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Purpose: The aim of this study was to investigate the combined effects of physical and 
chemical surface factors on in vivo bone responses by comparing chemically modified hy-
drophilic sandblasted, large-grit, acid-etched (modSLA) and anodically oxidized hydropho-
bic implant surfaces.
Methods: Five modSLA implants and five anodized implants were inserted into the tibiae 
of five New Zealand white rabbits (one implant for each tibia). The characteristics of each 
surface were determined using field emission scanning electron microscopy, energy disper-
sive spectroscopy, and confocal laser scanning microscopy before the installation. The ex-
perimental animals were sacrificed after 1 week of healing and histologic slides were pre-
pared from the implant-tibial bone blocks removed from the animals. Histomorphometric 
analyses were performed on the light microscopic images, and bone-to-implant contact 
(BIC) and bone area (BA) ratios were measured. Nonparametric comparison tests were ap-
plied to find any significant differences (P<0.05) between the modSLA and anodized sur-
faces.
Results: The roughness of the anodized surface was 1.22±0.17 μm in Sa, which was within 
the optimal range of 1.0-2.0 μm for a bone response. The modSLA surface was significantly 
rougher at 2.53±0.07 μm in Sa. However, the modSLA implant had significantly higher BIC 
than the anodized implant (P=0.02). Furthermore, BA ratios did not significantly differ be-
tween the two implants, although the anodized implant had a higher mean value of BA 
(P>0.05).
Conclusions: Within the limitations of this study, the hydrophilicity of the modSLA surface 
may have a stronger effect on in vivo bone healing than optimal surface roughness and 
surface chemistry of the anodized surface.
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INTRODUCTION

Successful osseointegration of titanium (Ti) implants is partly determined by how the im-
planted materials influence bone responses at the cell-biomaterial interface [1,2]. Such 
events occurring between the bone and implant surface are influenced by a variety of spe-
cific surface properties, including topography, structure, chemistry, surface charge, and wet-
tability [3-6]. Of these, surface topography has been particularly well studied. Researchers 
have developed numerous additive and subtractive surface modification techniques to im-
prove osseointegration by altering implant surface topography, thus enhancing bone-to-im-
plant contact (BIC) and increasing biomechanical interlocking with bone [7,8]. The clinical 
introduction of a novel implant surface has also helped to advance the field [9]. This product 
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aims to influence surface charge and wettability in animals via ul-
traviolet light irradiation [9,10].

Researchers have developed surfaces that are supposedly based 
not only on micrometre morphology, but also on other characteris-
tics such as hydrophilicity, chemical bonding, and nanostructures 
[11]. Reports on the wetting behavior of rough surfaces have in-
creased our understanding of the conditions surface topography 
has to satisfy to induce satisfactory hydrophilicity during contact 
with bone [12-15]. Extensive hydroxylation/hydration of the oxide 
layer, together with high wettability, improves interactions between 
the surface and the water shells around delicate biomolecules such 
as proteins [16]. Studies using modified sandblasted, large-grit, ac-
id-etched (modSLA) surfaces that enhance hydrophilicity have indi-
cated that bone apposition during the early stages of regeneration 
is higher after implantation compared with its predecessor (the SLA 
surface) [17-19].

Anodic oxidation creates a thickened, porous, and moderately 
roughened titanium oxide layer [20,21]. The anodized titanium sur-
face shows superior osteogenic properties both in vitro and in vivo 
despite being hydrophobic [20-24]. Although many studies have ex-
amined the longer-term impacts of surface roughness and topogra-
phy on bone fixation over the long term, there has been relatively 
little work investigating the effects of these hydrophilic characteris-
tics on the initial bone response [17,19,25,26]. To the best of our 
knowledge, there were not many studies that have evaluated the 
effects of hydrophobic oxidized and hydrophilic modSLA surfaces 
on early bone response in vivo [27]. Although the positive effects of 
the modSLA implants could be easily explained by their hydrophilic-
ity, the clinical relevance needs to be further investigated [12].

We performed histomorphometric analyses to investigate the 
combined effects of physical and chemical surface factors on in vivo 
bone responses by comparing a modSLA surface and an anodized 
implant surface in a rabbit tibia model.

MATERIALS AND METHODS

Surface characteristics
Five modSLA (SLActive®, Institut Straumann AG, Basel, Switzer-

land) and five anodized (TiUnite®, Nobel Biocare AB, Göthenburg, 
Sweden) implants were used in this study. Both implants were 3.3 
mm in diameter and 10.0 mm in length. We performed three sur-
face analyses on each of three implants from both groups: field 
emission scanning electron microscopy (FE-SEM), energy dispersive 
spectroscopy (EDS), and confocal laser scanning microscopy (CLSM). 
The FE-SEM (model S-4700, Hitachi, Tokyo, Japan) was used to pro-
duce detailed images of the implant surfaces. The EDS (model 
EX220, Horiba Ltd., Kyoto, Japan) was used to analyze the element 
content and components of the modified surfaces; calibrations 
were performed four times each at four different points. The CLSM 
(model LSM 5-Pascal, Carl Zeiss AG, Oberkochen, Germany) enabled 
us to measure the surface roughness of four screw sides (measure-
ment area: 300 μm × 300 μm on a 200× optically and 1.5× digi-

tally magnified image), which were randomly selected from each 
implant. We measured two roughness parameters: average surface 
deviation (Sa) and developed surface area ratio (Sdr) [21].

In vivo surgery
This study was approved by the Animal Research Committee of 

Seoul National University Bundang Hospital (IACUC protocol ap-
proval number: BA1101-076/001-01). All procedures, including ani-
mal selection, management, preparation, and subsequent surgical 
protocols, were performed in accordance with the Institute of Lab-
oratory Animal Resources guidelines of Seoul National University 
Bundang Hospital.

Five male New Zealand white rabbits (each about 6 months of 
age and weighing 2.5-3 kg) were implanted with a modSLA and an 
anodized implant; the location of each implant (left or right tibia) 
was chosen at random. The rabbits showed no sign of illness or 
disease prior to the study. Prior to surgery, all study subjects were 
anesthetized with an intramuscular injection of tiletamine/zolaze-
pam (15 mg/kg; Zoletil 50, Virbac Korea Co. Ltd., Seoul, Korea) and 
xylazine (33 mg/kg; Rompun, Bayer Korea Ltd., Seoul, Korea). The 
skin of each proximal tibia area was shaved and washed with povi-
done iodine solution, and each rabbit received an intramuscular 
injection with 33 mg/kg of Cefazolin (Yuhan Co., Seoul, Korea), a 
preoperative prophylactic antibiotic. The local anesthetic lidocaine 
(1:100,000 epinephrine; Yuhan Co.) was injected into each surgical 
site. The skin was incised with a surgical blade, and each tibia was 
exposed via full-thickness periosteal flap reflection. The implant 
sites were prepared on the flat tibial surface using a dental implant 
drill and profuse sterile saline irrigation.

We performed bicortical drilling as described in a previous study 
[20]. For the 3.3-mm implants, we used a drill that was 2.8 mm in 
diameter; gap defects were created with a cortical drill (Astra Tech, 
Mölndal, Sweden) with a 4.0 mm diameter (Fig. 1). The cortical drill 
was used monocortically and created a 4.0-mm hole in the upper 
cortex only. After implant insertion, cover screws were securely fas-
tened and the surgical sites were closed in layers. Muscle and fascia 
were sutured with absorbable Vicryl sutures (Vicryl 4-0, Polyglactin 
910, Ethicon, Johnson & Johnson, Somerville, NJ, USA) and the out-
er dermis was closed with a silk suture (Mersilk 4-0, Ethicon, John-
son & Johnson). Rabbits were housed in separate cages for 1 week 
post-surgery, after which they were anesthetized and sacrificed by 
intravenous administration of potassium chloride.

Histomorphometric analysis
The tibiae of the sacrificed rabbits were exposed so that implants 

could be surgically removed en bloc with an adjacent collar of bone, 
which was immediately fixed in 10% neutral formaldehyde. For his-
tomorphometry, the specimens were embedded in light-curing resin 
(Technovit 7200 VLC, Kultzer, Wehrheim, Germany) prepared as pre-
viously described [28]. Undecalcified, cut, and ground sections were 
prepared using the Exakt® system (Exakt Apparatebau, Norderstedt, 
Germany) according to the method described by Donath and 
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Sdr) between the test and control implants. The Wilcoxon signed-
rank test was used to determine statistically significant differences 
in BIC and BA between the groups. Significance was defined as 
P<0.05.

 

RESULTS

Analysis of surface characteristics
The modSLA surface comprised 70.3% titanium, 29.3% oxide, 

and no phosphorous, while the anodized surface was 26.1% titani-
um, 69.8% oxide, and 3.5% phosphorus (Table 1). The FE-SEM im-
ages of each surface are shown in Fig. 3. Magnification at 5,000× 
revealed the anodized surface to be scattered with many volcano-
like porous structures. The modSLA surface had a sharp, irregular 
pattern produced by the sandblasting and acid-etching processes. 
At 50,000× magnification, the anodized implant was characterized 
by a relatively smooth surface composed of large micro-pores and 
small nanopores. This contrasted with the relatively rough surface 
observed on the hydrophilic modSLA implant, which exhibited 
beadings of approximately 1-2 μm diameter, along with 0.1-0.2 μm 

Breuner [29]. The specimens were ground to a thickness of approxi-
mately 50 μm and stained with hematoxylin and eosin (H&E). His-
tological examinations of specimens were performed under a light 
microscope (Olympus BX, Olympus, Tokyo, Japan). BIC and BA per-
centages were defined and measured in the range of 2 mm below 
the upper bone crest, as shown in Fig. 2. Histomorphometric analy-
ses were performed on both the right and left sides of each speci-
men using image analysis software (Kappa PS30C Imagebase, Kappa 
Opto-electronics GmbH, Gleichen, Germany).
Statistical analyses

The Mann-Whitney U test was used to assess the statistical sig-
nificance of the difference in surface roughness parameters (Sa and 

200 μm

Figure 2. A light microscopic image for histomorphometric analyses (H&E 
staining, 75×magnification). Note the gap space (blue area) that was inten-
tionally made between the implant surface and the cortical bone.

Figure 1. A schematic diagram demonstrating how to insert the implant into 
the rabbit tibia. (A) An anodized implant and (B) a modSLA implant, both of 
which were 3.3 mm in diameter, were firmly engaged at the bottom of the 
cortex in the rabbit tibia. A hole, 4.0 mm in diameter, was equally formed at 
the upper cortex only, although the thread morphologies were different be-
tween the two groups. Note that the threads of the implants were not en-
gaged at the upper cortical area where a gap remained.
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millet-like prominences.
Surface roughness data collected during the CLSM analysis are 

shown in Table 2. Anodically oxidized surfaces had significantly 
lower values for both Sa (1.22±0.17 μm) and Sdr (26.27±4.14%) 
than observed for chemically modified surfaces (2.53±0.07 μm 
and 139.82±7.59%, respectively) (both P<0.001). Although the 
modSLA implant screw design is flatter and thus has less total sur-
face area, the modSLA screws are smaller and result in greater os-
seointegration because of the higher percentage of BIC.

Histomorphometric analysis
All experimental animals healed without complications and at 

the time of sacrifice all implants were submerged and covered by a 
healthy ridge of skin. For both types of implant, a favorable bone 

response was observed on the implant surface; a small amount of 
new bone formation was found both within a thread and in the old 
bone after only 1 week of healing. Osseointegration within the gap 
defect was notable in some specimens; however, the distinguishing 
feature of most samples was a visible growth pattern along the 
border of the gap defect toward the implant surface (Fig. 4). This 
was observed in both treatments with a statistically significant 
greater growth pattern seen in the modSLA group. Although the 
1-week post-surgical period was insufficient for new bone forma-
tion, all specimens showed at least the beginnings of new bone 
formation or active bone formation on the inner cutting side of the 
cortical bone and the inner portion of bone marrow. Both implant 
surfaces were surrounded by small, newly formed trabeculae of 
woven bone. Although histomorphometric light microscopy re-
vealed that the BIC ratio was significantly higher around the mod-

Table 1. Element content (atomic %) of the implant surfaces according to 
energy dispersive spectroscopy analysis.

ModSLA (n=5) Anodized (n=5)

Ti 70.3±6.4% 26.1±0.9%

O 29.3±6.5% 69.8±1.2%

P 0% 3.5±0.4%

Pt 0.4±0.2% 0.6±0.02%

Ca 0.003±0.005% 0.06±0.07%

Data were shown as mean±standard deviation.

A

B

Figure 3. The FE-SEM images of each implant surface at different resolutions (500× , 5,000× and 50,000× from the top). (A) Seen under medium power the 
anodically oxidized surface has many micropores with elevated margins resembling volcanoes. In a high-power image, a relatively smooth surface composed of 
large micropores (1–10 μm) and many nanopores with orifices (<1 μm, black arrowheads) are visible. (B) Under medium-power microscopy the chemically 
modified modSLA surface has a sharp, irregular pattern produced by sandblasting and acid-etching. In a high-power image, 1–2 μm diameter beadings and 
0.1–0.2 μm millet-like prominences were observed on the surface.

Table 2. Surface roughness of the implant surfaces according to confocal la-
ser scanning electron microscopy analysis.

ModSLA (n=5) Anodized (n=5) P-value

Sa 2.53±0.07 μm 1.22±0.17 μm <0.001a)

Sdr 139.82±7.59% 26.27±4.14% <0.001a)

Data were shown as mean±standard deviation. Sa, average surface deviation; 
Sdr, developed surface area ratio.
5 point bottom calibration. Focal area 300 μm×300 μm.
a)Data were analyzed using the Mann–Whitney U test.
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SLA implants than around the anodized implants (P=0.02; Table 3), 
there was no significant difference in BA between the two types of 
implant because of a large standard deviation (P=0.09; Table 3).

DISCUSSION

We set out to determine whether modSLA implants would pos-
sess clinical superiority over anodically oxidized surface implants. 
Given the results of our in vivo experiment, hydrophilicity seems to 
be very important in bone response.

Thread density but not thread geometry is known to have an ef-

fect on BIC [30,31]. As the anodized implant had a shorter thread 
pitch than the modSLA implant in this study (Fig. 4), it was consid-
ered to have an advantage in BIC. We also found the modSLA sur-
face to be significantly rougher than the anodized surface. Although 
the modSLA surface is classified as rough, the anodized surface is 
considered moderately rough, which is known to be more advanta-
geous for bone responses than a "rough" surface [32]. However, we 
found a significantly higher BIC in response to the modSLA implant. 
In fact, in terms of the surface treatment based on Sa and Sdr, sev-
eral studies concluded that modSLA surface showed better perfor-
mance than conventional SLA surface as well as different surface 
treatment [17,19,21]. Although the mechanism linking surface 
properties and osteoblast production is not yet sufficiently under-
stood, the hydrophilic property of the modSLA surface may have a 
stronger influence on bone response than either the surface con-
figuration of the implant or the surface features resulting from an-
odic oxidation [19]. These results correlated with the previous study 
concluding that surface hydrophilicity rather than microtopography 
affected soft and hard tissue integration [33].

Since the dental implant was first introduced, there have been a 

Table 3. The bone-implant-contact and bone area 1 week after the surgery.

ModSLA (n=5) Anodized (n=5) P-value

BIC 17.9±19.4% 2.9±8.3% 0.02a)

BA 14.0±12.0% 4.0±9.0% 0.09a)

Data shown as mean±standard deviation. BIC, bone-to-implant contact; BA, 
bone area ratio.
a)Data were analyzed using the Mann–Whitney U test.

A B

Figure 4. Histologic views of wound healing at day 7 with light microscopic findings (H&E stain, 100× magnification). Newly formed bone was seen from the 
cutting area of the cortical bone toward the implant surface (black arrows). New bone was also formed from the implant surface (white arrows). Bone forma-
tion was found to occur in the marrow area, mainly behind the existing cortical bone. Histologic views were observed around both the anodized (A) and modS-
LA (B) implants.
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huge number of studies of which the purposes were to find the 
factors for the improvement of osseointegration. Eventually, we 
now have diverse dental implants at out hand with various designs, 
configurations, surface treatment, and modifications. Hugh leap of 
development was already made in the field of dental implants. 
Therefore, the scientific investigation on only one factor for better 
dental implant by well-controlled experiments can be so stereo-
typed but the intuitive comparison among the several dental im-
plants considering each one as an independent entity of the experi-
ment, although somewhat obscure and less scientific, can be more 
practical and clinically helpful. The well-controlled study on one 
factor could be even more redundant [6,21]. In such a way, a previ-
ous study showed that hydrophilic SLA group showed higher BIC 
after 10 days than Nobel Biocare Replace Select implant group with 
oxidized TiUnite surface [34].

We observed many different stages of new bone formation, rang-
ing from no osseointegration at all to a very thin layer of new bone 
around the original cortical bone, to marked growth toward the im-
plant surface, to complete osseointegration with new bone, which 
is why such a large standard deviation was observed on histomor-
phometric analyses. One week of post-surgery recovery time is too 
short to truly evaluate osseointegration at the bone-implant inter-
face, although the findings of this study support previous results in-
dicating that this process is initiated within the first week of wound 
healing [35,36]. Further studies are needed to more clearly deter-
mine significant histomorphometric differences by controlling the 
healing period after implant insertion.

Our results suggest that the hydrophilic modSLA surface may 
have a stronger affinity for bone than the anodized surface during 
the initial healing period. Somewhat similar results have been indi-
cated by previous studies reporting that a hydrophilic surface im-
plant is associated with better initial bone response [17,37]. Al-
though both surface configuration and hydrophobic properties of 
the implant surface were found to affect early bone formation, the 
latter appears to have a more significant effect on BIC for reasons 
that are yet to be fully elucidated. Various experiments including 
animal models and immunohistochemistry have reported that blood 
clots may be formed within 24 hours of implant insertion and that 
formation of capillaries preceded and accelerated new bone forma-
tion [37,38]. We found blood clots close to the hydrophilic modSLA 
surface, while a previous study demonstrated that the coagulum 
was partially collapsed at the conventional SLA surface [37]. Within 
the limitations of this study, the hydrophilicity of the modSLA sur-
face may have a stronger effect on in vivo bone healing than opti-
mal surface roughness and surface chemistry of the anodized sur-
face. Further investigations are required to elucidate the interac-
tions between the implant surface factors such as hydrophilicity 
and the physiology of blood and bone with large sample size at the 
various different stages during the early healing period.
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