ng/well). ApxIIA Nt and ApxIIIA Nt also showed greater responses to each positive 
serum than the other two antigens.

DISCUSSION

Vaccination appears to be the most effective way to control A. pleuropneumoniae infection and 
has therefore been adapted in many countries around the world. It has also been reported 
that subunit vaccines against A. pleuropneumoniae using recombinant Apx toxins showed 
safety and cross-protection against different serotypes [16]. For this reason, many currently 
available vaccines use the recombinant Apx toxins as their key antigens [10,15] and new 
subunit vaccines are actively being developed [16-20]. Therefore, the measurement of 
immune responses to purified Apx toxin antigens has been an important milestone in vaccine 
development as a tool for vaccine efficiency evaluation [4,7,21].

ELISAs are widely used to investigate immunization levels induced by A. pleuropneumoniae 
vaccines. However, most commercial ELISAs have been developed for serotype determination 
of A. pleuropneumoniae and cannot be easily applied to measure Apx-specific immune responses 
when evaluating the efficiency of Apx toxins-based subunit vaccines [11,24,25]. In addition, 
experimental ELISAs reported in previous studies are also still difficult to differentiate levels 
of immunization against respective Apx toxin antigens [3,26,29]. This problem is believed to 
be due to cross-reactivity among ApxI, ApxII, and ApxIII as a result of their high homology 
[21,27-29], which was also observed in homology analysis conducted in the present study 
(Table 2). By excluding antigen regions showing high homology among Apx toxins, therefore, 
we attempted to identify specific antigen regions to purify ELISA antigens for differential 
serological detection. To accomplish this, Apx toxin amino sequences were divided into 
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Fig. 3. The ELISA results for each Apx toxin (ApxIA, ApxIIA, and ApxIIIA)-positive guinea pig sera under the 
optimal conditions. The determined antigen concentrations (ng/well) and serum dilution rate (1:320) are 
described in the graph. Each Apx toxin-positive guinea pig serum could be identified by ELISA using ApxIA Ct, 
ApxIIA Nt, and ApxIIIA Nt. 
ELISA, enzyme-linked immunosorbent assay; Nt, N-terminal; Ct, C-terminal; **, p < 0.01.
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regions of Nt, M1, M2, and Ct, and specific regions of Apx toxins were then cloned to obtain 
purified recombinant Apx toxin proteins. Nevertheless, positive guinea pig sera to each 
toxin of ApxI, ApxII, and ApxIII were reacted with all of the partial Apx toxins upon Western 
blot analysis. These nonspecific reactivities were thought to be attributed to the high levels 
of homology among partial proteins, as was observed during homology analysis (Table 3). 
Although specific antigen-antibody reactions were not observed upon Western blot analysis, 
the antigenicity of purified partial Apx toxins was confirmed.

To establish the optimal ELISA conditions for each recombinant partial toxin, checkerboard 
titration was conducted using guinea pig sera positive to each toxin of ApxI, ApxII, and 
ApxIII. Considering the need for ELISA to serve as a simple and convenient diagnostic tool, 
we attempted to set serum dilution conditions to the same ratio. Antigen coating conditions 
were determined to be the concentration at which the changes in the OD value of 450 nm 
were most prominent according to the serum dilution. Optimal ELISA conditions were 
attempted to be set to give an OD value of about 1.5 for each positive serum at the determined 
serum dilution and antigen concentration.

The results of Western blot and ELISA checkerboard titration suggested that the recombinant 
partial Apx toxins of ApxIA Nt, ApxIA Ct, ApxIIA Nt, ApxIIA M2, ApxIIIA Nt, and ApxIIIA Ct had 
a high possibility of being useful as ELISA antigens. The ApxIIIA M2 partial toxin was ruled out 
based on its low antigenicity to ApxIIIA positive guinea pig serum in the ELISA checkerboard 
titration. Based on the optimal ELISA conditions, an antigen combination of ApxIA Ct, ApxIIA 
Nt, and ApxIIIA Nt was determined by additional ELISA experiments (Fig. 3). In the additional 
ELISA experiments, all procedures were conducted using the optimal ELISA conditions; 
however, skim milk solution for blocking (5% in PBST) and antibody diluent (3% in PBST) were 
used. The skim milk solution was adapted to further reduce nonspecific reactions. As shown in 
Fig. 3, each of the antigens (ApxIA Ct, ApxIIA Nt, and ApxIIIA Nt) showed a higher OD value in 
response to each positive serum than the other two antigens. As reported in previous studies, 
cross-reactivity was also observed in the ELISA using ApxIA Ct and ApxIIA Nt antigens, but they 
could be distinguished based on the difference in OD value. In addition, ELISA using ApxIII Nt 
antigen showed excellent reactivity to its positive guinea pig serum when compared to the other 
two positive control guinea pig sera (Fig. 3).

The results of this study confirmed the high homology among toxins of ApxIA, ApxIIA, 
and ApxIIIA, which has been considered to be an important factor in the cross-reactivity of 
antibodies to each toxin. Due to this cross-reactivity, it has been difficult to measure and 
differentiate antibody levels to each of the three toxins. In this study, the recombinant partial 
Apx toxins were purified to reduce the interference of homology observed among the three 
toxins, and the produced partial Apx toxins were used to develop an ELISA method capable 
of measuring the level of each toxin-specific antibody. This Apx toxin-specific ELISA will be 
useful as an important tool for evaluation of vaccine efficiency by measuring specific antibody 
responses to each toxin during the development of subunit vaccines against A. pleuropneumoniae.

SUPPLEMENTARY MATERIALS

Supplementary Fig. 1
Determination of the optimal conditions for concentrations of ApxIA antigens (100 ng/well 
for ApxIA Nt and 200 ng/well for ApxIA Ct) and serum dilution rate (1/320) for ELISA using 
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guinea pig serum already known to be positive for ApxIA. The arrows indicate the optimal 
and most reliable ELISA conditions. (A, B) Checkerboard ELISA results of positive guinea 
pig serum. (C, D) Checkerboard ELISA results of positive and negative guinea pig sera at the 
optimal concentrations of coating antigens.

Click here to view

Supplementary Fig. 2
Determination of the optimal conditions for concentrations of ApxIIA antigens (200 ng/well 
for ApxIIA Nt and 50 ng/well for ApxIIA M2) and serum dilution rate (1/320) for ELISA using 
guinea pig serum already known to be positive for ApxIA. The arrows indicate the optimal 
and most reliable ELISA conditions. (A, B) Checkerboard ELISA results of positive guinea 
pig serum. (C, D) Checkerboard ELISA results of positive and negative guinea pig sera at the 
optimal concentrations of coating antigens.

Click here to view

Supplementary Fig. 3
Determination of the optimal conditions for concentrations of ApxIIIA antigens (200 
ng/well for ApxIIIA Nt, 200 ng/well for ApxIIIA M2, and 100 ng/well for ApxIIIA Ct) and 
serum dilution rate (1/320) for ELISA using guinea pig serum already known to be positive 
for ApxIA. The arrows indicate the optimal and most reliable ELISA conditions. (A-C) 
Checkerboard ELISA results of positive guinea pig serum. (D-F) Checkerboard ELISA results 
of positive and negative guinea pig sera at the optimal concentrations of coating antigens.

Click here to view
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