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Targeted therapies guided by molecular diagnostics have become a standard treatment of lung 
cancer. Epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase 
(ALK) rearrangements are currently used as the best predictive biomarkers for EGFR tyrosine ki-
nase inhibitors and ALK inhibitors, respectively. Besides EGFR and ALK, the list of druggable ge-
netic alterations has been growing, including ROS1 rearrangements, RET rearrangements, and 
MET alterations. In this situation, pathologists should carefully manage clinical samples for mo-
lecular testing and should do their best to quickly and accurately identify patients who will benefit 
from precision therapeutics. Here, we grouped molecular biomarkers of lung cancers into three 
categories—mutations, gene rearrangements, and amplifications—and propose expanded 
guidelines on molecular testing of lung cancers.
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▒ REVIEW ▒

Molecular diagnostics-guided targeted therapies have become 
a standard treatment for patients with lung cancer.1 Driver 
genetic alterations such as epidermal growth factor receptor 
(EGFR) mutations and anaplastic lymphoma kinase (ALK) 
rearrangements are currently used as predictive biomarkers for 

EGFR tyrosine kinase inhibitors (TKIs) and ALK inhibitors, 
respectively.1 Since Korean guideline recommendations for 
EGFR and ALK molecular testing were published,2,3 the list of 
druggable genetic alterations has been growing as tremendous 
amounts of information on the cancer genome are becoming 
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available (Table 1).4-6 Molecular analyses of various biomarkers 
in tumor tissue or cytology specimens have become standard 
laboratory tests for the clinical management of lung cancers. In 
this context, an updated and more comprehensive set of guide-
lines is necessary.

In this article, we propose expanded guidelines for molecular 
testing of lung cancers including recently updated genetic 
alterations and well-known biomarkers. Here, we grouped mo-
lecular biomarkers into three categories—mutations, gene rear-
rangements, and amplifications (Fig. 1)—and reviewed the 
background, indications, methods, reporting, test validations, 
and quality assurance for each category.

 
MOLECULAR TESTING

 
Mutations including EGFR, KRAS, BRAF, HER2, and MET

Background

Activating somatic mutations including point substitution, 
small insertion, and in-frame deletion are major oncogenic drivers 
in lung cancer. The discovery of activating EGFR mutations 
and their close relation with the response to EGFR TKIs 
opened the new era of precision medicine. Since then, clinical 
trials have confirmed that EGFR mutations are the best predic-
tive factor of EGFR TKI efficacy.7,8 EGFR mutations have been 

more frequently found in lung adenocarcinomas in Asian popu-
lations than Western populations.9 The overall EGFR mutation 
rate is approximately up to 46% among Korean patients with 
adenocarcinoma.10,11 More than 90% of sensitizing EGFR 
mutations are composed of an in-frame deletion in exon 19 and 
a point mutation (L858R) in exon 21. Nonetheless, most patients 
experience disease progression usually after 12 months of treat-
ment.12,13 A variety of mechanisms are involved in acquired 
resistance to EGFR TKIs.12-14 Among these, the most common 
resistance mechanism is the T790M mutation in EGFR, con-
stituting 50%–60% of cases.12,13,15 Recently, osimertinib was 
approved for the treatment of T790M-positive lung cancers in 

Table 1. Targetable genetic alterations in lung cancer

Gene Representative subtypes or variants Frequency Targeted agents

Mutations
EGFR Exon 19 deletion, Exon 21 L858R, Exon 20 T790M 40%–50% in ADCsa

10%–20% in ADCsb
Gefitinib, erlotinib, afatinib, osimertinib

KRAS G12X, G13X, G61X 5%–10% in ADCsa

20%–30% in ADCsb
MEK inhibitors

BRAF V600E 1%–4% in ADCs Vemurafenib, dabrafenib,
HER2 p.A775 G776insYVMA in exon 20 1%–2% in ADCs Trastuzumab, afatinib
MET Splice site mutations around or in exon 14 3%–4% in ADCs Crizotinib, cabozantinib

Gene fusions
ALK EML4-ALK, TGF-ALK, KIF5B-ALK 5% in ADCs Crizotinib, ceritinib, alectinib
ROS1 CD74-ROS1, EZR-ROS1, SLC34A2-ROS1, SDC4-ROS1 1% in ADCs Crizotinib, ceritinib
RET KIF5B-RET, CCDC6-RET 1% in ADCs Cabozantinib, vandetanib, alectinib
NTRK1 MPRIP-NTRK1 and CD74-NTRK1, TPM3-NTRK1 < 1% in ADCs Entrectinib
FGFR1/3 FGFR3-TACC3, BAG4-FGFR1 1% in NSCLCs FGFR inhibitor
NRG1 CD74-NRG1, SLC3A2-NRG1, VAMP2-NRG1 7% in mucinous ADCs NA

Amplifications
FGFR1 Gene amplification 13%–22% in SQCs FGFR inhibitor
EGFR Gene amplification 8%–9% in SQCs, EGFR inhibitor
MET Gene amplification 2%–4% in ADCs Crizotinib
HER2 Gene amplification 1%–2% in ADCs Trastuzumab, afatinib

ADC, adenocarcinoma; NSCLC, non-small cell lung carcinoma; FGFR, fibroblast growth factor receptor; NA, not available; SQC, squamous cell carcinoma; 
EGFR, epidermal growth factor receptor.
aAsian populations; bWestern populations.
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Fig. 1. Three categories of molecular biomarkers used in these 
guidelines. EGFR, epidermal growth factor receptor; ALK, anaplas-
tic lymphoma kinase; FGFR, fibroblast growth factor receptor.
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Korea.16 The acquired EGFR C797S mutation has been reported 
to mediate resistance to osimertinib in a subset of EGFR 
T790M–positive non-small cell lung carcinomas (NSCLCs).17,18 
Thus, EGFR mutation testing covering sensitizing as well as 
nonsensitizing mutations has become the most important step 
in treatment decision-making for lung cancer patients because 
of the high frequency of EGFR mutations and the availability 
of targeted therapeutic agents.

The frequency of KRAS mutations has been reported to be 
8%–15% in lung adenocarcinoma among Korean patients.19,20 
Unfortunately, targeted therapies thus far have been unsuccess-
ful.21 KRAS mutations are known as negative predictive markers 
of a poor response to EGFR TKIs. In addition, a KRAS mutation 
has been reported to be a poor prognostic factor. This also 
appears to be dependent both on the specific KRAS codon muta-
tion and disease stage at the time of diagnosis.21 Invasive mucinous 
adenocarcinomas show a high incidence of KRAS mutations.22

Besides EGFR mutations, other targetable mutations have 
been found although their frequency is low. A BRAF mutation 
has been found in 3%–4% of lung adenocarcinomas in Western 
patients.23,24 Among never-smoker Korean women with lung 
cancer, the frequency of tumor BRAF mutation is 1%.25 The 
V600E mutation constitutes only 50% of BRAF mutations in 
contrast to other cancers (such as melanoma and papillary thyroid 
carcinoma).23,24 Vemurafenib and dabrafenib show clinical 
activity in BRAF V600E-mutant NSCLC.26-28 HER2 mutations 
are present in approximately 1%–2% of lung adenocarcinomas.29 
The most common mutation is an in-frame insertion within 
exon 20.29 The exon 20 insertion results in increased HER2 kinase 
activity. The clinical response to HER2-targeting agents, such 
as trastuzumab and afatinib, is observed in patients with lung 
cancer harboring a HER2 mutation.29

Recently, MET splice site mutations have emerged as targe-
table oncogenic drivers. Oncogenic mutations in the MET exon 
14 splice sites (these mutations cause exon 14 skipping) occur 
in 3%–4% of lung adenocarcinomas.30,31 Patients with lung 
cancer harboring MET exon 14 skipping show a clinical re-
sponse to MET inhibitors including crizotinib.30,31

 
Indications

The important reason for molecular testing of lung cancers is 
to select patients who may benefit from targeted therapies. In 
addition, patients with lung cancer can get benefits from mo-
lecular testing of their tumors regardless of stage. For example, 
molecular testing can provide accurate information on staging (in 
case of multiple tumors), prognostic stratification, and prompt 

treatment in case of recurrence. Because of the high frequency 
of EGFR mutations in Asian populations as mentioned above, 
EGFR mutation testing is especially important for the treat-
ment of Korean lung cancer patients. The Korean Food and 
Drug Administration (FDA) approved only EGFR molecular 
testing from among five genes important for decision-making 
with respect to first-line chemotherapy during standard treat-
ment. Other mutations can also be approved and used as pre-
dictive markers in the near future. Each mutation is significantly 
associated with some clinical factors or histological subtypes. 
Nevertheless, clinical findings alone cannot completely predict 
specific mutation status.32,33 In most of the guidelines published 
so far, histological types have been recommended as the most 
important factor in determining whether to perform molecular 
tests.34-36 In particular, for patients who have a diagnosis of 
NSCLC with an adenocarcinoma component or nonsquamous 
cell type, molecular testing is routinely recommended.35 Thus, 
pathologists should try to further classify NSCLCs into more 
specific subtypes, such as adenocarcinoma or squamous cell car-
cinoma (SQC).2 In addition, a minimum immunohistochemical 
panel, such as one adenocarcinoma marker and one SQC marker, 
is recommended to preserve as much tissue as possible for 
molecular testing in small tissue samples.35,37 Besides histological 
analysis, in cases of young age, female gender, never-smokers, 
small biopsies, or patients with a combined tumor type, molecular 
testing can be done. 

 
Methodology

Methods 
A variety of methods can be used for detecting mutations 

including direct sequencing, real-time polymerase chain reaction 
(PCR), and commercial kits (Table 2).38,39 Pathologists should 
consider the available approaches and the advantages and disad-
vantages of each method, including analytical sensitivity and 
turnaround time. In addition, new technologies for molecular 
testing must be approved by the Korean government before 
incorporation into clinical practice. 

Direct sequencing is considered the gold standard for mutation 
analysis. On the other hand, direct DNA sequencing requires a 
high ratio of tumor tissue to normal tissue (more than 50% 
tumor content) for reliable results. In contrast, PCR-based methods 
show high sensitivity, requiring mutant DNA content of only 
1%.38 Nevertheless, these PCR-based methods can detect only 
previously known mutations or targeted sites. PCR-based 
methods including the peptide nucleic acid–mediated PCR 
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clamping method and allele-specific PCR method have been 
approved in Korea. Among the targetable mutations, EGFR 
mutations have been the most studied in the field of lung cancer. 
In studies comparing two representative methods, clinical out-
comes are not significantly different among groups harboring 
EGFR mutations detected by direct sequencing or by PCR-based 
methods.40,41 Highly sensitive methods may also be useful for 
the detection of EGFR mutations associated with acquired resis-
tance, e.g., T790M.15 As with the EGFR mutation, direct sequenc-
ing or real-time PCR can be used for the detection of KRAS, 
BRAF, and HER2 mutations, which include a point mutation 
or small indel. In the case of MET exon 14 alterations, most 
alterations are a point mutation or indel, affecting the splice 
acceptor site, splice donor site, or the approximately 25-base pair 
(bp) intronic noncoding region. In rare cases, however, whole-
exon deletions of MET exon 14 have been reported.42 A DNA-
based method including direct sequencing is possible, but the 
mRNA-based method including real-time PCR is better at 
detecting MET exon 14 skipping.

As targetable genetic alterations are increasingly discovered, 
individual genotyping may become relatively inefficient and 
costly. Thus, next-generation sequencing (NGS) technology 
with DNA or RNA is reported to be useful for multiplexed and 
deep genomic sequencing.43,44 Especially, targeted deep sequenc-
ing of selected gene sets (a so-called cancer panel) is approaching 
integration into daily clinical practice. Nonetheless, due to the 
methodological complexity of NGS, analytical validation and 
quality control are crucial for implementation in routine practice. 
Furthermore, to become a companion diagnostic assay, an NGS-
based method should be comparatively validated with previous 
companion diagnostics.

Sample types
As previously described in our proposed guideline, small biopsy 

and cytology samples are used for mutation testing.2 In particular, 
all samples obtained from a variety of methods are acceptable, 
including transbronchial lung biopsy, endobronchial ultrasound–

guided transbronchial needle aspiration, bronchial brushing or 
washing, computed tomography–guided gun biopsy or needle 
aspiration, and pleural fluid sampling.34,45,46 The results using 
cytology samples are highly concordant with those of the correspond-
ing tissue samples, especially with more sensitive methods.45,47 

Since most driver mutations develop in early steps of carcino-
genesis, tumor samples from either primary masses or metastatic 
lesions are equally suitable for mutation testing.48 In the case of 
multiple primary lung cancers, each tumor may be tested.49

Formalin-fixed, paraffin-embedded (FFPE) tissues are most 
frequently used in molecular testing. Routinely prepared FFPE 
tissues are the most practical resource for molecular analysis, in 
spite of fixation-related artifacts.50 The optimal fixative for pre-
paring FFPE samples is generally 10% neutral-buffered forma-
lin.34 The optimal fixation time ranges from 6 to 72 hours to 
avoid underfixation or overfixation, respectively.34,50 Routinely 
prepared cytology samples such as alcohol-fixed smears or Thin 
Prep slides45,47 and cell block samples51 are also suitable for mu-
tation testing.

Because obtaining a tissue sample from bronchoscopy or a 
transthoracic needle biopsy is difficult and nonrepeatable, a liquid 
biopsy, which contains circulating tumor DNA, circulating 
tumor cells, or exosomes using plasma or body fluids, has recently 
been attracting attention as a new source for identification of so-
matic mutations.52,53 Nonetheless, due to the high rate of false 
negative results at present, negative results require a tissue biopsy 
to determine exact mutation status.53

 
Sample requirements

Pathologists must confirm the presence of tumor cells in a 
sample before mutation analysis. The percentage and quality of 
tumor cells are crucial for proper mutation testing. For example, 
direct sequencing requires at least 20% tumor cells in the sample 
for reliable testing result. Thus, evaluation of the percentage of 
tumor cells (tumor purity) in a given sample is highly recom-
mended, especially for less sensitive methods. Tumor dissection 
may be used to increase the tumor content if required. Thus, as 

Table 2. Representative methods categorized by mechanisms of oncogene activation and by targeted molecules

Category Mutation Gene rearrangement Amplification

DNA Direct sequencing
PCR-based methods
NGS

FISH
NGS

FISH
qPCR
NGS

RNA RT-PCR (fusion transcript)
NGS

Real-time PCR (mRNA overexpression)

Protein IHC (mutation-specific antibody) IHC (protein expression) IHC (protein overexpression)

PCR, polymerase chain reaction; NGS, next-generation sequencing; FISH, fluorescence in situ hybridization; qPCR, quantitative polymerase chain reaction; 
RT-PCR, reverse transcriptase polymerase chain reaction; IHC, immunohistochemistry.
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noted, the minimum number or percentage of cancer cells re-
quired for adequate testing depends on the analytic sensitivity 
of the testing method.

 
Reporting

Mutation testing reports should contain identification of the 
patient (pathology number, hospital unit number, age, and 
gender), requesting physician with department, receipt day, 
report day, sample used for the testing (site or organ, sample type, 
and tumor purity), methodology used, exons tested, test results, 
comments on results, and names of the testing technician and 
corresponding pathologist.2 

 
Validation of a test

Analytical and clinical validation should be done when the 
testing is implemented in the laboratory. One of the references 
is indexes of evaluation from the Korean Institute of Genomic 
Testing Evaluation. 

Repeat examination can be considered in cases of poor sequenc-
ing data, results not matching previously well-defined clinical 
features or a unique histological subtype, or concurrent detection 
of mutually exclusive driver mutations. Other types of methods 
may be useful in equivocal cases.

 
Quality assurance

For optimal mutation testing, the quality of a sample and vali-
dation status of the testing method are crucial. Laboratories 
must incorporate mutation testing methods into their overall 
laboratory quality improvement program, by establishing appro-
priate quality improvement monitors as needed to ensure con-
sistent performance at all steps of the testing and reporting pro-
cesses. In particular, laboratories should participate in a formal 
proficiency testing program, if available, or an alternative profi-
ciency assurance activity. There is an external quality control 
program for mutation testing from the Korean Institute of 
Genomic Testing Evaluation and the Korean Society of Pathol-
ogists. To improve the reliability of assays in terms of detection 
of mutations, a regular quality control program should be imple-
mented, such as examination of reference materials or comparison 
of the results between different diagnostic assays.

 
Gene rearrangements including ALK, ROS1, RET, NTRK1, 
NRG1, and FGFR

Background

Since the discovery of a transforming fusion gene between 

echinoderm microtubule-associated protein-like 4 (EML4) and 
ALK in 2007, the list of targetable gene fusions in lung cancer 
has been growing.54,55 Although the prevalence of each gene 
fusion is low (approximately 1%–5%), molecularly tailored 
treatments have resulted in dramatic clinical responses. The 
presence of an ALK rearrangement and ROS1 proto-oncogene 
receptor tyrosine kinase (ROS1) rearrangement in lung cancer 
has become the best predictor of response to crizotinib.56,57 Subse-
quently, RET proto-oncogene (RET) fusions were found compris-
ing 1% of lung adenocarcinomas.58,59 Cabozantinib or vande-
tanib showed clinical activity against lung cancer harboring 
RET fusions.60,61 Besides ALK, ROS1, and RET fusions, NTRK1 
and fibroblast growth factor receptor (FGFR) 1/3 fusions were 
reported in lung cancer, which are expected to give a therapeutic 
opportunity to patients with no known driver alterations.62,63 Of 
note, NRG1 fusions were predominantly found in invasive muci-
nous adenocarcinoma, which is a unique variant of lung adeno-
carcinoma.22,64

 
Indications

Clinical characteristics associated with gene fusions such as 
ALK, ROS1, RET, and NTRK1 are adenocarcinoma histological 
features, never- or light-smoking history, and younger age. 
Nevertheless, not all gene fusions have these characteristics. FGFR 
fusions are associated with smoking history.63 Therefore, clinical 
characteristics alone cannot determine gene rearrangement testing. 

Histological type is an important factor in determining whether 
to perform genetic analysis or which genes to test.36 Most targe-
table gene fusions are discovered in NSCLCs. Because ALK, 
ROS1, and RET fusions are predominantly found in adenocarci-
nomas or NSCLCs with an adenocarcinoma component, patholo-
gists should try to further classify NSCLCs into more specific 
subtypes. On the other hand, FGFR fusions can be found in 
adenocarcinomas and SQCs.63,65

 
Methodology

Methods 
Several methods are currently available for assessing gene 

rearrangement, including fluorescence in situ hybridization (FISH), 
immunohistochemistry (IHC), reverse-transcriptase polymerase 
chain reaction (RT-PCR), and NGS (Table 2).

Break apart FISH is the currently standard method for the 
detection of gene rearrangements. Although the FISH assay 
requires technical expertise and experience for interpretation, 
this assay is reasonably sensitive and specific for the detection of 
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gene rearrangements regardless of fusion partners. The patholo-
gist should recognize the probe design, especially which sides 
are labeled with a red and green signal and the positive criteria. 
Crizotinib, a first generation ALK inhibitor, was approved by 
the United States FDA in conjunction with a companion diag-
nostic FISH test (ALK Break Apart FISH Probe Kit, Abbott 
Molecular Inc.). Positive criteria for the Abbott FISH probe kit 
are as follows. Positive signals are defined as separate signals or 
a single red signal. Initially, 50 tumor cells are counted. A sample 
is considered positive if > 25 cells out of 50 (> 25/50 or > 50%) 
test positive. A sample is considered equivocal if 5 to 25 cells (10 
to 50%) test positive. If the sample is equivocal, a second reader 
should evaluate the slide. The first and second cell count readings 
are added up, and a percentage is calculated out of 100 cells. If 
the percentage of positive cells is ≥ 15% (≥ 15/100), the sample 
is considered positive. The Korean FDA also approved the ALK 
FISH as a selection test for crizotinib treatment in lung cancer 
patients. 

Because protein expression can serve as a surrogate marker of 
gene rearrangements, IHC is useful for screening of gene rear-
rangements when it is appropriately validated.3,66-68 In particular, 
ALK IHC was extensively studied and validated.3 Among ALK 
IHC antibodies, 5A4 and D5F3 appear to be superior to the 
ALK1 antibody for detecting ALK-rearranged lung cancer.69,70 
IHC can effectively predict ALK fusion status because lung ade-
nocarcinoma in general does not express the ALK protein without 
genetic alterations. The VENTANA ALK (D5F3) CDx Assay 
was approved by the U.S. FDA for identification of patients eli-
gible for treatment with crizotinib. Other antibodies are not vali-
dated as companion diagnostics; therefore, their use should be 
limited to a screening step within controlled settings. 

Besides ALK, there are no approved companion diagnostics 
for other gene rearrangements. Break apart FISH is generally 
used to detect gene arrangements in clinical samples, and IHC 
can serve as a screening method.

In terms of mRNA expression, the RT-PCR assay is used to 
find fusion transcripts with unique sequences. RT-PCR methods 
are generally known to be sensitive.71 Nonetheless, RT-PCR has 
some limitations in clinical practice. Primer design requires in-
formation about fusion partners and breakpoints. Thus, only 
known fusion variants can be detected. In addition, most mate-
rials for molecular testing are FFPE samples, where RNAs can 
be severely degraded compared to fresh frozen tissue. Neverthe-
less, RT-PCR can be useful when only cytology samples are 
available.71 

The NGS technology has emerged as an alternative to the 

detection of gene rearrangements. It can simultaneously detect a 
variety of gene fusions using targeted DNA sequencing or RNA 
sequencing.43,44 The sensitivity and specificity for calling a gene 
fusion mainly depend on the detection algorithm. The NGS-
based gene rearrangement method should be vigorously validated 
before implementation in routine practice. Furthermore, to 
become a companion diagnostic test, an NGS-based method 
should be comparatively validated with previous companion 
diagnostics.

 
Sample type

A variety of biopsy specimens can be used for gene rearrange-
ment testing as described above in the section on mutation test-
ing. Previous studies have shown that cytology samples are suit-
able for gene rearrangement analysis, especially as validated in 
ALK fusion testing.72 The cell block is usually first used if there 
are enough tumor cells in the block. Smear slides can also be used 
for the detection of gene rearrangement.72 Thus, both tissue and 
cytology samples are acceptable for gene rearrangement testing, 
if appropriately validated. Details were described in the previous 
guideline.3

 
Sample requirements

For adequate evaluation of break apart FISH, a minimum of 50 
to 100 well-preserved tumor cells are required. Tumor purity is 
not as critical for FISH tests, however, it is necessary to choose 
areas of a slide in which the viable tumor cells are most abundant. 
Because a dark-field fluorescence microscope does not provide 
perfect visualization of tumor morphology, the pathologist 
should determine whether the selected area contains a sufficient 
number of tumor cells and should interpret the result carefully 
by distinguishing between cancer cells and intimately mixed non-
neoplastic cells. 

As for RT-PCR and NGS technologies, the tumor percentage 
can be critical in gene rearrangement testing as described in 
mutation testing. The pathologist should verify the quality of 
the sample and the presence of tumor cells. Tumor dissection 
may be used to increase the tumor content if required. 

 
Reporting

Reports on gene rearrangement testing should contain iden-
tification of the patient (pathology number, hospital unit num-
ber, age, and gender), requesting physician with department, 
receipt day, report day, sample used for the testing (site or organ, 
sample type, and tumor purity), methodology used, detectable 
fusion variants, test results (negativity or positivity for the gene 
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rearrangement), comments on results, and names of the testing 
technician and corresponding pathologist. We recommend 
reporting the additional details in the case of a FISH test: infor-
mation on probe design, total number of counted nuclei, and 
percentage of the tumor nuclei showing positive signals (split 
signal or isolated signal containing a kinase domain).3

 
Validation of the test

General principles are similar to those of mutation testing. 
Technical and clinical validation procedures should be carried out 
when the testing is set up in the laboratory. One of the references 
is indexes of the evaluation from the Korean Institute of Genomic 
Testing Evaluation. 

Pathologists should recognize the limitations of each meth-
odology. With respect to the break apart FISH test, repeat exami-
nation can be considered in cases of poor signals, atypical signal 
patterns (including predominantly isolated 5' signals), a border-
line range that approached the 15% cutoff line, results not match-
ing well-validated IHC, or concurrent detection of driver muta-
tions. Other types of methods may be useful in equivocal cases.

 
Quality assurance

There is an external quality control program for ALK fusion 
testing from the Korean Institute of Genomic Testing Evaluation 
and the Korean Society of Pathologists. To improve the reliability 
of assays for detecting gene rearrangements, a regular quality 
control program should be performed, and the results of molecu-
lar testing can be confirmed by different diagnostic assays, such 
as validated IHC.

 
Amplifications including FGFR1, EGFR, MET, and HER2

Background

Gene amplification is an important mechanism for oncogene 
activation. HER2-targeting therapy has been implemented in 
breast and gastric cancer on the basis of molecular testing for 
HER2. Amplifications of several genes have been studied in lung 
cancer.

FGFR1 is one of the most commonly amplified genes in hu-
man cancers. Amplified FGFR1 has been described in 13%–
22% of lung SQCs.73,74 It is expected to become a promising 
targetable alteration in lung SQCs because there are no known 
targeted therapeutic agents for SQCs.73 In vivo studies have 
revealed that inhibition of the FGFR1 pathway with FGFR in-
hibitors leads to significant tumor shrinkage, suggesting that 
FGFR inhibitors might be an effective therapeutic option in 

SQCs with FGFR1 amplification.75 Nevertheless, clinical trials 
of FGFR inhibitors were not impressive.76 Additional biomarkers 
should be studied to predict the drug response to FGFR inhibi-
tors.77 A study showed that homogeneous high-level amplifica-
tion was associated more strongly with a clinical response to 
FGFR inhibition.78 Thus, FGFR1 amplification can still be a 
promising candidate for targeted therapy.

EGFR amplifications were found in adenocarcinomas and 
SQCs. Initially, EGFR amplification was regarded as a predictive 
biomarker of EGFR TKI treatment.79 Subsequent studies 
revealed that EGFR amplification was closely related to EGFR 
mutation, and EGFR mutation was the strongest predictive 
marker of the response to EGFR TKIs.7,80 Among SQCs, EGFR 
high copy number gains/amplifications were present in 8%–9% 
of cases.4,81 Patients with lung SQC harboring an EGFR high 
copy number gains or amplifications showed a higher response 
rate to EGFR TKI.81

De novo MET amplification was present in 2%–4% of lung 
adenocarcinomas.5,82 NSCLC patients with de novo MET ampli-
fication showed a rapid and durable response to crizotinib.83,84 
MET amplification was also identified as one of the acquired 
secondary resistance mechanisms in patients with EGFR muta-
tions who progressed on EGFR TKIs.12,13

De novo HER2 amplification was found to be present in 1%–
2% of lung adenocarcinomas.5 NSCLC patients with de novo 
HER2 amplification can be treated with HER2-targeting agents.85 
HER2 amplification was also identified as one of the acquired 
secondary resistance mechanisms in patients with EGFR muta-
tions who progress on EGFR TKIs.18,86

 
Indications

Amplifications of receptor tyrosine kinase genes are present 
in lung cancers regardless of histological subtypes, while the 
frequencies are different. Thus, these gene amplifications can be 
examined in patients with lung cancer, especially previously 
targetable oncogene-negative cases. FGFR1 amplification is 
especially meaningful for SQCs. 

EGFR amplification can serve as a predictive marker of SQCs. 
MET and HER2 amplification can be examined in the primary 
tumors or tumors with acquired resistance to TKIs.

 
Methodology

Method 
Several methods can be used for detection of gene amplifica-

tions (Table 2). FISH using a locus-specific intensifier (LSI) gene 
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and a chromosome-specific centromere (CEP) probe is a standard 
method for the detection of gene amplifications. Although the 
FISH assay requires technical expertise and experience for inter-
pretation, this method has the advantage of being able to evaluate 
gene amplification by selecting only cancer cells.

FISH-positive criteria have been used according to the corre-
sponding genes. FGFR1 high-level amplification is defined as 
copy number ≥ 9 or (1) an FGFR1/CEP8 ratio of ≥ 2.0, (2) the 
average number of FGFR1 signals per tumor cell nucleus ≥ 6, and 
(3) the percentage of tumor cells containing ≥ 15 FGFR1 signals 
or large clusters ≥ 10%.74,87 According to previously published 
criteria, the EGFR gene copy number was classified into six FISH 
strata: disomy (two or fewer copies in more than 90% of cells), 
low trisomy (two or fewer copies in 40% or more of the cells, 
three copies in 10%–40% of cells, and four or more copies in less 
than 10% of cells), high trisomy (two or fewer copies in ≥ 40% 
of cells, three copies in ≥ 40% of cells, and four or more copies 
in less than 10% of cells), low polysomy (four or more copies in 
10%–40% of cells), high polysomy (four or more copies in 
40% of the cells or more), and gene amplification (defined by 
the presence of tight EGFR clusters and a ratio of EGFR to the 
chromosome of ≥ 2.0, or ≥ 15 copies of EGFR per cell in ≥ 10% 
of the cells analyzed).79 Regarding MET, FISH-positive groups 
include (1) high-level amplification (presence of loose or tight 
clusters of MET signals too numerous to count) or a MET/
CEP7 ratio greater than 5.0 and (2) low-level amplification (tumors 
with the MET/CEP7 ratio ≥ 2.2 and ≤ 5.0).83 As for HER2, gene 
amplification can be defined as positive when the HER2/CEP17 
ratio is ≥ 2.0 or average HER2 copy number is ≥ 6.0 signals/cell 
based on the American Society of Clinical Oncology/College of 
American Pathologists (ASCO/CAP) guidelines for dual-probe 
in situ hybridization.88

In clinical practice, for many years FISH has been the most 
widely used method for gene copy number assessment. Silver in 
situ hybridization (SISH) is a new technology with some clinical 
advantages over FISH. Examination can be made using conven-
tional light microscopy with preserved tissue architecture. In 
addition, the slides are durable and can be reviewed several years 
after staining. Thus, the SISH technique can be more practically 
applied in routine diagnostic procedures.89 

Quantitative real-time PCR can be used to detect gene ampli-
fication.90 In this case, the optimal cutoff threshold of amplifica-
tion should be determined considering clinical relevance and a 
response to targeted therapeutic agents. 

The NGS technology can simultaneously detect a variety of 
genes with a copy number gain using DNA sequencing.43 None-

theless, currently, the NGS algorithm for determination of a 
copy number gain in heterogeneous tumor tissue is not well 
established. The established guideline is based on a specific 
gene copy number, but the NGS technology cannot determine 
the specific gene number in given cancer cells. The reliability of 
testing results also depends on the tumor cell percentage and the 
degree of gene amplification. Before clinical implementation, 
thorough verification is required.

Sample type
Various biopsy samples can be used for amplification testing 

as in other molecular testing methods described above. Samples 
routinely consist of FFPE tissues. Tumor tissues from either pri-
mary tumors or metastatic lesions can be equally available for 
molecular testing especially regarding high-level homogeneous 
amplification.91 Cytology samples can be used with quantitative 
real-time PCR or NGS.

 
Sample requirements

Regarding the in situ hybridization method, a minimum of 
50 to 100 tumor cells are required. General principles are similar 
to those described above in the section on break apart FISH testing. 

 
Reporting

Reports on gene amplification testing should contain identifi-
cation of the patient (pathology number, hospital unit number, 
age, and gender), requesting physician with department, receipt 
day, report day, sample used for the testing (site or organ, sample 
type, and tumor purity), methodology used, test results (nega-
tivity or positivity for the gene amplification according to pro-
posed criteria), comments on results, and names of the testing 
technician and corresponding pathologist. Additional informa-
tion can be included in the case of in situ hybridization: the total 
number of counted nuclei, gene/CEP ratio, average copy number, 
or findings according to special diagnostic criteria.

Validation of a test

Analytical and clinical validation procedures should be con-
ducted when the testing is set up in the laboratory. One of the 
references is indexes of evaluation from the Korean Institute of 
Genomic Testing Evaluation. General principles are similar to 
the ASCO/CAP guidelines for dual-probe in situ hybridization.88

 
Quality assurance

There is an external quality control program for FISH/SISH 
testing (for example, HER2 amplification) from the Korean In-
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stitute of Genomic Testing Evaluation and the Korean Society 
of Pathologists. To improve the reliability of assays for detection 
of gene amplification, a regular quality control program should 
be implemented, and the results of molecular testing can be 
confirmed by different diagnostic assays, such as validated IHC 
for protein overexpression.

 
CONCLUSION

 
We proposed guideline recommendations for molecular test-

ing according to three categories of genetic alterations in lung 
cancer (summarized in Table 3). Molecular diagnostics for tar-
getable genetic alterations have become the standard of care in 
the management of lung cancer patients (Fig. 2). In addition, 
immunotherapy has emerged as a new therapeutic option for 
patients who do not have targetable alterations (Fig. 2). Both 
therapeutic approaches require pathological diagnosis based on 
molecular biomarker assessment. Therefore, pathologists should 
carefully manage clinical samples for molecular testing and should 
do their best to quickly and accurately identify patients who will 
benefit from precision therapeutics. Each pathology department 
should fully validate the detection methods and should also 

participate in a quality control and formal proficiency testing 
program.
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Table 3. A summary of recommendations for molecular testing of lung cancer

Recommendation

Indications Mutations
Do: adenocarcinoma, large cell carcinoma, NSCLC-NOS
Consider: at a young age, never smokers or small biopsy samples or mixed histological features
All types if clinically indicated

Gene rearrangements
Do: adenocarcinoma, large cell carcinoma, NSCLC-NOS for most gene fusions
Consider: at a young age, never smokers or small biopsy samples or mixed histological features
Squamous cell carcinoma for FGFR fusions
All types if clinically indicated

Amplifications
All types if clinically indicated
Squamous cell carcinoma for FGFR1 amplification
Adenocarcinoma, NSCLC-NOS for MET or HER2 amplifications

Method An appropriate method should be selected according to genetic alterations.
The pathologist should consider the pros and cons of each method.

Type of specimen Histological and cytological samples are both acceptable.
Either a primary tumor or a metastatic lesion is equally suitable.
In cases of multiple, synchronous primary lung adenocarcinomas, each tumor may be tested.

Specimen requirements The presence of tumor cells must be verified by a pathologist.
High percentage (ideally more than 50%) of tumor cells for direct sequencing
Lower percentage acceptable for methods with higher sensitivity
A minimum of 50–100 assessable tumor cells are required for a FISH assay.

Reporting Patients and sample information, material used for analysis, type of method, results of the test, comments, names 
  of the testing technician and corresponding pathologist

Validation of test New methods must be approved by the Korean government.
Analytical and clinical validation procedures should be conducted when the testing is set up in the laboratory.
A combination of more than one method may be useful in equivocal cases.

Quality assurance Quality assurance program (internal or external quality control) should be implemented.

NSCLC-NOS, non-small cell lung carcinoma not otherwise specified; FGFR, fibroblast growth factor receptor; FISH, fluorescence in situ hybridization.

Fig. 2. The current therapeutic approach to patients with lung can-
cer. EGFR, epidermal growth factor receptor; ALK, anaplastic lym-
phoma kinase; FGFR1, fibroblast growth factor receptor 1; PD-L1, 
programmed death-ligand 1.
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