
Copyright © 2021 by The Korean Liver Cancer Association. All rights reserved.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) 
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Ras Mitogen-activated Protein Kinase Signaling and Kinase Suppressor 
of Ras as Therapeutic Targets for Hepatocellular Carcinoma
Hyuk Moon, Simon Weonsang Ro

Department of Genetic Engineering, Kyung Hee University College of Life Sciences, Yongin, Korea

Received Jun. 24, 2020
Revised Aug. 27, 2020
Accepted Sep. 1, 2020

Hepatocellular carcinoma (HCC) is a high incidence cancer and a major health concern 
worldwide. Among the many molecular signaling pathways that are dysregulated in HCC, 
the Ras mitogen-activated protein kinase (Ras/Raf/MAPK) signaling pathway has gained 
renewed attention from basic and clinical researchers. Mutations in Ras and Raf genes which 
are known to activate the Ras/Raf/MAPK signaling pathway have been infrequently detected 
in human HCC; however, the Ras/Raf/MAPK signaling pathway is activated in more than 
50% of HCC cases, suggesting an alternative mechanism for the activation of the signaling 
pathway. Kinase suppressor of Ras acts as a molecular scaffold for facilitating the assembly 
of Ras/Raf/MAPK signaling pathway components and has been implicated in the regulation 
of this signaling pathway. In this review, we provide important insights into the cellular and 
molecular mechanisms involved in the activation of the Ras/Raf/MAPK signaling pathway and 
discuss potential therapeutic strategies for HCC. (J Liver Cancer 2021;21:1-11)
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HEPATOCELLULAR CARCINOMA

Hepatocellular carcinoma (HCC) is the third leading cause 

of cancer-related mortality worldwide and accounts for 

about 80% of all primary liver cancers. HCC is thus a major 

global health problem, and its incidence continues to rise.1

The diagnosis of HCC has improved significantly over the 

past few years; however, less than 30% of patients are diag-

nosed with HCC in the early stages, despite the availability of 

resection, liver transplantation, and local ablation.2,3 Systemic 

therapy is recommended as the standard treatment option 

for advanced HCC; however, prognosis has been unsatisfac-

tory in general.4,5

Common risk factors for HCC include hepatitis B virus 

(HBV) infection, hepatitis C virus (HCV) infection, alcohol 

consumption, aflatoxin B1 exposure, and metabolic syn-

drome.1 Chronic inflammation caused by these risk factors 

promotes hepatic fibrosis and cirrhosis, eventually causing 

HCC.6,7 HCC involves multiple genetic and epigenetic altera-

tions in proto-oncogenes and tumor suppressor genes and 

the dysregulation of multiple molecular signaling pathways.8,9

Identification of molecular signaling pathways associated 

with tumorigenesis can aid the discovery of novel therapeutic 

targets. Targeted therapies can act on specific proteins and 

minimize cytotoxicity, unlike conventional cytotoxic agents.9 
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Sorafenib is a representative targeted therapeutic agent for 

HCC; it was approved in 2006 for unresectable HCC and 

partially targets multiple kinases involved in the progression 

of advanced HCC.10,11

1. The Ras/Raf/MAPK signaling pathway

Multiple signaling pathways, such as Ras mitogen-activat-

ed protein kinase (Ras/Raf/MAPK), phosphatidylinositol 

3-kinase (PI3K)/AKT/mammalian target of rapamycin 

(mTOR), Wnt/beta-catenin, Janus kinase (JAK)-signal trans-

ducer activator of transcription factor (STAT) (JAK-STAT), 

Hedgehog (HH), and Hippo-Yes-associated protein (YAP)/

Transcriptional coactivator with PDZ-binding motif (TAZ) 

signaling pathways, are dysregulated in HCC. As knowledge 

regarding oncogenic molecular pathways in HCC is accumu-

lating, there is growing interest in investigating novel thera-

peutic targets for HCC associated with these pathways.9 

Among the molecular signaling pathways related to HCC, 

the Ras/Raf/MAPK signaling pathway contributes signifi-

cantly to HCC development.12,13

The Ras/Raf/MAPK signaling pathway is activated through 

signal transduction from cell surface receptors, such as re-

ceptor tyrosine kinases (RTKs) and G-protein-coupled re-

ceptors (GPCRs).14,15 Dysregulation of the Ras/Raf/MAPK 

signaling pathway leads to abnormal cellular behaviors, like 

increased proliferation, de-differentiation, and survival, pro-

moting carcinogenesis.15

The receptors that can activate the Ras/Raf/MAPK signal-

ing pathway include, epidermal growth factor receptor 

(EGFR), fibroblast growth factor receptor, platelet-derived 

growth factor receptor (PDGFR), vascular endothelial 

growth factor receptor (VEGFR), insulin-like growth factor 

receptor, hepatocyte growth factor receptor (also known as 

C-Met), and the stem cell growth factor receptor/c-KIT.9,16

Ligand binding to these receptors leads to the activation of 

cytoplasmic tyrosine kinases (TKs), which phosphorylate ty-

rosine residues at the cytoplasmic tails of the receptors. This 

event recruits the Grb2/Shc/SOS adapter molecular com-

plexes to the plasma membrane, subsequently converting 

guanosine diphosphate (GDP)-bound Ras to active guano-

sine triphosphate (GTP)-bound Ras. After Ras activation, 

serine/threonine kinase Raf proteins (A-Raf, B-Raf, and C-

Raf) are recruited to the cell membrane and activated in a 

complex series of processes that include phosphorylation and 

dimerization with scaffolding complexes.17 Raf proteins di-

rectly regulate mitogen/extracellular protein kinases (MEK1 

and MEK2), ultimately leading to the phosphorylation of the 

downstream signaling molecules extracellular signal-regulat-

ed kinases (ERK1 and ERK2; also known as MAPK3 and 

MAPK1, respectively).9 Interestingly, MEKs are tyrosine and 

serine/threonine dual-specificity kinases.9 Phosphorylated 

ERK1 and ERK2 translocate to the nucleus, activating two 

key transcription factors of the AP-1 family, namely, c-Jun 

and c-Fos.18 The genes activated by these transcription fac-

tors are involved in cell cycle progression.14,15

2. Kinase suppressor of Ras

A kinase suppressor of Ras (KSR) acts as a molecular scaf-

fold that assembles Ras/Raf/MAPK signaling components for 

the effective transfer of a signal.19 KSR was identified as a reg-

ulator of Ras-mediated signal transduction more than 20 

years ago by genetic screenings in Drosophila (KSR1) and 

Caenorhabditis elegans (KSR2).20,21 In quiescent cells, KSR1 

is phosphorylated at S297 and S392 by C-TAK1 and binds to 

the 14-3-3 protein, remaining in an inactive state in the cyto-

sol.22 Activation of growth factor and Ras stimulates the de-

phosphorylation of KSR1 at S392 by the protein phospha-

tase-2A (PP2A) and its localization to the plasma membrane, 

where it facilitates the phosphorylation of MEK by Raf and, 

further, the activation of ERK by MEK (Fig. 1).22

The structures of the KSR proteins are highly homologous, 

containing five conserved areas (CA1-CA5) that are related 

to the Raf protein (Fig. 2).23-27 The first conserved area is 

CA1, which is present at the N-terminus28 and contains 40 

amino acids that encode a coiled-coil and sterile-α-motif 

(CC-SAM) structure, which contributes to the membrane 

localization of KSR and promotes its binding to B-Raf.29,30 

CA2 is a proline-rich region, and its function has not yet 

been well reported.31 The region between CA2 and CA3 in 

the KSR2 protein is required for the interaction of KSR with 
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AMPK.32 CA3 contains an atypical C1 motif homologous to 

the cysteine-rich CR1 region in Raf, which mediates mem-

brane localization of KSR via the recruitment of phospholip-

ids.24,33 CA4 is a serine/threonine-rich region containing an 

FXFP motif that mediates the interaction of KSR proteins 

with ERK.23,24 CA5 encodes a kinase (or pseudokinase) do-

main that is highly homologous to the CR3 kinase domains 

in Raf family proteins.24 The CA5 region binds to MEK1/2, 

and the protein interaction leads to the activation of cell 

growth.34 Substitution of amino acids in the CA5 region di-

minishes its interaction with MEK and reduces MAPK sig-

naling.24

Various studies have demonstrated that the KSR protein 

acts as a molecular scaffold for the Raf/MEK/ERK kinase cas-

cade.35-37 The disorganized hair follicle phenotype manifested 

in EGFR knockout mice is recapitulated in KSR1 knockout 

mice, supporting the concept that EGFR, Ras, and KSR1 be-

long to the same signaling pathway.38 KSR promotes MEK 

phosphorylation by Raf and is required for the maximal acti-

vation of Ras-mediated ERK.23 Increase in the expression 

levels of KSR1 reinforce its interactions with Raf, MEK, and 

ERK and lead to the activation of ERK signaling.39 The scaf-

fold activity of KSR is temporally and spatially regulated by 

the state of Ras signaling.23 McKay et al.40 reported that B-

Raf:KSR2 heterodimerization causes conformational changes 

in the KSR2:MEK complex, promoting the phosphorylation 

and activation of MEK by additional B-Raf proteins.

3. ‌�The role of the Ras/Raf/MAPK signaling 

pathway in HCC

The Ras/Raf/MAPK signaling pathway plays a pivotal role 

in tumorigenesis, and mutations in its components are high-

ly prevalent in human cancers.41 About 20-30% of all human 

tumors are reported to have mutations in Ras-associated 

genes.15,42 B-Raf mutations occur in -50% of melanoma pa-

tients, and agents targeting B-Raf (vemurafenib and dab-

rafenib) demonstrate improved clinical outcomes in these 

patients.43,44 Additionally, inhibitors of the B-Raf downstream 

molecule, MEK, also have a significant effect on melanoma 

patients.45

Figure 1. Function of the scaffold protein kinase suppressor of Ras 
(KSR). KSR contributes to activation of the Ras mitogen-activated 
protein kinase (Ras/Raf/MAPK) signaling pathway leading to a pivotal 
oncogenic response. RTK, receptor tyrosine kinase; GPCR, G-protein-
coupled receptor; GTP, guanosine triphosphate; MEK, mitogen/
extracellular protein kinase; PP2A, protein phosphatase-2A; C-TAK1, 
Cdc25C-associated kinase 1; MAPK, mitogen-activated protein kinase. 

Figure 2. Structural similarity in rapidly accelerated fibrosarcoma 
(RAF) and kinase suppressor of Ras (KSR) protein. RAF and KSR protein 
include the cysteine-rich sequences (CR1 and CA3), the serine/
threonine rich sequences (CR2 and CA4) and the kinase domain (CR3 
and CA5). Importantly, the mitogen-activated protein kinase (MAPK) 
binds to CA4, and mitogen/extracellular protein kinase (MEK) bind to 
the C-terminal region containing the CA5 domain. RBD, RAS-binding 
domain; CC-SAM, coiled-coil and sterile-α-motif. 
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The importance of the Ras/Raf/MAPK pathway in human 

HCC has been neglected for a long time, mainly because Ras 

and Raf mutations are not frequently detected in HCC, being 

present in less than 10% of HCCs.46 Nevertheless, the onco-

genic role of the Ras/Raf/MAPK pathway in liver cancer has 

been proven in experimental mouse models.15 Harada et al.47 

reported rapid development of HCC in transgenic mice with 

activated H-Ras mutations. It is noteworthy that, despite the 

low frequency of mutations in the components of the Ras/

Raf/MAPK signaling pathway, frequent activation of the sig-

naling pathway has been found in HCC patients.48 Elevated 

expression levels of Ras effectors highly correlate with poor 

survival rates in HCC patients.49 Raf1 overexpression is con-

sidered to be an independent marker of early tumor recur-

rence and poor prognosis in HCC.15,49 Based on MEK/ERK 

expression and phosphorylation, Ras/Raf/MAPK signaling is 

considered to be activated in over 50% of HCC patients.41,50

The activity of the Ras/Raf/MAPK signaling pathway in 

HCC is also aberrantly increased by hepatitis viral proteins, 

dysregulated upstream signals of RTKs, inactivation of Raf 

kinase inhibitor proteins, and activation of scaffold proteins 

of the Raf/MEK/ERK kinase cascade (Fig. 3).13 Infections 

with HBV and HCV play an important role in the activation 

of the Ras/Raf/MAPK signaling pathway in HCC.5,51,52 The 

Ras/Raf/MAPK signaling pathway plays a fundamental role 

in the control of key cellular processes, including cell survival 

and proliferation, and its aberrant activation induced by 

HBV or HCV infection is associated with the malignant 

transformation and progression of HCC.15,53 Ras/Raf/MAPK 

signaling can affect cell cycle progression by regulating senes-

cence markers, such as p16, p15, and p21.50,54,55 In addition, 

the ETS transcription factor is phosphorylated by ERK and 

restores telomeres through the transcriptional activation of 

the telomerase gene (hTERT), contributing to senescence 

evasion50,56 Ras/Raf/MAPK signaling promotes survival by 

inhibiting pro-apoptotic BCL-2 family proteins and inducing 

the expression of anti-apoptotic BCL-2 family members, 

such as BCL-2, BCL-XL, and MCL-1.50,57 The Ras/Raf/MAPK 

signaling pathway also upregulates the expression of epitheli-

al-mesenchymal transition (EMT)-related genes, such as 

those encoding mesenchymal proteins, and those encoding 

transcription repressors of epithelial genes. Activation of 

EMT can contribute to the maintenance of the undifferenti-

ated state of tumor cells.50,58 The Ras/Raf/MAPK signaling 

pathway also induces the mobility and invasiveness of cancer 

cells by activating the Rho/Rac-actin pathway and matrix 

metalloproteinase.59,60 Furthermore, B-Raf induces angiogen-

esis through the involvement of hypoxia inducible factor-1 

Figure 3. Schematic representation of inducers that activate the Ras mitogen-activated protein kinase (Ras/Raf/MAPK) signaling pathway in 
hepatocellular carcinoma (HCC). HBx of hepatitis B virus (HBV) directly activates Ras via Src, and the hepatitis C virus (HCV) NS3/4A complex 
stimulates protein kinase C (PKC) to promote production of MAPK. Activation of receptor tyrosine kinases (RTKs) by dysregulated upstream 
signals stimulates the exchange of guanosine triphosphate for guanosine diphosphate in Ras, and this activated Ras interacts directly with the 
target effectors. Inactivation of Raf kinase inhibitor protein, which inhibits G-protein-coupled receptors kinases by PKC and interferes with 
regulation of the Ras/Raf/MAPK signaling pathway by interaction with the Raf-1 kinase, leads to activation of MAPK. Scaffold proteins that 
contribute to the spatiotemporal activation of the Ras/Raf/MAPK signaling are KSR, MEK-partner 1, Sef and Paxillin.
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alpha and VEGF, while C-Raf promotes endothelial cell sur-

vival.50,61

It is noteworthy that KSR is extensively implicated in Ras/

Raf/MAPK signaling-mediated cancers.19,62 Neilsen et al.23 

compared KSR1 expression between colon cancer cell lines 

and non-transformed human colon epithelial cell lines; their 

findings suggested that upregulation of KSR1 expression can 

lead to colorectal cancer via enhanced Ras/Raf/MAPK signal-

ing.63 In line with this, depleting KSR1 using multiple shRNA 

sequences repressed the growth of colon cancer cells express-

ing mutant K-Ras in an in vitro soft agar assay and an in vivo 

xenograft mouse model.23,63 In addition, immortalized KSR1-

/- mouse embryonic fibroblasts show resistance to carcino-

genic transformation by H-RasV12 and can be rescued by 

ectopic expression of KSR1.39,64 Koral et al.65 reported that 

leukocyte-specific protein 1 interacts with KSR and sup-

presses the Ras/Raf/MAPK signaling pathway by downregu-

lating the function of KSR in HCC cell lines. Skin tumors 

caused by H-Ras are suppressed in KSR1 knockout mice,38 

and the mammary tumor burden was significantly reduced 

by KSR1 deficiency in mice expressing the transgenic poly-

omavirus middle T-Antigen.24,36 KSR1 knockout mice also 

have an impaired immunological response, particularly re-

garding T-cell activation, due to reduced ERK signaling.23,36 

Overall, these results demonstrate that KSR1 is necessary for 

Ras-driven tumorigenesis. Although studies on the role of 

KSR in HCC have not yet been reported in vivo, it is hypoth-

esized that KSR plays a pivotal role in hepatic carcinogenesis 

through the activation of the Ras/Raf/MAPK signaling path-

way.

4. ‌�The Ras/Raf/MAPK signaling pathway as a 

therapeutic target

There has been an increasing interest in targeting onco-

genic signaling pathways, and recent successes in anti-cancer 

treatment via molecular targeted therapies has gained atten-

tion from basic researchers as well as clinicians.5 In particu-

lar, TKs play a crucial role in cell growth and metabolism and 

are thus considered therapeutic targets for HCC.66 Tyrosine 

kinase inhibitors (TKIs) competitively inhibit ATP binding 

to the catalytic domains of diverse oncogenic TKs (Type I ki-

nase inhibitor).67 There are also non-ATP competitor TKIs, 

which cause conformational shifts via structural changes in 

the receptor TKs and interfere with tyrosine phosphorylation 

by binding to non-catalytic sites within the TK domain, lead-

ing to reduced kinase activity (Type II kinase inhibitor).66,68 

The mechanisms of action and phase III clinical investiga-

tions of drugs targeting TKs in HCC are summarized in  

Fig. 4 and Table 1.

Sorafenib is the first approved drug for HCC that targets 

the Raf kinase and interferes with RTKs, such as VEGF-2, 

VEGF-3, PDGFR-β, and c-KIT.13,69,70 Several preclinical trials 

have evaluated the effects of simultaneous blocking of mole-

cules associated with Ras/Raf/MAPK signaling through drug 

combinations with sorafenib.7 Refametinib, a MEK1/2 inhib-

itor, exhibits anti-tumor activities in preclinical murine and 

rat HCC models in combination with sorafenib.71

The activation of EGFR downstream signal transduction 

was blocked by Erlotinib, a potent EGFR inhibitor, in vitro 72 

and showed anti-tumor activity in a phase II study involving 

38 patients with unresectable or metastatic HCC.9,73

Sunitinib, a multi-kinase inhibitor targeting PDGFR, 

VEGFR, c-KIT, and FMS- like TK3 (FLT-3) demonstrated 

unsatisfactory results compared with sorafenib in patients 

with advanced-stage HCC. The median overall survival (OS) 

of patients in the sorafenib group was 10.2 months and that 

of patients in the sunitinib group was 7.9 months.74,75

Regorafenib was approved as a second-line oral drug for 

unresectable HCC in 2017 and has similar targets and struc-

ture as sorafenib; however, it more effectively represses the 

STAT3 signaling pathway through the activation of the Src 

homology 2 domain-containing phosphatase 1 (SHP1).76,77 It 

also hampers the activation of various oncogenic factors as-

sociated with the Ras/Raf/MAPK signaling pathway, such as 

V600-mutated B-Raf and Tie2.76 Regorafenib showed a more 

effective suppression of TKs and revealed a better drug toler-

ance profile than sorafenib in HCC patients. The median 

survival in patients receiving regorafenib treatment was 10.6 

months, as compared to the median survival of 7.8 months 

in the placebo group; a second-line therapy with regorafenib 

provided a survival benefit in sorafenib-refractory patients.78
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Lenvatinib has proven non-inferior to sorafenib and is 

considered as a promising candidate for HCC treatment. It 

was highly effective in targeting angiogenesis in HCC cell 

lines and increased the OS in HCC patients not eligible for 

surgical tumor removal.79 Lenvatinib targets VEGF, PDGF, 

FGF, and stem cell factor, reducing angiogenesis and lym-

phoangiogenesis.79 To overcome acquired resistance to len-

vatinib by cancer cells, the drug is currently being tested in 

combination with golvatinib.66,80

Cabozantinib, an inhibitor targeting VEGFR, HGFR, rear-

ranged during transfection (RET), and AXL, was approved 

for patients with HCC who previously underwent sorafenib 

treatment.81 The fact that cabozantinib provides a dual VEG-

FR/MET blockade is remarkable, since the upregulation of 

proangiogenic pathways by MET is considered to occur 

through the activation of VEGFR.81 The median OS of pa-

tients treated with cabozantinib was 10.2 months compared 

to the median OS of 8.0 months achieved with placebo, and 

the median progression-free survival (PFS) was 5.2 months 

compared to the median PFS of 1.9 months achieved with 

placebo.66,82

5. KSR as a therapeutic target

Considering the significance of KSR in regulating Raf/

MEK/ERK kinase cascades in tumor cells,24 inhibition of 

Table 1. Efficacy data from phase III clinical trials of molecular targeted drugs for treatment of HCC 

Drug Therapeutic targets NCT number (study design) Median OS (months) Median PFS (months)

Sorafenib VEGFR, PDGFR, Raf, c-KIT NCT00105443 (Sorafenib vs. 
Placebo)

10.6 vs. 7.9 -

Erlotinib EGFR NCT00901901 (Erlotinib+Sorafenib 
vs. Placebo+Sorafenib)

9.5 vs. 8.5 -

Sunitinib VEGFR, PDGFR, c-KIT, RET NCT00699374 (Sunitinib vs. 
Sorafenib)

7.9 vs. 10.2 3.5 vs. 2.9

Regorafenib VEGFR, PDGFR, FGFR, KIT, RET, B-Raf NCT01774344 (Regorafenib vs. 
Placebo)

10.6 vs. 7.8 3.1 vs. 1.5

Lenvatinib VEGFR, PDGFR, FGFR, RET, SCFR NCT01761266 (Lenvatinib vs. 
Sorafenib)

13.6 vs. 12.3 7.4 vs. 3.7

Cabozantinib HGFR, VEGFR, RET, AXL NCT01908426 (Cabozantinib vs. 
Placebo)

10.2 vs. 8.0 5.2 vs. 1.9

Data accessed in August 2020 on the ClinicalTrials.gov online database: A keyword search for ‘hepatocellular carcinoma’ was used to identify 
relevant trials investigating targeted molecular therapies.
HCC, hepatocellular carcinoma; OS, overall survival; PFS, progression‑free survival; VEGFR, vascular endothelial growth factor receptor; 
PDGFR, platelet-derived growth factor receptor; c‑KIT, c‑Kit proto‑oncogene; EGFR, epidermal growth factor receptor; RET, rearranged during 
transfection; FGFR, fibroblast growth factor receptor; SCFR, stem cell growth factor receptor; HGFR, hepatocyte growth factor receptor.

Figure 4. Mechanism of action of molecular targeted drugs. The 
drugs are kinase inhibitors with activity against kinases and their 
receptors associated with Ras mitogen-activated protein kinase (Ras/
Raf/MAPK) signaling. Type I kinase inhibitors are erlotinib, sunitinib, 
cabozantinib and lenvatinib, and type II kinase inhibitors are 
sorafenib and regorafenib. VEGFR, vascular endothelial growth factor 
receptor; PDGFR, platelet-derived growth factor receptor; SCFR, stem 
cell growth factor receptor; FGFR, fibroblast growth factor receptor; 
HGFR, hepatocyte growth factor receptor; EGFR, endothelial growth 
factor receptor. MEK, mitogen/extracellular protein kinase.
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KSR1 is suggested to target Ras/Raf/MAPK signaling in can-

cers. In a functional signature ontology study using a high-

throughput gene expression screening, KSR1-dependent sig-

nals enhanced the viability of human colon tumor cells but 

did not affect non-transformed human colon epithelial 

cells.63,83 Moreover, in vitro  and in vivo  studies using RNA 

interference (RNAi) exhibited reduced growth of cancer cells 

with KSR1 deficiency.24,84 Further, targeting KSR1 mRNA by 

continuous infusion of a phosphorothioate antisense oligo-

nucleotide into established tumors led to the suppression of 

metastasis without overt toxicity.84

KSR undergoes allosteric regulation through dimerization 

with Raf.85,86 In a recent study, it was reported that a small 

molecule APS-2-79 inhibited KSR:Raf heterodimerization 

and oncogenic Ras/Raf/MAPK signaling,62 and Neilsen et 

al.23 demonstrated the efficacy of APS-2-79 in a simplified 

cell-based reconstruction system.62 KSR facilitates Ras/Raf/

MAPK signaling by promoting the phosphorylation of MEK 

at Ser218/Ser222 by Raf in a dose-dependent manner; this 

increased phosphorylation was suppressed by APS-2-79. Ad-

ditionally, APS-2-79 reduced cell viability in Ras-mutated 

HCT116 and A549 cancer cell lines.62 Transient siRNA-me-

diated depletion of KSR1 in HCT116 cell lines reduced the 

viability of cancer cells in vitro , and stable shRNA-mediated 

depletion of KSR1 suppressed tumor growth in vivo .23,63

PERSPECTIVES AND CONCLUSION

Understanding the molecular pathways of tumorigenesis 

can help predict patient responses to targeted therapies. Can-

cer cells show oncogenic addiction to cancer driver genes.41,87 

In general, the abnormal growth of tumors depends on a 

driver oncogene, and the inhibition of this oncogene signifi-

cantly affects tumor growth. Melanoma patients with B-Raf 

mutation respond remarkably to vemurafenib, and non-

small-cell lung cancer patients with Anaplastic lymphoma 

kinase (ALK) fusion rearrangements are particularly respon-

sive to crizotinib, an ALK-targeting agent.41,44

Genetic heterogeneity is a notable feature of HCC. A study 

conducted on HCC patients with multiple tumor nodules 

reported tumors with different clonalities in 36% patients.7,88 

In addition, a study analyzing a patient with recurrent HCC 

after surgical resection revealed multiple distinct cell popula-

tions in the recurrent tumors.89 The development of HCC is 

a complex, multi-step process, and genetically heterogeneous 

tumor populations can develop during carcinogenesis due to 

alterations in various cancer-related genes.90 Among the vari-

ous oncogenic signaling pathways, the Ras/Raf/MAPK sig-

naling pathway is activated in approximately 50% of all early 

stage HCC patients and in almost all patients with advanced-

stage HCC.41,50 Numerous studies indicate the central role of 

Ras/Raf/MAPK signaling in HCC development.5,14 Specifi-

cally, MEK and MAPK mRNAs were overexpressed in 40% 

and 50% of HCC patients, respectively.5,91 Overexpression of 

Raf1 was also found in tumor lesions of all HCC patients 

compared to Raf1 expression levels in pre-tumoral lesions, 

such as cirrhosis lesions.92 Further, enhanced activity of 

phosphorylated ERK is observed in human HCC tissues and 

in vivo murine HCC models.9,14,93

Upregulation of the Ras/Raf/MAPK signaling pathway is 

significantly found in HCC patients; however, mutations in 

the intracellular effectors of this signaling pathway are infre-

quent.94 Mutations in Ras genes occur in 2% of HCC pa-

tients, and those in B-Raf occur in as low as 0.3% patients.5 

Thus, activation of Ras/Raf/MAPK signaling is induced in 

the presence of wild-type Ras and Raf in most human 

HCCs.15,95 Considering this, current cancer therapeutic 

agents targeting Ras/Raf/MAPK signaling have intrinsic limi-

tations for the treatment of HCC, as many Raf kinase inhibi-

tors act specifically on an activated mutant Raf and increase 

dimer formation of endogenous Raf. Thus, these inhibitors 

can lead to increased Ras/Raf/MAPK signaling by reinforcing 

the dimerization of wild-type Raf proteins.23,96

KSR can be an effective alternative target molecule to se-

lectively block the Ras/Raf/MAPK signaling pathway. For ex-

ample, the KSR inhibitor APS-2-79 not only antagonizes the 

heterodimerization of KSR and Raf but also suppresses the 

phosphorylation of KSR-bound MEK.62 In addition, APS-2-

79 enhances the efficacy of several MEK inhibitors in Ras-

mutated cancer cell lines.62 These results suggest that target-

ing the scaffolding activity of KSR is a promising therapeutic 

strategy for HCC with activated Ras/Raf/MAPK signaling. 
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KSR1-/- mice are normal and fertile without major develop-

mental defects,36 suggesting that inhibition of KSR can spe-

cifically affect cancer with an activated Ras/Raf/MAPK sig-

naling pathway while inducing minimal toxicity to normal 

cells.
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