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ABSTRACT

Cardiomyopathy is the leading cause of mortality worldwide. While the causes of 
cardiomyopathy continue to be elucidated, current evidence suggests that aberrant bioactive 
lipid signaling plays a crucial role as a component of cardiac pathophysiology. Sphingolipids 
have been implicated in the pathophysiology of cardiovascular disease, as they regulate 
numerous cellular processes that occur in primary and secondary cardiomyopathies. 
Experimental evidence gathered over the last few decades from both in vitro and in vivo 
model systems indicates that inhibitors of sphingolipid synthesis attenuate a variety of 
cardiomyopathic symptoms. In this review, we focus on various cardiomyopathies in which 
sphingolipids have been implicated and the potential therapeutic benefits that could be 
gained by targeting sphingolipid metabolism.
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Sphingosine-1-phosphate receptor

INTRODUCTION

Since their discovery over a century ago, sphingolipids have been increasingly acknowledged 
as key signaling molecules that regulate essential cell functions, with implications for a 
wide variety of diseases. In addition to their historically recognized function as essential 
components of eukaryotic cell membranes, modern research has elucidated their roles 
as signaling molecules that regulate apoptosis, autophagy, nutrient transport, organ 
homeostasis, and protein synthesis, as well as modulating classical signaling pathways by 
regulating kinases and phosphatases.1 Aberrancies in these processes due to perturbed 
sphingolipid metabolism have been reported in diseases including obesity, type 2 diabetes 
mellitus (T2DM), neurodegenerative disorders, liver disease, cancer, and cardiovascular 
disease.2,3 Numerous studies have demonstrated that dysregulated sphingolipid metabolism 
induces alterations in cardiomyocyte structure and function.4-6 Moreover, sphingolipids are 
known to regulate crucial cell processes involved in cardiac structure and function, including 
apoptosis, autophagy, cell differentiation, and mitochondrial metabolism, suggesting that 
sphingolipids likely contribute to cardiomyopathy through these mechanisms. Therefore, 
the aims of this review are to summarize current knowledge regarding the contribution of 
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sphingolipids to various cardiomyopathies and to discuss the current and future clinical 
potential of targeting sphingolipid metabolism.

Sphingolipids are defined by their sphingoid base, which is generated by condensation of 
an amino acid with an acyl-CoA. The sphingoid base serves as a ‘backbone’ upon which all 
sphingolipids are built, including ceramides, sphingosine-1-phosphate (S1P), sphingomyelins 
(SM), and glycosphingolipids. The sphingoid base (Fig. 1A, leftmost structure) can vary in 
structure depending on the amino acid and/or acyl-CoA used as substrate; for example, using 
serine and palmitoyl-CoA yields an 18-carbon sphingoid base (Fig. 1A), while utilization 
of serine and myristoyl-CoA or stearoyl-CoA yields sphingoid bases with 16- or 20-carbon 
bases (Fig. 1A), respectively. Additionally, recent studies have addressed variations in the 
amino acid used to form the sphingoid base, finding that replacing serine with alanine or 
glycine gives rise to structurally aberrant sphingoid bases.7-10 Serine palmitoyltransferase 
(SPT) is a multi-subunit enzyme that catalyzes this initial reaction, which is the rate-limiting 
step in sphingolipid synthesis. The typical SPT enzyme is a heterodimer composed of 
serine palmitoyltransferase long chain base subunit (SPTLC) 1 and SPTLC2 subunits and 
condenses the 2-carbon serine with the 16-carbon palmitoyl-CoA to synthesize d18:0-
dihydrosphingosine (DHS), an 18-carbon sphingoid base (Fig. 1A).10 Palmitate-derived 
d18-base-containing sphingolipids are the most abundant, as several complex downstream 
sphingolipids including ceramide, hexosylceramides, SM, and S1P largely are built upon 
this 18-carbon backbone. In contrast, a heterodimer composed of SPTLC1 and SPTLC3 can 
also utilize the 14-carbon myristoyl-CoA, generating a subset of d16-based sphingolipids 
(Fig. 1B).9 Although these sphingolipids are abundant in the myocardium, they remain 
understudied.11 Acyl-CoA utilization can also be influenced by 2 SPT small subunits (ssSPTa 
and ssSPTb), which enable SPT to utilize stearoyl-CoA as a substrate, resulting in a subset of 
d20-backboned sphingolipids.12,13

Ceramide, which have been implicated in apoptosis, senescence, autophagy, and other 
cell processes, are generated from N-acylation of the sphingoid base with an additional 
acyl-CoA. The acyl-CoA molecules utilized vary widely, including medium-chain fatty 
acids (12–14 carbons), long-chain fatty acids (16–20 carbons), and very-long-chain fatty 
acids (22–26 carbons) in mammals. Ceramide exist in all of these variations and can even 
include ultra-long-chain fatty acids (≥26 carbons). In highly specialized organs, such as 
the skin, ceramide undergo numerous structural modifications, including hydroxylation, 
O-acylation, branching, methylation, and others. Ceramide can also be catabolized yielding 
a sphingoid base, which can be either re-acylated to ceramide (sometimes with a change 
in the N-acyl chain length) or phosphorylated to generate S1P, an important sphingolipid. 
Most sphingolipid metabolic pathways have enzymes that catalyze the forward and reverse 
steps, and altering the sphingolipid profile occurs through highly dynamic regulation 
of these processes. Additionally, once a sphingoid base is synthesized, the only way to 
catabolize sphingolipids to non-sphingolipid components is reduction of S1P by S1P lyase, 
yielding phosphoethanolamine and a fatty aldehyde. Depletion of the S1P lyase leads to a 
dramatic accumulation of sphingolipids, usually with deleterious effects. These pathways are 
presented in depth in Fig. 1B.

The de novo pathway is initiated in the endoplasmic/sarcoplasmic reticulum by SPT, a 
dimer composed of SPTLC1 and either 2 or 3 subunits. Each of these complexes can utilize 
palmitoyl-CoA, yielding d18:0 DHS. Additionally, the SPTLC1/3 complex can use serine and 
myristoyl-CoA to synthesize d16:0 DHS. The SPT complex can be regulated by small subunits 
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to alter CoA utilization, including by enabling stearoyl-CoA to be used to generate d20:0 DHS. 
In terms of amino acid variations, alanine or glycine can be used instead of serine to generate 
aberrant sphingoid bases. Alterations in amino acid utilization result from mutations of SPT 
subunits and are largely pathological. DHS is the primary substrate for ceramide synthases, 
which generate dihydroceramides (DHCs) that are then reduced by DHC desaturase, yielding 
ceramide, which is used as the substrate for the synthesis of complex sphingolipids, including 
SM, galactosylceramide (GalCer), glucosylceramide (GlcCer), and ceramide 1-phosphate (not 
shown) via the enzymes indicated above. De novo synthesis of ceramide occurs in the endoplasmic 
reticulum, and then ceramide is modified in the Golgi apparatus. GlcCer is the predominant 
precursor of the ganglioside and globoside glycosphingolipids. Lactosylceramide (LacCer) is 
synthesized from GlcCer to form gangliosidosis and Gaucher disease in the ganglioside and 
globoside series. Diseases that have been observed in humans due to deficiencies in enzymes in 
these pathways are shown in parentheses, underlined, and in bold. GalCer is the predominant 
precursor of the sulfatide glycosphingolipids. Sphingolipid catabolism occurs in lysosomes and at 
the plasma membrane. SM is hydrolyzed by lysosomal acid sphingomyelinase (aSMase) or plasma 
membrane neutral sphingomyelinase (nSMase), GalCer by β-galactocerebrosidase, and GlcCer 
by β-glucocerebrosidase (both lysosomal), and each of these steps yields ceramide. Catabolism of 
ceramide by ceramidases yields sphingosine, which is phosphorylated by sphingosine kinases 1 
and 2 (SphK1-2), yielding S1P. The salvage pathway of ceramide synthesis occurs when ceramide is 
cleaved by ceramidase and the resulting sphingosine is re-acylated by ceramide synthases.

SPHINGOLIPIDS IN PRIMARY CARDIOMYOPATHIES

In primary (idiopathic) cardiomyopathy, there is no secondary cause such as hypertension 
or diabetes; however, cardiomegaly, endocardial thickening, mural thrombosis, myocardial 
scarring, or other lesions may be present. Primary cardiomyopathies are classified as genetic 
or acquired and historically have been classified according to cardiac morphology. Genetic 
primary cardiomyopathies can be further subdivided into hypertrophic cardiomyopathy 
(HCM), dilated cardiomyopathy (DCM), restrictive cardiomyopathy (RCM), arrhythmogenic 
right ventricular cardiomyopathy (ARVC), and unclassified cardiomyopathy. Acquired 
primary cardiomyopathies are categorized as ischemic cardiomyopathy (ICM), peripartum 
cardiomyopathy (PPCM), or myocarditis.14 Dysregulated sphingolipid metabolism has been 
observed and/or implicated in the following primary cardiomyopathies.

1. DCM
DCM is defined by the presence of left ventricular (LV) dilatation and systolic dysfunction or 
reduced ejection fraction; it is the end result of many cardiac insults, but a genetic etiology 
is also associated with DCM. Right ventricular dilation and dysfunction may be present, but 
are not necessary for the diagnosis of DCM.15 The excessive accumulation of ceramide and 
SM within and around the heart has been associated with DCM.16-18 A DCM hamster model 
demonstrated elevated levels of ceramide and SM in the LV.19 Depletion of the antioxidant 
enzymes manganese superoxide dismutase and glutathione peroxidase-1 resulted in DCM, 
as well as findings of impaired mitochondrial function, increased ceramide levels, and 
increased levels of reactive oxygen species.20,21

2. ICM
ICM is a disease of the heart muscle induced by narrowing of the coronary arteries, 
most commonly in patients with a history of myocardial infarction, which is usually a 
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manifestation of atherosclerotic coronary artery disease (CAD). Regardless of the cause, 
ICM ultimately leads to congestive heart failure. Risk factors for ICM include hyperlipidemia, 
diabetes mellitus, hypertension, obesity, age, sex (with females demonstrating 
cardioprotective effects), and genetics.

In addition to the ischemic injury itself, some damage occurs upon reperfusion. An ischemia-
reperfusion (IR) injury occurs when blood supply returns to the heart tissue after ischemia. 
Patients with IR injuries and a mouse model of IR injury demonstrated decreased plasma 
DHS, sphingosine, S1P, and DHS 1-phosphate levels; moreover, the levels of circulating 
lysosomal aSMase and plasma membrane nSMase decreased, suggesting less ceramide 
production from catabolic pathways. Of note, the distribution of S1P, which circulates 
either bound to ApoM on high-density lipoprotein (HDL) or on serum albumin, was altered 
such that HDL-bound S1P was reduced and non-HDL-bound S1P was elevated in IR injury 
patients.22-25 According to current thinking, some beneficial effects attributed to HDL may be 
mediated by S1P bound to HDL.26

Sphingosine is another important sphingolipid player in ICM and IR injury. Studies have 
shown cardioprotective effects of decreased sphingosine levels, suggesting that it acts as a 
cardiotoxin in IR injury.22,27 Other studies have shown benefits of SphK1 in IR models, as it 
directly elevates S1P.28

3. Myocarditis
Inflammation of the myocardium is termed myocarditis, which often causes arrhythmias 
and contractility issues that gradually weaken the myocardium over time. The most common 
causes of myocarditis are adenovirus infection (the common cold) or coxsackievirus B3 
(CVB3) infection. 29-31 Viral myocarditis caused by dengue, the West Nile virus, or hepatitis 
C leads to altered host sphingolipid metabolism, which is thought to be advantageous for 
viral propagation.32-34 An acute viral myocarditis mouse model showed higher levels of DHS, 
d18:0/14:0 ceramide, and d18:1/22:0 and d18:0/16:1 SM than observed in the control group, 
suggesting that the CVB3 virus alters sphingolipid metabolism to enhance its propagation 
in the host.35,36 Furthermore, evidence also suggests that autoimmunity plays an important 
role in myocarditis.37-39 Previous studies have shown that CD4 T cells, macrophages, and 
inflammatory cytokines accumulate in cases of myocarditis.40,41 As S1P is a potent pro-
inflammatory lipid, multiple studies have used either S1P receptor (S1PR) agonists or SphK1 
inhibitors to treat myocarditis, as further discussed below.

SPHINGOLIPIDS IN SECONDARY CARDIOMYOPATHIES

Secondary cardiomyopathies are diagnosed as a comorbidity of many primary diseases that 
affect the endocrine system, lysosomal storage, endomyocardial function, or neuromuscular 
function. Hypertension and tachycardia can also cause secondary cardiomyopathies.

1. Endocrine and metabolic disorders
Diabetic cardiomyopathy (DbCM)
DbCM, which develops in many patients with T2DM, manifests as cardiac hypertrophy 
in the absence of traditional heart disease risk factors such as hypertension, valve 
disease, and tachycardia and can lead to heart failure.42-46 T2DM has a characteristic 
pattern of dyslipidemia including increased low-density-lipoprotein cholesterol levels, 
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hypertriglyceridemia, and reduced HDL cholesterol concentrations.47 It is thought that 
these changes promote the accumulation of lipid intermediates in the heart, a phenomenon 
known as cardiac lipotoxicity. Several animal models of myocardial lipotoxicity have 
demonstrated protective effects of inhibited sphingolipid synthesis, suggesting that 
sphingolipids play a major role in DbCM. For example, in a lipotoxic cardiomyopathic 
mouse model with cardiac-specific overexpression of glycosylphosphatidylinositol-
anchored human lipoprotein lipase, it was observed that ceramide levels increased by 45% 
compared to control mice.17 Importantly, correcting sphingolipid profiles using an SPT 
inhibitor or SPTLC1 heterozygous mice improved cardiac function and prolonged survival 
through reduced ceramide and SM levels.17,48,49 Moreover, our laboratory demonstrated 
that high saturated-fat feeding induced a DbCM-like condition in mice, which was 
completely ameliorated by pharmacological inhibition of sphingolipid synthesis. In primary 
cardiomyocytes, cell hypertrophy in response to saturated fatty acids was shown to require 
ceramide synthase 5 (CerS5), which generates medium- and long-chain (e.g., C14–C16) 
ceramides.50-54 This was the first identification of a specific ceramide synthase and ceramide 
species involved in cardiac hypertrophy, which in this case occurred through autophagy-
dependent mechanisms. In additional support of a role for specific fatty acids in cardiac 
hypertrophy, an intriguing study in a Burmese python model demonstrated that adaptive 
post-prandial cardiac hypertrophy was mediated by a combination of myristate (C14:0), 
palmitate, (C16:0), and palmitoleate (C16:1).55 Importantly, the myocardium contains 
detectable levels of sphingolipids with a C16:1 base, derived from the utilization of myristate 
by the SPTLC1/3 complex; however, we demonstrated that, in contrast to canonical d18-
based sphingolipids, this class of sphingolipids with a shorter sphingoid base caused 
apoptosis, suggesting a critical need for precise regulation of these lipids, of which the 
constitutive roles remain unknown.11

Studies have demonstrated additional roles for myocardial ceramides in diabetes, including 
mitochondrial dysfunction and AKT inhibition, presumably via increased oxidative stress and 
inhibition of insulin signaling, respectively. The glycosphingolipid GlcCer acts independently 
from ceramide in impairing insulin signaling, which leads to insulin resistance, although 
the mechanisms have not been fully elucidated.56-62 In models of DbCM, ceramide has been 
shown to activate classic protein kinase C (PKC) isoforms to attenuate insulin-stimulated 
AKT translocation; in addition, we and others have shown that aberrant ceramide production 
induces reactive oxygen species and impairs mitochondrial function. Additionally, ceramide 
was shown to activate p38, thereby inhibiting AKT and c-Jun N-terminal kinase (JNK), 
and resulting in activation of pro-apoptotic B-cell lymphoma 2 associated X protein (BAX) 
signaling and hypertrophy.56-62

Hyperthyroidism
The diagnosis of hyperthyroidism is confirmed by elevated secretion of the thyroid hormone, 
triiodothyronine (T3) and/or thyroxine (T4), in the blood. T4 is converted into the more 
active form T3 in multiple organs including the thyroid, liver, gut, and skeletal muscles. 
Cardiomyopathy associated with hyperthyroidism is not unique, and mostly mimics cardiac 
hypertrophy or in rare cases, DCM.63-65 T3 is a key regulator of cardiac physiology that also 
modulates sphingolipid metabolism. Prolonged treatment with T3 led to a prominent 
increase of DHS, sphingosine, ceramide and SM levels, but decreased S1P levels, in 
cardiomyocytes taken from the LV of male mice.66 Consistent with this, data demonstrated 
that T3 treatment reduced the activity of nSMase, but caused no change in ceramidase activity, 
which would be required to generate sphingosine as a substrate for SphKs.66
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2. Lysosomal storage
Many lysosomal storage diseases arise from impaired catabolism of complex sphingolipids 
including SM and glycosphingolipids; these conditions are also termed ‘sphingolipidoses.’ 
Many of these diseases demonstrate a cardiac phenotype; however, there is currently little to no 
mechanistic information linking specific sphingolipids to these observed disease phenotypes.

Gaucher disease
Gaucher disease, the most common sphingolipidosis, is an autosomal recessive 
lysosomal storage disorder caused by deficiency of the enzyme acid-β-glucosidase or 
glucocerebrosidase. This leads to accumulation of GlcCer, a metabolic intermediate derived 
from the turnover of ganglioside and globosides, in the lysosomes of macrophages of many 
organs. In the most extreme cases, GlcCer accumulation occurs in the heart. Gaucher 
disease is divided into 3 types (GD1-3), depending on the severity and onset of neurological 
symptoms. Gaucher disease can cause severe congestive cardiomyopathy (Gaucher disease 
cardiomyopathy, GDC), which has only been observed in adults with GD3.67-69 GDC is 
associated with cardiac hypertrophy and mitral and aortic valve calcification.70-75 In a 
macrophage model of Gaucher disease, it was shown that although the lysosome is the 
primary site of GlcCer accumulation, at very high levels of GlcCer, it is distributed among 
various subcellular locations. This cellular saturation of GlcCer leads to increased levels of 
ceramides and other glycosphingolipids,76 which interfere with other biochemical pathways 
and lead to cell dysfunction and the pathologies observed in Gaucher disease. Generally, 
enzyme replacement therapy has been successful in Gaucher disease, as further discussed in 
the section of this review focusing on the therapeutic modulation of sphingolipids.

Anderson-Fabry disease
Anderson-Fabry disease is an X-linked recessive genetic disorder caused by deficiency of 
lysosomal enzyme α-galactosidase A, which catabolizes globotriaosylceramide, GalCer, 
LacCer, and other neutral glycosphingolipids. This causes progressive intracellular lysosomal 
accumulation of these lipids, primarily in the skin, kidneys, and heart.77 Fabry disease 
cardiomyopathy (FC) has been reported in up to 6% of men and 12% of women with Fabry 
disease, and in some individuals FC may be the sole manifestation of the disease.68,78,79 
FC is characterized by progressive symmetrical or concentric left ventricular hypertrophy 
(LVH), with progressive evolution towards heart failure.80-83 Most patients with FC are 
previously misdiagnosed with primary HCM, specifically LVH.84 A 2006 study found that 
endomyocardial glycosphingolipid deposition caused enlarged myocytes. Furthermore, 
ventricular walls became progressively more rigid, impeding ventricular filling. Ultimately, 
FC patients suffer from heart failure with preserved ejection fraction.45,85-87 Fabry disease has 
also been associated with RCM, though this link has not been thoroughly studied.15 Many 
therapeutics are available to treat Fabry disease, as discussed in a later section.

Gangliosidosis
The terminal β-galactosyl residues of GM1 gangliosides are hydrolyzed by β-galactosidase. In GM1 
gangliosidosis, which is heritable, a lack of β-galactosidase leads to massive accumulations of the 
GM1 ganglioside, mainly in the central nervous system, but also in the heart. Cardiomyopathy has 
been reported to be present in 34% of patients with infantile (type I) GM1 gangliosidosis and in 
38% of patients with juvenile (type II) or adult (type III) GM1 gangliosidosis. 90-96

There are 2 types of GM2 gangliosidosis. Type I, Tay-Sachs disease, results from deficiency 
of hexosaminidase A, and type II, Sandhoff disease, from a deficiency of hexosaminidase 
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A and β-N-acetyl hexosaminidase. Patients with Tay-Sachs disease have accumulations of 
GM3/GD3 gangliosides, mainly in the brain and rarely in the heart.97,98 In Sandhoff disease, 
also called GM2 gangliosidosis, the β-galactosidase A and B enzymes are deficient, leading 
to accumulation of GM3/GD3 gangliosides. The GM2-ganglioside storage disorders are 
heritable diseases, which are essentially neurodegenerative diseases of early infancy.95,99 If 
cardiomyopathy is present, the cardiological symptoms are very similar to those described 
above for GM1-gangliosidoses.100,101

As stated above, little is known about the mechanisms linking sphingolipidoses to the 
cardiac pathophysiology observed in these disorders. However, several other storage 
disorders—Krabbe disease; Niemann-Pick disease types A, B, and C; Farber disease, and 
hemochromatosis—cause cardiomyopathy very infrequently, if at all. This suggests that 
the mechanisms of sphingolipidosis-associated cardiomyopathies are linked to specific 
metabolic pathways and do not result from non-specific mechanisms, such as overall 
alterations in cell ultrastructure.

3. Neuromuscular disorders
Muscular dystrophy
There are 9 types of muscular dystrophy, of which only 5 cause secondary cardiomyopathy. 
Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), Emery-
Dreifuss muscular dystrophy, Limb-Girdle muscular dystrophy (LGMD), and trinucleotide/
tetranucleotide-repeat muscular dystrophy (DM1 and DM2) all exhibit DCM as a cardiac 
complication. Additionally, DMD, BMD, and LGMD may also cause ARVC, whereas DM1 and 
DM2 may also result in cardiac hypertrophy.102 Upregulation of S1P and/or the SPT enzyme, 
genetically or through a pharmaceutical agent, reduced muscle degeneration or prevented 
muscle wasting in a dystrophin mutant (DMD or BMD) Drosophila model; however, it was 
not tested whether these interventions could reverse the pathology of DCM. Reducing the 
expression of the S1P transporter, spinster 2 (Spns2), which transports intracellular S1P to 
the extracellular compartment, thereby reducing intracellular S1P, also suppressed dystrophic 
muscle degeneration, suggesting that intracellular S1P suppresses muscle degeneration.

Mutations in caveolin-3 (CAV3) underlie LGMD, which can cause secondary cardiac 
arrhythmias or ARVC. CAV3 is a muscle-specific caveolin, unlike CAV1 and CAV2, found 
in the skeletal and cardiac muscles; it also organizes and concentrate glycosphingolipids 
within the caveolar membrane.103,104 Therefore, in LGMD it is likely that sphingolipids are 
highly dysregulated due to CAV3 mutations, which could open new avenues for therapeutic 
interventions aimed at modulating membrane sphingolipids.

OTHER DISORDERS

Hypertension
Hypertensive cardiomyopathy (HTNCM) is characterized by concentric LVH and is prevalent 
in 20%–100% of cases, proportional to the severity of hypertension.105 Persistent HTNCM 
can lead to congestive heart failure. Interestingly, both the severity of hypertension and the 
severity of LVH in a patient have been shown to be proportional to the plasma ceramide 
level.106-108 HTNCM is difficult to distinguish from primary HCM, FC, and cardiomyopathy 
induced by acromegaly.108 The renin-angiotensin-aldosterone system (RAAS), which regulates 
blood pressure, is the central regulator of LVH induced by hypertensive cardiomyopathy, 

30https://doi.org/10.12997/jla.2020.9.1.23

Sphingolipids in Cardiac Pathology

https://e-jla.org

Journal of 
Lipid and 
Atherosclerosis



and sphingolipids are a central regulator of the RAAS system.109-111 Moreover, numerous links 
have been established between sphingolipids and regulation of vascular tone. Therefore, it 
is unsurprising that hypertension may arise from aberrant sphingolipid synthesis, ultimately 
precipitating cardiac outcomes. This is further discussed below.

Tachycardia
Tachycardia-induced cardiomyopathy (TIC) is caused by prolonged tachycardia or 
arrhythmia, termed tachyarrhythmias, and eventually leads to heart failure. Upon 
treatment of the causative tachyarrhythmia, TIC is generally a reversible disease.112,113 TIC 
is characterized by LV dysfunction leading to DCM, and is usually only diagnosed after the 
recovery of LV function with normalization of the heart rate. Atrial fibrillation is the most 
common cause of TIC, although other tachyarrhythmias associated with TIC include atrial 
flutter, incessant supraventricular tachycardia, ventricular tachycardia, and premature 
ventricular depolarizations.114-119 In a study of a TIC model, plasma and ventricle sphingolipid 
levels were altered. The LV showed reduced ceramide and S1P levels, stable levels of DHS, 
and increased levels of sphingosine, whereas the right ventricle (RV) showed increased DHS 
and sphingosine levels, but reduced ceramide and S1P levels. This suggests that ceramide 
catabolism was increased and the conversion of sphingosine to S1P was inhibited in the LV, 
while de novo synthesis was unaffected. In the RV, the former pattern was also found, but 
the data suggest an increase in de novo synthesis.120,121 Long QT syndrome is a condition that 
affects repolarization of the heart after a heartbeat, resulting in an increased risk of irregular 
heartbeats. LQT9 is a genetic subtype of long QT syndrome involving mutations in the 
membrane structural protein, CAV3. LQT9 has been shown to lead to ventricular tachycardia. 
Ceramide regulates the hERG current (IHERG), which in turn regulates contractions and 
electrical activity of the heart via K+ ion channels.122-124 Ceramide and S1P also seem to play 
opposite roles in TIC, as in other pathologies (e.g., IR injury) as discussed above.

SIGNALING MECHANISMS AND NOVEL POTENTIAL 
ROLES FOR SPHINGOLIPIDS IN CARDIOMYOPATHIES
In addition to experimentally supported roles for sphingolipids in cardiomyopathies, the 
multitude of signaling pathways that sphingolipids regulate suggests that they may play 
additional roles in cardiac pathologies and also provides hints as to mechanism(s) for these 
roles. Sphingolipids are involved in regulating or are regulated by hypoxia, tumor necrosis 
factor (TNF)-α, Ca2+ signaling, K+ signaling, reactive oxygen species, endothelial nitric oxide 
synthase (eNOS), apoptosis, autophagy, necrosis, and many other cell processes implicated 
in cardiac pathophysiology.125-130

Among signaling sphingolipids, S1P is perhaps the best mechanistically characterized. S1P 
has known intracellular signaling functions, and its most solidly established activities arise 
from its autocrine, endocrine, and paracrine activities that are mediated by binding to its 
receptors (S1P1-5). Cumulative data point towards S1P being involved in cardioprotective 
signaling pathways such as eNOS production, which is pro-angiogenic, as well as inhibition 
of class II histone deacetylase (HDAC) complexes, involved in repressing gene expression. It 
has in fact been proposed that S1P represses HDAC1 and HDAC2 to activate the transcription 
factor KLF4, thereby inhibiting hypertrophy in HCM.131-137 AKT activates Bcl2 to induce cell 
survival and increases eNOS activity to support vasodilation. The phosphoinositide 3-kinase 
(PI3K)-Rac pathway also induced by S1P promotes cell migration. S1P production may also 

31https://doi.org/10.12997/jla.2020.9.1.23

Sphingolipids in Cardiac Pathology

https://e-jla.org

Journal of 
Lipid and 
Atherosclerosis



be activated by the hypoxic transcription factors HIF1α and HIF2α and/or shuttled by TNF-α 
into the cell to activate pro-survival signaling pathways such as AKT, PI3K, Pak1, and Rac 
in HCM, DCM, Takotsubo cardiomyopathy, and ICM with IR injury.123,138-144 These activated 
pathways in in vitro and in vivo IR models reduced infarct size, endothelial cell migration, 
and angiogenesis, while increasing the viability of isolated cardiomyocytes.123,140-143 In 
addition, S1P can activate Pak1 and protein phosphatase 2 (PP2A) in cardiomyocytes through 
its interactions with its receptors. This signaling pathway is an important mechanism 
involved in cardioprotection in ICM and IR injury, and could also potentially be involved 
in Takotsubo cardiomyopathy.141,144 In HTNCM, S1P mediates renin release and stimulates 
aldosterone hormone secretion in the RAAS to maintain electrolyte and fluid balance, 
thereby maintaining blood pressure in HTNCM.145,146 Additionally, S1P stimulates aldosterone 
secretion in a manner dependent on PKC and phospholipase D to maintain electrolyte 
and fluid balance, thereby maintaining cardiovascular homeostasis.145 S1P binds the S1PR1 
present on cardiac mast cells and mediates the inhibition of cell degradation and renin 
release.146 Contrary to these findings, other studies have shown that elevated levels of S1P and 
SphK1 are associated with negative effects in hypertension.147,148

The recent literature has shown that vascular endothelial growth factor (VEGF) induces 
expression of the S1PR1 receptor in the myocardial vascular endothelium, an instance of 
crosstalk that is required for proper angiogenic balance.149 In later stages of gestation, the 
placenta secretes VEGF inhibitors, often inducing angiogenic imbalance in PPCM.150 Upon 
treatment with pro-angiogenic therapies, such as VEGF, PPCM has been entirely reversed in 
PPCM mouse models.149 S1P has not been used to counteract the VEGF inhibitors secreted 
in the late gestational stages, but it seems likely that it would be just as efficacious as VEGF 
treatment. It seems likely that HTNCM could be reversed by treatment with S1P agonists 
that directly affect the RAAS. Spns2 transports intracellular S1P out of the cell, but in 
DM1 and DM2, there is a significant reduction of Spns2 that results in increased levels of 
intracellular S1P, which suppresses dystrophic muscle degeneration. In hyperthyroidism, T3 
inhibits S1P while activating ceramide to induce cardiomyopathy. Cardiomyopathy caused 
by acromegaly results from increased intracellular Ca2+ and involves roughly 500 times more 
apoptosis. Because S1P has been demonstrated to serve these signaling functions in other 
contexts, it seems plausible that S1P signaling should be further elucidated in the context of 
cardiomyopathies involving perturbations of these signaling pathways.

In the context of cardiomyopathy, increased ceramide production and/or alterations in the 
ceramide profile (e.g., changes in the ratios between medium/long-chain and very-long-chain 
ceramides) are generally considered toxic. Ceramide has been shown to increase cytosolic Ca2+ 
levels, but not intramitochondrial Ca2+ levels, promoting hypertrophy or contractile function 
in IR by activating p38 MAPK and PKC. This inhibits AKT and JNK and activates pro-apoptotic 
BAX signaling. Reactive oxygen species are then increased, affecting the ryanodine receptor in 
the sarcoplasmic reticulum to stimulate Ca2+ release into the cytoplasm.151-156

The role of ceramide in apoptosis has been established, and consistent with this, it induces 
the pro-apoptotic p38 MAPK signaling pathway, which is activated in Takotsubo/stress 
cardiomyopathy and other cardiomyopathies.157-159 This pro-apoptotic pathway is also induced 
in the RAAS by ceramide.160,161 Ceramide is also a possible vasodilator via the RAAS through 
the PKC, cAMP, and PP2A signaling pathways.162-165 Angiotensin II in the RAAS induces SM 
and intracellular ceramide synthesis via angiotensin II type 2 (AT2) receptors to inhibit cell 
growth and induce apoptosis in vascular and cardiac tissue.160,161 Ceramide is also a possible 
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vasodilator through the PKC, cAMP, and PP2A signaling pathways via AT2 and inhibiting AT1 
action.162-165 Many of these potentially relevant signaling pathways are depicted in Fig. 2.

THERAPEUTIC MODULATION OF SPHINGOLIPIDS

Cardiomyopathy and heart failure remain the leading cause of morbidity and mortality 
worldwide despite the vast strides made in therapeutic interventions in recent years. 
Since enzymes, mediators, and inhibitors of the de novo sphingolipid pathway are directly 
involved in some primary and secondary cardiomyopathies, many have emerged as potential 
therapeutic targets.62,166,167 Therapeutics that directly or indirectly affect sphingolipid levels 
in cardiomyopathies are summarized in Table 1. The inhibition or ablation of the enzymes 
involved in ceramide biosynthesis has generally been shown to be cardioprotective.17,49,168 
Studies assessing sphingolipid levels following the treatment of primary cardiomyopathies 
are rare. The S1P antagonist FTY-720 has been used to prevent the initiation of cardiac 
hypertrophy. Most intriguing was the profound reversal of existing hypertrophy and/or 
fibrosis in neonatal rat cardiomyocytes.169,170 The proposed mechanism for the reversal of 
hypertrophy and/or fibrosis by FTY-720 is thought to be a dual-mechanism system whereby 
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Pak1 and NFAT cells are negatively regulated to diminish periostin expression in the 
extracellular matrix of cardiomyocytes.171 In 2013, the FDA approved FTY-720 (fingolimod; 
Novartis, Basel, Switzerland) for treating relapsing multiple sclerosis.172 Carvedilol, an anti-
arrhythmic drug used by ARVC patients, affects the expression of genes encoding enzymes 
involved in sphingolipid synthesis and increasing levels of carnitine palmitoyltransferase.173-175 
A pharmaceutical agent, Shenfu infection, which is widely used in China for treatment of 
patients with acquired primary cardiomyopathy and acute viral myocarditis, was recently 
shown to target and significantly reduce SPTLC2, aSMase, DHS, d18:0/14:0 ceramide, and 
d18:1/22:0 and d18:0/16:1 SM to prevent viral replication in viral myocarditis.35,176 A study 
showed that treatment with a S1PR receptor agonist (KRP-203) before or even after the onset 
of autoimmune myocarditis in a rat model markedly reduced inflammation by reducing 
the amounts of CD4 T cells, macrophages, inflammatory cytokines, while also improving 
lifespan and decreasing the ratio of heart weight to body weight.177 Another similar study 
was conducted using FTY-720 and showed similar results.178 While it is known that both 
KRP-203 and FTY-720 act at S1P receptors, their downstream mechanistic actions have not 
been completely elucidated. However, it is known that they are highly effective in attenuating 
the progression of myocarditis by reducing T cell infiltration and subsequent inflammatory 
cytokine activation in the inflamed myocardium. Additionally, in another study, FTY-720 
prevented arrhythmias induced by IR, in which ischemia suppressed Ca2+ release from 
the sarcoplasmic reticulum and myofilaments, thereby activating the pro-arrhythmic 
Pak1 and AKT pathways.144 FTY-720 has also been shown to decrease the infiltration of 
pro-inflammatory eosinophils and T cells into the airway mucosa and bone marrow in 
hypereosinophilic syndrome.179-181
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Table 1. List of sphingolipid drug or therapeutic agent in the various cardiomyopathies
Cardiomyopathy Drug/therapeutic agent Sphingolipids targeted
Hypertrophic cardiomyopathy - FTY720 (S1P antagonist) ↓ S1P to reverse fibrotic hypertrophy169-171

Dilated cardiomyopathy - LVAD ↑ Ceramide, DHS213,214

Arrhythmogenic right 
ventricular cardiomyopathy

- Carvedilol ↓ Ceramide, ↓ S1P, ↑ CPT to reduce intracellular Ca2+ and prevent arrhythmias173-175

Acute viral myocarditis - Shenfu ↓ SPTLC2, ↓ DHS, ↓ aSMase, ↓ d18:0/14:0 ceramide,  
↓ d18:1/22:0 and d18:0/16:1 SM to inhibit viral replication35,176

Autoimmune myocarditis - KRP-203 (S1PR agonist) ↓ S1P to reduce inflammatory cells and cytokines177,178

- FTY720 (S1P antagonist)
Ischemic cardiomyopathy and 
ischemic reperfusion

- FTY720 (S1P antagonist) - ↓ S1P to reduce Ca2+ release from sarcoplasmic reticulum and prevent arrhythmias
- LVAD - ↑ Ceramide, DHS
- Preconditioning mimetic TNF-α - Mediated by cell-permeable (C2) ceramide, SphK1 and S1P to ↓ ceramide144,213-215

Gaucher disease 
cardiomyopathy

- Recombinant β-lucocerebrosidase - ↑ Functional β-glucocerebrosidase enzyme
- Eliglustat tartrate - Ceramide glucosyltransferase inhibitor
- Zavesca® imiglucerase - GlcCer synthase enzyme inhibitor182-184,188-190,198

- Ambroxol
Anderson-Fabry disease 
cardiomyopathy

- α-galactosidase A - ↑ Functional α-galactosidase A enzyme to reduce LV thickness
- Migalastat - Binds and stabilizes α-galactosidase A, ceramide glucosyltransferase inhibitor191-197

Sandhoff/Tay-Sachs disease 
cardiomyopathy

- Ambroxol - �Chaperone of β-hexosaminidase A and improves autophagy by restoring lysosomal 
calcium release

- Pyrimethamine - Improves cardiac function201-203

- Migalastat + ketogenic diet
Diabetic cardiomyopathy - Fumonisin B1 - ↓ DHC and ceramide to reduce apoptosis

- Fenofibrate - ↓ Deoxysphingolipids
- Restricted caloric intake - ↓ DHC and ceramide to reduce apoptosis11,62,204

Hypertensive cardiomyopathy - Myriocin ↓ Ceramide levels to reduce blood pressure62,106

- Losartan
- Hydralazine

S1P, sphingosine-1-phosphate; LVAD, left ventricular assist device; DHS, dihydrosphingosine; CPT, carnitine palmitoyltransferase; aSMase, acid 
sphingomyelinase; SM, sphingomyelin; TNF-α, tumor necrosis factor-α; SphK1, sphingosine kinase 1; GlcCer, glucosylceramide; LV, left ventricular; DHC, 
dihydroceramide.



Enzyme replacement or enhancement therapy has emerged as an effective treatment for the 
secondary cardiomyopathies observed as a result of lysosomal storage disorders, and is therefore 
a likely strategy for treating the resulting cardiomyopathies. Gaucher disease is treated by 
infusion of recombinant acid β-glucosidase or a ceramide glucosyltransferase inhibitor (eliglustat 
tartrate). Both treatments reversed the disease-related accumulation of complex sphingolipids 
in clinical trials.182-184 More recent technology has allowed for high-throughput screening to 
identify small-molecule therapeutics, such as chaperones to restore defective enzyme activity 
and compounds to clear accumulating substrates for many lysosomal storage diseases including 
Gaucher disease, Fabry disease, and gangliosidoses.185-187 As additional pharmaceutical agents, 
Zavesca® (miglustat), Cerezyme™ (imiglucerase), and VPRIV™ (velaglucerase) have been 
approved to treat all 3 types of Gaucher disease by reducing the accumulation of GlcCer through 
inhibition of GlcCer synthase.188-190 Anderson-Fabry disease has also been treated by replacement 
with recombinant α-galactosidase, which reduced LV wall thickness, improved regional 
myocardial function, and cleared microvascular endothelial deposits of globotriaosylceramide 
from the heart.191-196 Another clinical trial evaluated the long-term effects of a small-molecule 
pharmacological chaperone, migalastat, that binds and stabilizes α-galactosidase A. Patients 
showed reduced cardiac mass and stable levels of globotriaosylceramides.197 Ambroxol is an 
FDA approved drug used to treat Gaucher and Tay-Sachs diseases, though whether it reduces 
cardiac symptoms has not yet been addressed.198-200 Pyrimethamine is another chaperone of 
β-hexosaminidase A in Tay-Sachs disease which mechanistically improves autophagy by restoring 
lysosomal calcium release.201,202 Migalastat in combination with a ketogenic caloric restriction 
diet led to improved cardiac function and improved seizure control in a patient with Sandhoff 
disease, although the mechanism of action remains to be determined.203

Myriocin, a fungal toxin and specific inhibitor of SPT, has been shown to prevent cancer 
cell migration, insulin resistance, and cardiomyopathies in mouse models including SPT2 
heterozygous mice, T2DM, hypertension, and atherosclerosis by reducing ceramide levels. 
However, myriocin has not yet been and is unlikely to be approved through clinical trials, as 
there are numerous toxic and off-target effects in humans and mice.17,48,62,204-207 The ceramide 
synthase inhibitor fumonisin B1 (FB1), which inhibits ceramide synthases and thereby 
prevents synthesis of DHCs from DHS, has been shown to improve insulin sensitivity in 
rodents and isolated muscles that are lipid-infused; the effects of FB1 are mediated by 
decreased ceramide levels, which increase activation of PP2A and the PI3K/AKT signaling 
pathway. This inhibition attenuates apoptosis and other cellular signaling pathways observed 
in DbCM.62,204 Fumonisin B1 has not been tested in a primary or secondary cardiomyopathic 
model, but it was shown that a specific ceramide synthase, CerS5, induced cardiomyocyte 
hypertrophy; therefore, targeting this enzyme could potentially have therapeutic benefits.51 
To date, however, few inhibitors of specific ceramide synthases have been identified, and 
this is an area under intense investigation due to its potential benefits in these and other 
pathologies. In contrast to these largely deleterious roles of ceramide, it also exhibits 
antiproliferative effects that may be beneficial. In fact, stents have been developed that are 
coated with a cell-permeable Cer analogue, leading to reduced restenosis.208-210

Exogenously administered S1P accelerates neovascularization and blood flow recovery in 
ischemic limbs, suggesting its usefulness for angiogenic therapy. Baseline concentrations of 
S1P measured in peripheral blood samples in ischemic patients were more than 4-fold higher 
in patients with documented CAD undergoing a percutaneous coronary intervention than in 
healthy controls. By 5 minutes, coronary sinus and peripheral levels of S1P levels increased 
by 720% and 792%, respectively. Where troponin T was detectable at 12 hours, a strong 
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correlation was found with peak S1P levels in ischemia.211 A recently patented approach 
assesses the total amount of SMs and SMase as a parameter to diagnose heart failure due 
to ICM or non-ischemic DCM.212 Left ventricular assist devices (LVADs), which provide 
mechanical support for advanced heart failure in patients with end-stage heart failure as a 
result of ICM or DCM, decreased the levels of numerous myocardial ceramide in patients 
after implantation compared to patients that did not receive an LVAD.213,214

Since ceramide has been implicated in hERG and reactive oxygen species overproduction, as 
previously mentioned, ceramide may contribute to long QT syndrome and therefore could 
be targeted as a therapeutic strategy in this context.122,123 Ischemic preconditioning (IPC) is 
an experimental technique used to produce resistance against acute IR injury, and may be 
regulated by ceramide, SphK1, and S1P.215 S1P is a mediator of IPC, as S1P binds S1PR2 and 
S1PR3 in myocardial ischemia, causing cardiomyopathy. These results provide evidence for 
S1P receptor subtype-specific pharmacological interventions as a novel therapeutic approach 
to myocardial diseases.216 In patients with ICM, S1P and sphingosine have been shown to be 
reliable predictors of CAD when a patient is undergoing coronary angiography.211,217 Another 
potential therapeutic intervention is targeting aSMase, which hydrolyzes SM to generate 
ceramide, to reduce the cardiac production of ceramide in ischemic reperfusion after ICM.218 
DbCM model animals fed with low amounts of unsaturated fatty acids and high amounts of 
saturated fatty acids, especially myristate (C14:0), had more severe phenotypes. This may 
contribute to the associations between saturated fatty acid consumption and cardiovascular 
disease, and furthermore suggests that changes in diet to reduce the conception of foods 
containing myristate and/or other medium-chain fatty acids would benefit patients.

The treatment of hypertension with losartan and/or hydralazine in spontaneously 
hypertensive rats significantly decreased blood pressure. This was associated with a 
concomitant lowering of vascular ceramide levels, although this most likely occurred due to 
decreased blood pressure and not the mechanisms of the drugs themselves.106

CONCLUSIONS

In this review, we highlighted the involvement of multiple sphingolipid species in various 
cardiomyopathies, including direct roles for sphingolipids in DCM, acute right ventricular 
cardiomyopathy, ICM with IR, AVMC, DbCM, GDC, FC, GM1 gangliosidosis GM1, both forms 
of GM2 gangliosidosis, DMD, BMD, DM1 and DM2, and cardiomyopathy in hyperthyroidism. 
In addition to these direct roles, the potential for identification of other direct roles is 
suggested by the numerous overlaps between signaling pathways known both to regulate 
cardiac pathophysiology and to be sphingolipid-regulated. This possibility may be relevant 
for conditions including HCM, Takotsubo disease with LQTS, TIC with LQTS syndrome, 
HTNCM, and cardiomyopathies in acute MC, PPCM, and Friedreich ataxia. To date, no 
sphingolipids have been associated with primary RCM, unclassified primary left ventricle 
non-compaction cardiomyopathy, and ICM without IR. Also discussed are the interventional 
studies of sphingolipids in various animal models, which show remarkable potential for 
various drugs, as well as the sphingolipid therapeutics currently in clinical trials or already 
approved for use in humans.

A major advance in understanding sphingolipid biology in general is the recent appreciation 
that chemically distinct sphingolipid species often have specific functions. While many 
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studies have used genetic or pharmacological strategies to prevent or reduce sphingolipid 
synthesis in general, mass spectrometry-based strategies have enabled the discovery that 
different sphingoid bases (e.g., d16:0 vs. d18:0), distinct N-acyl chain lengths and degrees of 
saturation (e.g., C14:0 vs. C20:0, C18:1, C24:1, etc.), and other structural differences among 
sphingolipid species lead to distinct biological effects. Therefore, approaches taking these 
variations into account are leading to a better understanding of mechanisms underlying the 
pathology of cardiomyopathy, as well as providing more specificity in the identification of 
novel therapeutic targets.219

In summary, targeting enzymes involved in sphingolipid synthesis could have enormous—
and thus far, untapped—therapeutic potential. Furthermore, the delivery of beneficial 
sphingolipids may also be feasible. For example, recently developed nano-liposomal lipid 
delivery systems are currently being used in a multitude of disease contexts.220-222 Further 
studies of sphingolipids in cardiac pathophysiology will undoubtedly continue to provide 
opportunities for novel therapeutic strategies.
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