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Leptin is an adipocytokine that regulates body weight, and 

maintains energy homeostasis by promoting reduced food 

intake and increasing energy expenditure. Leptin expression 

and secretion is regulated by various factors including 

hormones and fatty acids. Butyrate is a short-chain fatty 

acid that acts as source of energy in humans. We determined 

whether this fatty acid can play a role in leptin expression in 

fully differentiated human adipocytes. Mature differentiated 

adipocytes were incubated with or without increasing 

concentrations of butyrate. RNA was extracted and leptin 

mRNA expression was examined by Northern blot analysis. 

Moreover, the cells were incubated with regulators that may 

affect signals which may alter leptin expression and 

analyzed with Northern blotting. Butyrate stimulated leptin 

expression, and stimulated mitogen activated protein kinase 

(MAPK) and phospho-CREB signaling in a time-dependent 

manner. Prior treatment of the cells with signal transduction 

inhibitors as pertusis toxin, Gi protein antagonist, PD98059 

(a MAPK inhibitor), and wortmannin (a PI3K inhibitor) 

abolished leptin mRNA expression. These results suggest 

that butyrate can regulate leptin expression in humans at 

the transcriptional level. This is accomplished by: 1) Gi 

protein-coupled receptors specific for short-chain fatty 

acids, and 2) MAPK and phosphatidylinositol-3-kinase 

(PI3K) signaling pathways.
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Introduction

Leptin is16-kDa non-glycosylated circulating protein 
hormone. It is encoded by the ob gene and produced mainly 
by adipocyte. Leptin is a multifunctional hormone that 
regulates body weight, energy homeostasis, neuroendocrine 
function, fertility, immune function, and angiogenesis, 
inflammation, and hematopoiesis [1,5,10,19,25]. Leptin 
carries out its biological actions on target tissues through 
interaction with its specific receptor (Ob-R). This receptor 
is a member of the gp130 family of cytokine receptors [21]. 
Ob-R has several variants (Ob-Ra through Ob-Rf) that are 
produced by alternative splicing of the db leptin receptor 
gene [9]. The predominant long isoform of leptin receptors 
(Ob-Rb) is the predominant, function and responsible for 
leptin actions [2]. Ob-Rb can activate the signal 
transducers and activators of transcription pathways. 
Ob-Rb and the short isoform (Ob-Ra) can transduce 
signals through insulin receptor substrates and through 
mitogen activated protein kinase (MAPK) dependent 
pathways [20].

Obesity is a chronic disease that concerns over a billion of 
adult people all over the world [1,15]. This condition 
involves several factors and increases the risk of diseases 
like metabolic syndrome, insulin resistance, type 2 
diabetes mellitus and coronary heart disease [14,15]. 
Regulation of leptin gene expression is a highly complex 
process which involves multiple mediators, the relative 
importance of which is, as yet, undetermined. The 
important regulatory factors are glucocorticoids, insulin, 
and thyroid hormones [1]. Thyroid hormones inhibit leptin 
gene expression while sex steroids, such as estrogen, 
increase leptin mRNA levels [16]. 3T3L1 cells studies 
showed that treatment with propionate elevates leptin 
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mRNA expression through G-protein coupled receptor 43 
(GPCR43) [6,23].

Butyrate is a short-chain fatty acid produced in the 
colonic lumen by bacterial fermentation of carbohydrates 
and dietary fibers [22]. In the proximal large bowel, 
butyrate is the preferred respiratory fuel in the intestine 
process by β-oxidation [4]. Butyrate stimulates pancreatic 
secretion in humans [7]. The purpose of the present study 
was to assess the role of butyrate in the regulation of leptin 
gene expression in human adipocytes. We also explored 
possible signaling pathways that may be involved in this 
regulatory role.

Materials and Methods

Materials
Preadipocyte growth media, adipocyte differentiation 

medium, and poietics human preadipocytes were 
purchased from Cambrex Bio Science Walkersville 
(USA). Bovine serum albumin, bovine insulin, 
isobutylmethylxanthine (IBMX), and sodium butyrate 
were from Sigma-Aldrich Fine Chemicals (USA). Fetal 
calf serum (FCS) was from Trace Scientific (Australia). 
Dexamethasone and indomethacin were purchased from 
Wako Pure Chemicals (Japan). Pertussis toxin (PTX), and 
PD98059 (a MAPK inhibitor) were from List Biological 
Laboratories (USA). Wortmannin (WT; a PI3K inhibitor) 
was from Biomol Research Laboratories (USA). Polyclonal 
antibodies against phospho-p44/p42 (ERK1/2), MAPK 
(Thr202/Tyr204), total p44/p42 (total ERK), phospho- 
CREB, and total CREB were from Cell Signaling 
Technology (USA).

Differentiation of human preadipocytes cells into 
adipocytes and treatments with butyrate, PTX and 
MAP kinase signaling inhibitors

Poietics human preadipocytes were differentiated were 
differentiated according to the manufacturer’s instructions. 
Briefly, when the cells reached confluency (referred to as 
day 0) in preadipocyte growth media containing 10% FCS, 
100 U/mL penicillin and 100 μg/mL streptomycin, the 
cells were cultured in adipocyte differentiation medium 
containing antibiotics plus 10 μg/mL insulin, 1 μM 
dexamethasone, 200 μM indomethacin and 500 μM 
IBMX. The adipocytes differentiation medium was 
changed every 2 days to promote cell differentiation. The 
degree of differentiation was recorded by lipids 
accumulation in the cells by oil red O staining. At the end 
of the differentiation period (18 days), the cells were 
incubated with or without butyrate at a dose of 0.5, 1.0 or 
5.0 mM for 48 h. RNA was extracted using TRIzol reagent 
(Gibco BRL, USA) and 20 μg RNA was analyzed by 
northern blot analysis. In a series of experiments, the cells 
were incubated with either butyrate (1 mM) or inhibitors as 

PTX (100 ng/mL), an inhibitor of Gi/Go proteins, a MAPK 
inhibitor, and PD98059 (10 μM) and WT in a dose of 100 
nM for a specific period of time. The cells were subjected 
to Western blot analysis or Northern blot analysis after 48 
h incubation.

Oil red O staining
Cultured preadipocytes that had reached confluence (day 

0) and had undergone adipogenic differentiation at 10 and 
18 days were fixed with 10% formalin in isotonic 
phosphate buffer for 1 h. The cells were then stained with 
0.5% oil red O (Sigma-Aldrich, USA) in 60% isopropyl 
alcohol for 1 h and rinsed extensively with water. Lipid 
droplets were stained red and visualized with light 
microscopy.

Western blot analysis
Following the experimental treatments, cells were 

washed with ice-cold PBS and scraped into ice-cold lysis 
buffer [50 mM HEPES (pH 7.5), 150 mM NaCl, 5 mM 
EDTA, 20 mM sodium fluoride, 10 mM sodium 
pyrophosphate, 2 mM sodium vanadate, 1% Nonidet-P40, 
and protease inhibitor cocktail (Boehringer Mannheim, 
Germany)]. Harvested cells were incubated on ice for 30 
min followed by centrifugation at 12,000× g for 20 min at 
4oC to obtain the cell lysate. Proteins in the cell lysate (20 
μg of protein) were resolved by SDS-PAGE (10% gel) 
under reducing conditions and electro-blotted onto a 
PVDF membrane (Immobilon; Millipore, USA). The 
membrane was blocked for 2 h at room temperature in 5% 
(w/v) nonfat milk with 20 mM Tris/HCl (pH 7.5), 0.15 M 
NaCl, and 0.01% Tween 20. The membrane was then 
incubated overnight at 4oC with primary antibodies against 
phosphorylated ERK1/2, total ERK, phospho CREB, and 
total CREB (1 : 1,000 dilutions) as an internal standard. 
The membrane was washed three times with 20 mM 
Tris/HCl (pH 7.5), 0.15 M NaCl, and 0.01% Tween 20, and 
incubated with horseradish peroxidase-conjugated secondary 
goat anti-rabbit IgG antibody, (1 : 2,000; Zymed Laboratories, 
USA) for 1 h at room temperature. Antibody binding was 
visualized using an enhanced chemiluminescence detection 
system (Amersham Biosciences, USA) according to the 
manufacture’s instructions. Intensities of the immunoreactive 
bands were densitometrically analyzed using NIH Image 
program (NIH, USA).

Northern blot analysis
RNA in a reverse transcription mix was amplified to 

measure leptin and G3PDH expression with the followings 
primers: to amplify a 383 bp fragment to be used as a probe 
for leptin mRNA, a 5’-AGTGCCTATCCAGAAAG-3’, 
forward primer and a 5;-TGCTCAAAGCCACCACC-3’ 
as reverse primer. For G3PDH, a 5’-ACCACTGTCCA-
CGCCATCAC-3 as forward primer and 5’-TCCACCA-
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Fig. 1. Differentiation of human preadipocytes. (A) On day 0, the
cells had a fibroblast-like shape without lipid accumulation. (B) 
On day 10, the cells were slightly rounded and a moderate 
increase in lipid content was seen. (C) On day 18, the cells were
more rounded and an increased number of lipid droplets were 
seen in the cytoplasm. Oil red O stain, ×400.

Fig. 2. Effect of butyrate on leptin mRNA expression in 
differentiated human adipocytes. Confluent human preadipocytes
were cultured in adipocyte differentiation medium for 18 days. 
Values represent the mean ± SE of three independent 
experiments. *p < 0.05 vs. the control and #p < 0.05 vs. butyrate
treatment (0.5 and 1.0 mM).

CCCTGTTTGCTGTA-3’ as reverse primer to amplify a 
453-bp fragment to be used as a probe. The leptin and 
G3PDH mRNA amplified by RT-PCR from total RNA 
recovered from bovine subcutaneous adipose tissue and 
subcloned into pGEM-T Easy vector (Promega, USA). 
The nucleotide sequence of each cDNA were confirmed 
and the cDNAs were used as a probes for Northern 
boltting. Total RNA (20 μg) was resolved on 1% 
agarose-formaldehyde gel, transferred onto a nylon 
membrane (Hybond-N+; Amersham Pharmaceutical 
Biotec, UK) and cross-linked under UV light for 2 min. 
Both prehybridization and hybridization were performed 
at 65oC for 2 h and overnight, respectively, in a buffer 
containing 7% SDS, 0.5 M Church’s phosphate buffer pH 
7.2, 1 mM EDTA, and 0.5 mg/mL salmon sperm DNA 
(Wako Pure Chemicals, Japan). After prehybridization, the 
membrane was sequentially hybridized with a cDNA 
probe encoding human leptin and G3PDH as internal 
loading control. The probe was labeled with [α-32P] dCTP 
using Megaprime DNA labeling systems (Amersham 
Biosciences, USA) according to instructions provided. 
After hybridization, the membrane was stringently washed 
for 20 min twice with 2× SSC and 0.1% SDS, and once 
with 0.1× SSC and 0.1% SDS at 65oC before being 
exposed to a phospho-imaging plate overnight. Detection 
and quantification of the hybridization signals were carried 
out using a phospho-image analyzer (BAS 2500; Fujifilm, 
Japan). After imaging analysis, the membranes were 
re-probed for G3PDH.

Statistical analysis
Results are expressed as means ± SE for 3 independent 

experiments. Statistical analysis was performed using 
ANOVA and Fischer’s post hoc test; with p values (< 0.05) 
were considered to be statistically significant.

Results

To confirm the maturation of human preadipocytes into 
mature adipocytes, oil red O staining was performed 
during cell differentiation at 0, 10, and 18 days. As shown 
in Fig. 1, the cells had a fibroblast shape from day 0 until 
day 10 of differentiation. After that, the cells became round 
and moderate amounts of lipid droplets accumulated in the 
cytoplasm. By day 18, the cells had matured and 
significant lipid droplets were seen under the microscope.

To test effect of butyrate on leptin expression, the cells 
were incubated with increasing concentrations of butyrate. 
Northern blot analysis showed that butyrate induced leptin 
expression at low physiological doses (0.5 and 1 mM) as 
seen in Fig. 2. However, higher dose of butyrate (5 mM) 
inhibited leptin mRNA expression in three independent 
experiments.

To evaluate the involvement of MAPK and phospho- 
CREB pathways in the butyrate signaling, the cells were 
treated without (0 time point) or with butyrate (1 mM) for 
the indicated time point up to 3 h. As seen in Fig. 3A, 
butyrate stimulated the expression of phospho-ERK1/2 



322    Mohamed Mohamed Soliman et al.

Fig. 3. Effects of butyrate on the phosphorylation of ERK1/2 (A)
and phospho-CREB (B) in differentiated human adipocytes as 
determined by Western blotting.

Fig. 4. Leptin expression induced through different signaling 
pathways. Human adipocytes were cultured in the presence or 
absence of butyrate (Buty; 1 mM) alone or with inhibitors of 
signaling as (PTX; 100 ng/mL), PD98059 (PD; 10 μM), and 
Wortmannin (WT; 100 nM) for 48 h. Values represent the mean
± SE of three independent experiments. *p <0.05 vs. the control
and #p < 0.05 vs. butyrate doses alone.

after 5 min; this peaked at 30 min and returned to basal 
expression levels after 2 h. Moreover, butyrate (1 mM) 
induced the phosphorylation of cAMP response element 
binding protein (phospho-CREB) at 2 and 3 h in the 
differentiated human adipocytes (Fig. 3B).

To investigate the signaling mechanism(s) underlying the 
effects of butyrate on leptin expression, differentiated 
human adipocytes were treated with butyrate (1 mM) alone 
or with PTX (100 ng/mL) to inactivate Gi/Go proteins. The 
addition of butyrate (Fig. 4) induced leptin mRNA 
expression. PTX alone and together with butyrate inhibited 
leptin expression. These same effects were observed when 
the cells were incubated with PD98059 (10 μM) and WT 
(100 nM) for 48 h, thereby confirming the involvement of 
GPCR, MAPK, and PI3K in the regulation of leptin 
expression.

Discussion

The present study showed that leptin expression in human 
adipocytes is affected by short chain fatty acids that 
include butyrate. Butyrate exerts a variety of biological 
actions such as stimulation of exocrine and endocrine 
pancreatic secretions, satiety, motility of the gut and blood 
vessels, and proliferation of gastrointestinal tract 
epithelium [7]. Moreover, butyrate is well known to have 
in vivo and in vitro actions on endocrine and exocrine 
secretory functions in various species [11,12]. Intravenous 
administration or in vitro culturing pancreatic cells with 
butyrate increased the secretion of insulin, glucagon, and 
amylase in small ruminants [12]. Butyrate also suppresses 
GH expression and secretion in the ruminant in vitro and in 
vivo [11].

We found that butyrate up-regulated leptin expression 
within physiological levels (1 mM) as reported by Soliman 
et al. [18], but the high doses inhibited leptin expression. It 
is unclear why high doses of butyrate exert this inhibitory 
effect. Other studies have reported that butyrate inhibits 

cellular proliferation and induces apoptosis by regulating 
the key proteins which control the cell cycle [4,7]. In 
particular, NaB was shown to down-regulate 25 genes in 
colonic epithelial cells including cyclin D1, a key regulator 
of the G1/S phase, and the proliferating cell nuclear antigen 
PCNA [19]. These findings indicate that this factor 
possesses pro-apoptotic properties. In the study by 
Yonekura et al. [24], butyrate was found to stimulate leptin 
expression in bovine adipocytes but inhibits its expression 
in rat anterior pituitary cells. These observation partially 
concur with our previous findings in bovines [17,18,24] 
but not in rats, thus suggesting that the effects of butyrate 
are cell-specific [8,13]. Therefore, differences in butyrate- 
induced leptin responses between bovines, humans, and 
rats may be due to species-associated differences.

Butyrate induced leptin mRNA expression in a dose- 
dependent manner within a physiologically-relevant range 
of concentrations. The effective doses of butyrate in human 
adipocytes are comparable with those of bovine adipocytes 
[18], mouse adipocytes, and GPR41-transfected cells [23]. 
These findings partly resemble the effects of propionate on 
murine cells [6]. The stimulatory effect of butyrate on 
leptin expression and its activation of p44/p42 MPPK were 
inhibited by pre-treatment with PTX, an inhibitor of Gi/Go 
proteins [3]. Thus, we can speculate that butyrate might act 
on the cells through G protein-coupled receptors specific 
for SCFA (GPR41). Butyrate also induced phosphorylation 
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and activation of MAPK and CREB, a downstream signal 
of protein kinase A activation, in a time-dependent manner. 
This observation confirmed the involvement of GPCRs, 
MAPK, and PI3K kinases signaling pathways in the 
regulation of leptin expression. In conclusion, the results of 
present study demonstrate that butyrate is an important 
factor which can regulate leptin gene expression in human 
adipocytes through GPR, MAPK, and PI3K signaling 
pathways.
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