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The kinesin superfamily is a class of motor proteins moving along microtubule filaments and playing essential roles in mitosis 
of eukaryotic cells. In the cancer biology, mitotic activity is an essential factor for development and metastasis of various 
cancers. Therefore, the inhibition of kinesin activity is suggested as an alternative cancer therapy. Accumulated clinical 
evidences have proved the potency of kinesin inhibitors in cancer treatments. In this review, we provided an overview 
of kinesins that play a critical role in the pathophysiology of various cancers and described the beneficial vs. side effects 
of their inhibitors that have been tested in both basic science and clinical studies.
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INTRODUCTION

Cancer is a gene-associated disease with abnormal and 

unregulated cell proliferation. Normal cell growth needs 

a balance between the self-activities of those genes that 

control cell proliferation. It also depends on the activities 

of genes that signal when damaged cells should undergo 

cell death. In case of healthy cells, few thousand of genes 

activity control the process of cell division. The cell division 

means to divide into two or more daughter cells, that 

daughter cell retains with a full set of chromosomes. 

Agents targeting cell division could induce abnormal 

mitosis in tumor cells, may lead to mitotic arrest and cell 

death. The Kinesin superfamily is a protein belongs to 

a class of motor proteins, that kinesins move along 

microtubule filaments, and are powered by the hydrolysis 

of adenosin triphosphate (ATP). The Kinesin plays an 

essential roles in mitosis of eukaryotic cells, such as mitotic 

spindle function, targets in the anti-mitotic cancer 

therapeutics.

Some that have already been studied in phase I/II clinical 

trials have shown anti-proliferative effects without causing 

significant neuropathy. Because kinesin spindle protein 

(KSP) inhibitors do not target microtubules, they are more 

specific and associated with lesser side effects then 

anti-microtubule drugs. In this review, we will provide 

an overview of kinesins that play a critical role in the 

pathophysiology of various cancers and describe the 

beneficial vs. side effects of their inhibitors that have been 

tested in both basic science and clinical studies. 
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I. KINESINS

Kinesin was discovered in 1985 from nervous tissue.1 

Kinesins generate directed mechanical force by hydro-

lyzing ATP and move along microtubule filaments from 

the minus end (oriented toward the nucleus) to the plus 

end (oriented toward the cell periphery).2 Kinesins plays 

a massive role in the separation of centrosomes, the 

assembly of bipolar spindles, and the faithful segregation 

of chromosomes into daughter cells during prophase, 

prometaphase, metaphase, anaphase, and telophase.3 

Kinesins also serve an important role in microtubule 

polymer dynamics, and signal transduction.4 Mitotic 

kinesins are cytoskeletal motor proteins that perform 

special and essential roles in cell proliferation. These 

proteins transport cellular components including genetic 

materials along microtubule. So KSP inhibitors specifically 

disrupt cell division, leaving other cytoskeletal processes 

unaffected, and therefore represent a potentially safer 

more effective approach to the treatment of cancer. 

Around 650 kinesin superfamily discovered in all 

eukaryocytic organisms. The Kinesin motor proteins often 

participate in cell- and tissue specific functions, such as 

mitosis or meiosis.5 Over than 40 kinesin proteins, named 

kinesin-1 through kinesin-14.6,7 kinesin-1,3,4,12 and 

kinesin-14 are transport of organelles, whereas kinesin-1, 

kinesin-4,5,6,7,8,10,12 and kinesin-13 participated in cell 

mitosis, particularly in spindle formation, cytokinesis, 

chromosomal separation and nuclear movement.8 In clinic, 

overexpression of KSP had been used as a diagnostic 

marker of several cancers including bladder, stomach, 

breast, lung and colorectal cancers and survival rate of 

patients.9-15 Because cancer is a gene-associated disease 

with uncontrolled cell growth, targeting kinesins may 

develop a novel therapeutic strategy cancers. To date 

several KSP inhibitors have been successfully studied in 

clinical trials. 

Kinesin superfamily involved in cancer

Most of the kinesins are plays an essential role for cancer 

diagnosis and prognostic marker, also some of kinesins 

have been implicated in a variety of disease. Kinesin 

superfamily (KIF) member Kinesin 4, such as KIF 4A gene 

is important prognostic marker for lung cancer. Taniwaki 

et al12 identified that KIF4A gene expression around 5 

fold in small cell lung cancer (SCLC), however around 

40% of non-small cell lung cancer (NSCLC). Also high 

expression of KIF4 gene detected in cervical cancer16 and 

essential role in the some cancers, such as glioma, 

melanoma, breast and bladder cancer.17,18 By contrast, 

KIF4 downregulation observed in gastric carcinoma.19 

Overexpression of KIF14 promotes the development of 

breast and lung cancer. However, in case of retino-

blastoma cancer, the KIF14 expressed more than two 

times20,21 and has been studied as a prognostic marker 

or for disease-free survival in breast and lung cancer.20 

Kinesin-13 family member, mitotic centromere-associated 

kinesin (MCAK) is participates in mitosis.22 MCAK 

overexpressed in many kinds of cancers, such as breast, 

colorectal cancer and glioma tissues,23,24 therefore it can 

act as a prognostic marker in colon cancer. Nishidate et 

al.,25 reported that high-expression of MCAK leads to 

breast cancer development, also can be suppressed by 

p53.26 Ishikawa et al., mentioned MCAK as a marker for 

poor prognosis of lymph node metastasis in colorectal 

cancer.27 KIF20B (MPHOSPH1) is high expressed in bladder 

and colon cancer and cytokinesis defects depending by 

downregulation of KIF20B.18,28 Wang et al., reported that 

KIF2A strongly expressed in metastasis of squamous cell 

carcinoma of the tongue (SCCOT) and lymph node 

metastasis.18,29 KIF18 kinesins have been shown important 

role in chromosome congression. Mitotic kinesin KIF18 

was found overexpressed in colorectal and breast cancer. 

It is associated with tumour grade metastasis.30,31 Up-

regulation of mitotic kinesin-like motor protein (MKLP)1 
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Table 1. Kinesin subfamily protein assocaited tumorogenesis and function

Kinesin Family Structure Gene maping Relation with tumor Function

KIF5B Kinesin-1 Heterotetramer 10p11.22 Bladder cancer, stomach 

cancer, skin and breast

cancer18,44,45

Translocation of meiotic spindle to the 

oocyte cortex in C. elegans meiosis and 

a variety of viruses to allow for their 

replication within the cell

KIF3A, 

KIF3B

Kinesin-2 Hetero-and 

homodimer

5q31.1 Breast cancer and renal cell

carcinoma18,46,47
Motor protein for membrane organelle 

transport. Dominant negative mutant 

result in aneuploidy and multipolar 

spindles

KIF1B Kinesin-3 Dimer 20q11.21 Metastasis of nervous system 

tumor37 
Motor protein for carrying of 

mitochondria, and implicated in late 

stage cytokinesis

KIF14 Kinesin-3 Dimer 1q32.q Breast cancer,20 ovarian 

cancer36 and lung cancer18,48
Implicated in late stage cytokinesis

KIF4A Kinesin-4 Not confirmed Xq13.1 Cervical cancer16 and

non-small-cell lung cancer12
Cytokinesis, chromosome congression 

and spindly assembly 

KIF7 Kinesin-4 Not confirmed 15q26.1 Metastasis of multiple 

cancers49,50
Hedgehog signaling and spindle 

assembly 

Eg5

/ KIF11

Kinesin-5 Bipolar 

tetramer

10q24.1 Chronic Myeloid Leukemia,51

and pancreatic cancer52 

Spindle elongation, spindle assembly 

and chromosome congression

MPHOSPH1

/ KIF20B

Kinesin-6 Dimer Bladder cancer and colon 

cancer18,28,52
Spindle elongation, spindle assembly 

and regulation of midzone assembly

MKLP1 

/ KIF23

Kinesin-6 Dimer 15q23 Glioma40 Spindle assembly, midbody formation 

cytokinesis and spindle elongation

MKLP2 

/ KIF20A

Kinesin-6 Dimer 5q31.2 Pancreatic cancer53 and gastric 

cancer34,41
Spindle assembly, midbody formation 

cytokinesis and spindle elongation 

CENP-E 

/ KIF10

Kinesin-7 Dimer 4q24-q25 Hepatocellular carcinoma42

and Breast cancer39,43
Chromosome congression and 

alignment.

Kif18 Kinesin-8 Not confirmed 11p14.1 Colon cancer,31 and metastasis 

of breast cancer30,39
chromosome congression and 

alignment and central spindle 

dynamics

Kid Kinesin-10 Monomer 16q11.2 Unknown Chromosome congression, meiotic 

chromosome positioning

MCAK 

/ KIF2C

Kinesin-13 Homodimer 1p34.1 Taxel resistance of tumor 

cells,18,23,27,39,54 colon 

cancer,27,39 gastric cancer and 

breast cancer39,55

Chromosome congression alignment 

and k-fiber turnover

KIF2A Kinesin-13 Homodimer Unknown Squamous cell carcinoma of 

the tongue18,56
Microtubule minus 

end-depolymerising motor cruical for 

bipolar spindle formation

HSET

/ KIFC1

Kinesin-14 Dimer 6p21.3 Brain metastasis an lung 

cancer,39,57 breast cancer cells 

with docetaxel resistance35,39

Bipolar spindle assembly, pole 

focusing, regulate microtubule length 

and number

KIFC3 Kinesin-14 Dimer Unknown Docetaxel resistance in breast 

cancer cells18 and 

paclitaxel-resistant breast 

cancer cell-lines35,39

Bipolar spindle assembly, cooperates 

with cytoplasmic dynein in Golgi 

positioning and integration

This table is adapted from the Review article of Xinran Liu et al.18

was shown NSCLC32 and hepatocellular carcinoma.33 

Moreover MKLP2 high expressed in pancreatic ductal 

adenocarcinoma (PDAC), and inhibited the growth of 

gastric cancer cells.34 High-expression of KIFC3 in 

docetaxel resistance in breast cancer cells.35

Corson et al., investigated that KIF14 overexpression 
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is thus tumor-specific such as breast cancer. Also it was 

predicted decreased disease-free survival20. Moreover, 

mitotic kinesin KIF14 showed genomic gain and high 

expressed in many cancers including ovarian cancer. 

Theriault B et al., investigated that expression of the KIF14 

is predictive of poor prognosis in breast and lung cancer.36 

The mitotic kinesin KIF1B mutations were detected in 

pheochromocytomas and neuroblastomas. Also KIF1B 

beta germline variant related neural crest and nonneural 

origin.37 Liu et al., reported the overexpression Eg5 in 

human pancreatic cancer, and high expression of Eg5 was 

clinicopathological parameters of pancreatic cancer.38,39

Kanehira et al., reported that MPHOSPH1 genes were 

significantly overexpressed in the majority of bladder 

cancers.28 In fact about KIF23 downregulated in glioma 

cells, so Takahash et al., suggested that KIF23 might be 

a novel therapeutic agent of malignant glioma.40 KIF20A 

kinesins downregulation inhibits the growth of gastric 

cancer, also can play an essential role in anti-cancer 

mechanism of genistein.41

CENP-E plays an important role in the function of spindle 

checkpoint. Lui et al., discovered that the down expression 

of CENP-E in human hepatocellular carcinoma.42 However 

another researchers reported that high expression of 

CENP-E associated with poor prognosis in breast cancer.43

Kif18A is a microtubule depolymerase and plays an 

essential role of chromosome congregation. Overex-

pression of Kif18A was found in colorectal cancer and 

metastasis.31 Bie et al., established KIF2C was high 

expressed in glioma and as a potential independent 

prognostic parameter for patient with glioma.23 In addition 

Ishikawa et al., reported overexpression of MCAK has been 

associated with aggressive forms of carcinoma and a key 

prognosis of colorectal cancer.27

II. KSP INHIBITORS IN IN-VITRO STUDIES

Cancer can occur when the balance between mitosis 

and apoptosis is imbalanced or disrupt. Previously it has 

been well demonstrated that KSP inhibitors lead to mitotic 

arrest and cell death.58,59 Kinesin-5 proteins a sensitive 

to battery of small molecule inhibitors that allosterically 

block Eg5 acitivity.58,60,61 Since its discovery, over 100 

different chemical classes of allosteric inhibitors against 

HsEg5 have been identified in the public scientific 

literature. These include carbolines, quinazolines, thiazolo-

pyrimidines, thiadiazoles, dihydropyrazoles, isoquino-

lines, imidazoles, and benzimidazoles.62-64 A few years ago, 

Mayer et al., discovered monastrol shown to inhibit the 

kinesin Eg5, arrested cells are characterized by monopolar 

spindle. This phenotype is induced through specific 

disruption of mitotic molecular motor kinesin Eg5 with 

IC50 at 14 μM. No effect on other motor proteins and 

tubulin. This discovery regarded as a paradigm shift in 

anticancer drug development.65 

Ispinesib (SB 715992) was the first KSP inhibitor that 

entered clinical trials. Ispinesib shown to inhibit cancer 

cell proliferation of human and murine cell lines with IC50 

values of 1.2–9.5 nM. Also have been shown cytotoxic 

activity in tumor cell lines, including Colo201, Colo205, 

HT-29, M5076, Madison-109, and MX-1, with IC50 of 1.2 

nM to 9.5 nM.66 20 nM ispinesib caused mitotic arrest 

in SKOV3 ovarian tumor cells, which displayed un-

separated centrosomes and monopolar mitotic spindles. 

It also showed favorable clinical activity with a significantly 

lower toxicity profile in SKOV3 human tumor xenograft 

models, compared to tubulin targeted drugs. In addition, 

it exhibited anti-proliferative activity in tumor cell lines 

and has been shown to be effective in several murine 

tumor models.66 To note, the clinical trial with KSP inhibitor 

ispinesib was rather disapponting. Another facts, Ispinesib 

and MK-0731 have shown antiproliferative activity in 

tumor cell lines and several murine tumor models.67,68 

A new generation of SB743921 exhibited five-fold 

increased in potency against Eg5 over ispinesib with > 

40,000-fold selectivity for KSP over other kinesin.62 It 
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exhibited strong cytotoxic activity in vitro and in vivo. SB 

743921 confirmed a functional mitotic spindle causing 

G2/M cell cycle arrest and apoptosis. SB743921 have been 

shown cytotoxic activity against xenograft models and 

cancer cell lines, such as Colo205 (complete regressions), 

MX-1, SKOV3, MV522 and P388, with IC50 of 0.2 nM 

to 14.4 nM.69 In 2009, Woessner et al., reported a 

thiadiazole derivative ARRY-5220 demonstrated potent 

anti-proliferative activity in epithelial ovarian cancer cells.70

KSP inhibition by ARRY-520 results in various beneficial 

effects against cancer development. The rectification of 

chromosome segregation may be activated via the spindle 

assembly checkpoint. It may also result in the interruption 

of the cell cycle during mitotic phase, which may then 

cause cell death to actively-dividing cells. Moreover, it does 

not cause peripheral neuropathy, a disease typically 

associated with tubulin-targeting agents, since KSP does 

not participate in events post mitosis. ARRY-520 showed 

beneficial inhibitory activity against several cell lines 

(HT-29, HCT-116, A2780, K562 and HCT-15).71 Previous 

studies demonstrated that ARRY-520 blocked cell cycle 

in mitosis and caused apoptosis in AML cell lines.62,72 SCH 

2047069 showed antitumor activity in several solid tumor 

xenograft models, including human ovarian carcinoma 

A2780, human colon carcinoma Colo-205, human 

glioblastoma U373, and colon carcinoma HCT-116. SCH 

2047069 was also significant active in EOL-1 leukemia 

and DoHH2 lymphoma models and significantly extended 

survival of these animals.73

HR22C16 is required for cell division (IC50=800±10 

nm).74 Marcus et al, tested to combination of HR22C16A 

with Paclitaxel.75 Just few years ago, another researchers 

were also checked anti-proliferative effect in human lung 

cancer H1299 cells and human lung fibroblast WI38 cells.76 

They demonstrated that HR22C16A showed efficacy effect 

on cell death and mitotic arrest in cancer cells. A new 

compound CPUYL064 showed great inhibitory effect 

against Eg5. Yang et al., reported CPUYL064 was found 

G2/M phase arrest and anti-tumor activity against human 

hepatocellular carcinoma cell line with IC50 of 100 nM.77

K858 is a thiadiazole derivative with KSP IC50 value of 

1.3 μM. K858 displayed potent inhibitory activity both in 

vitro against HCT116 cell line and in vivo in many xenograft 

models of cancer.78 The oral KSP inhibitor SCH 2047069 

has been shown the ability to cross the blood-brain 

barrier.73 SCH 2047069 exhibited anti-tumor activity 

against leukemia, lymphoma, ovarian and colorectal 

cancers both in vitro (57 tumor cell lines) and in vivo. 

It could also enhance the antitumor activity in A2780 

xenograft models combination with gemcitabine, 

vincristine and paclitaxel.79

Dihydropyrrole derivative MK-0731 is a synthetic small 

molecule and a potent and selective KSP (IC50=2.2 nM),80 

Furthermore, MK-0731 which displayed high efficacy 

anti-proliferative activity in mouse xenograft model.68 The 

discovery of a benzimidazole derivative CPUYJ039 is a 

novel and potent KSP inhibitor (IC50=0.04 μM) was 

reported in 2011. CPUYJ039 blocked cell cycle in G2/M 

phase and leading to cell death with the monastrol spindle 

phenotype in HCT116 cell line.80 ARQ 621 demonstrated 

anti-tumor activity against a wide range of human cancer 

cell lines in vitro, including colon, lung, endometrial, 

bladder, and hematologic cancer cell lines and in a number 

of xenografts grown in athymic mice, including pancreatic, 

breast, prostate, and ovarian carcinomas. Compared to 

ispinesib, a previously characterized Eg5 inhibitor, ARQ 

621 demonstrated comparable potency and proved to 

be a non-DNA damaging agent.81 Table 2 shows that 

activities of KSP inhibitors in vitro studies. 

KSP inhibitor induces cell death

Inhibition of KSP leads to apoptosis of several cancer 

cell lines as well as in vitro anti-tumor activity in human 

xenograft models.78,84,85 Leizerman et al., have demo-

sntrated that monastrol causes mitotic arrest and caspase 

activated cell death (activation of caspase-8, caspase-3 
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Table 2. Kinesin inhibitors in in vitro studies

Inhibitors Chemical structure IC50 Cell line type

HR22C16 0.65 uM Human lung cancer cell-H1299, WI3876

CPUYL064 Not confirmed 100 nM Hepatocellular liver carcinoma cell-HEPG277

CPUYJ039 Not confirmed 0.04 uM Human colon carcinoma cell-HCT11680

K858 1.3 uM Human colon carcinoma cell-HCT116 delete cell line, 

human ovarian cancer cell line A278078

SCH2047069 Human colon carcinoma cell-HCT116 delete cell line, 

human ovarian carcinoma cell-A2780, human 

teratocarcinoma cell-PA-173

CF3-STLC 140 nM Human CML cell-K56282

Human adenocarcinoma cell-HeLa83

activation, cleavage of PARP) and mitochondria dys-

function in human gastric AGS and colon HT29 cell lines.86 

Vijapurkar et al., further elucidated the cellular responses 

following monastrol-induced mitotic arrest.87 They 

suggest that the cellular responses induced by monastrol 

that are correlated with overexpression of BclXL, the 

antiapoptotic Bcl-2 family protein. Overexpression of 

BclXL provides a protective mechanism, and its depletion 

rescues the apoptotic response to monastrol.88 Liu et al., 

observed that monastrol inhibitor arrested mitosis, 

induced cell death, and overexpressed Hsp70 (heat shock 

protein) in human multiple myeloma cells.89 ARRY-520 

treated Type II EOC cells exhibited a significantly increased 

caspase family such as caspases-8, 9, 3 and decreased 

of XIAP.70 Caspase-2 activation leads to involvement of 

the mitochondria. In addition, Tunquist et al., showed 

that ARRY-520 treated in human multiple myeloma NCI 

H929 cells observed overexpressed cleaved-PARP during 

mitotic arrest, and decreased of the antiapoptotic protein 

myeloid cell leukemia 1 (Mcl-1).90 Kinesin-5 in HL60 cells 
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showed intrinsic apoptosis during mitotic arrest with 

mitochondrial dysfunction such as loss of mitochondrial 

membrane potential and upstream event of MOMP.91 

Furthermore, Shimizu et al., reported that KSP inhibitor 

CF3-STLC induced mitotic arrest with the monoastral 

spindles, and cell death with cleavage of PARP-1, 

caspase-3, and 4E-BP1.82 Rather Ogo et al., reported same 

result in HeLa cell.83 Recently, Basso et al., found that 

HT-29 cells with oral KSP inhibitor SCH 2047069 led to 

mitotic arrest and cell death with PARP cleavage.73 

CPUYJ039 inhibited HCT116 cells proliferation, and G2/M 

cell-cycle arrest with characteristic monoastral spindles. 

Also showed that cell death with an increase of the 

Bax/Bcl-2 ratio in HCT116 cells80 However Tao et al., 

demonstrated that apoptosis after prolonged mitotic 

arrest with activated pro-apoptotic protein Bax. The 

KSP-IA,92 a dihydropyrrole small molecule arrests cells in 

mitosis and induces apoptosis by caspase-dependent 

death. Moreover, KSP-IA was able to induce apoptotic 

cell death in a p53-independent manner, suggesting that 

KSP inhibitors could be proved active in p53-deficient 

tumors. 

Orth et al., investigated that prolonged mitotic arrest 

activated the intrinsic apoptotic pathway. That activates 

p53 induction after slippage with mitochondrial dys-

function and caspase activated DNAse, causing limited 

DNA damage in human cancer cells.93 Hwang et al., 

showed that KSP   inhibitor HR22C16 sensitized in H1299 

cells to TRAIL-induced cell death by down- regulating XIAP, 

survivin and Bcl-2 apoptotic proteins and the activity of 

NF-κB.76 Recently, Yin et al., demonstrated that SB743921 

treatment suppresses the ERK and Akt activity in CML 

cells.94 

III. KSP INHIBITORS IN CLINICAL 

DEVELOPMENT 

In fact, a lot of new KSP inhibitors have been identified 

in recent years. Some of the inhibitors have already been 

studied in phase I or Phase II clinical trials and proved 

to have shown anti-proliferative effects in several types 

of cancers. KSP inhibitors have been successful when used 

as a monotherapy. The Ispinesib (SB715992) was the first 

KSP inhibitor to enter clinical trials.66 At present, it 

represents the most advanced and best studied KSP 

inhibitor. Phase I studies of ispinesib in patients with solid 

tumors have been completed. Generally, ispinesib was 

well-tolerated with no indications of neurotoxicity. The 

most common adverse effects were neutropenia, fatigue, 

anemia, leukopenia, thrombocytopenia, diarrhea, nausea, 

and vomiting.95-97 The most promising results have been 

observed in patients with advanced or metastatic breast 

cancer.98 Recently, outcomes from the phase II trial of 

ispinesib99-103 in 15 patients with metastatic hepatocellular 

carcinoma were published.104 Similar results were 

obtained from the phase II study in patients with 

melanoma.105 Other preliminary reports of ispinesib in 

metastatic squamous cell carcinoma of the head and 

neck,99 colorectal cancer, ovarian cancer, and renal cell 

carcinoma have not indicated significant response rates.18 

Despite some promising results the outcomes from the 

first clinical trials of ispinesib are rather disappointing. It 

is known that ispinesib resistance, observed in some clinical 

trials, may be due to multidrug resistance.106,107 Taken 

together, clinical trials evaluating the efficacy and safety 

of KSP inhibitors, both as single and in combination with 

other agents, are currently ongoing. Second-generation 

SB743921 is now in the clinic use. SB743921, a derivative 

of ispinesib, is 5-fold more potent against KSP ATPase 

activity and it is another promising KSP inhibitor from 

Cytokinetics. SB743921 exhibited five-fold increase in 

potency against KSP over ispinesib with > 40,000-fold69 and 

is entered in a phase I/II clinical trial in non-Hodgkin’s 

lymphoma.62 Now its undergoing Phase I clinical study. 

SB743921 showed response in some patients and the 

major dose limiting toxicity was marrow suppression, in 
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Table 3. Kinesin inhibitors in Clinical development

Inhibitors Chemical strucure IC50

Clinical 

trial
Type of cancers  Side effects Company

Ispinesib

Ispinesib in 

combination 

with 

docetaxel

1.7 nM II Advanced or metastatic 

breast cancer117

Advansed solid tumors118

Neutropenia

Prolonged 

neutropenia

Cyto-

kinetics

SB743921 0.1 nM I/II Advanced solid tumors or 

replased/refractory 

lymphoma119

Dose-dependent 

neutropnenia

Cyto-

kinetics

MK-0731 2.2 nM I Advanced solid tumors111

Taxane-Refractory 

cancer68

Myelosuppression MerckCo

AZD4877 5 nM II Recurrent or refractory 

acute myeloid 

leukemia109

Relapsed solid tumors110

Dose-related 

neutropenia

Hyperbilirubinemia, 

stomatitis, 

palmar-plantar 

erythrodysesthesia

Astra-

zeneca

ARRY-520 6 nM II Advanced myeloid 

leukemia108
Neutropenia

Myelosuppression

Array 

Bio-

Pharma

particular neutropenia.62 MK-0731 is a dihydropyrrole 

derivative developed by Merck and ARRY-520 is a 

thiadiazole derivative from Array Pharmaceuticals. 

MK-0731 (Merck) progressed in clinical development has 
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Table 3. Kinesin inhibitors in Clinical development

Inhibitors Chemical strucure IC50

Clinical 

trial
Type of cancers  Side effects Company

ARQ621 1.8 nM I Solid tumors and 

hematologic disorders120
Neutropenia, 

anemia

Fatigue and nausea

ArQule

LY2523355 7 nM I Advanced solid tumors113 Neutropenia, 

leukopenia, 

diarrhea and 

mucositis

Eli Lilly

4SC-205 Not confirmed 3 nM I Colon cancer

Malignant lymphoma116
Neutropenia 4SC

shown anti-proliferative activity in several tumor cell lines 

and significant efficacy in some murine tumor models. 

MK-0731 was tolerated when administrated in 17 mg/m2 

dose.62 In addition, ARRY-520 (Array Biofarma) is currently 

in a phase I trial and phase II in advanced cancer patients 

and has shown remarkable efficacy in preclinical models 

of human solid tumors and human leukemia showed only 

limited response.108 

The AZD4877,109,110 MK-0731111 and EMD544085 as 

novel KSP single agent in melanoma105 and clear-cell renal 

cell cancer.39,112 However the final clinical results have not 

been reported. Therapy with ARQ621 appears well 

tolerated, with no dose-limiting toxicity observed at doses 

and frequencies much higher than those achieved with 

the leading Eg5 inhibitors of comparable potencies. Wakui 

et al., studied effect of LY2523355 in Japanese patients 

with advanced solid tumors. Who had grade 4 neutropenia 

or grade 3 febrile neutropenia, they used G-CSF. Also 

observed that no objective tumor responses.113 The most 

frequent side effects were neutropenia, leukopenia, 

diarrhea, rash and mucositis.114 4SC-205 is now being 

investigated in a clinical phase 1, in patients with solid 

tumors or malignant lymphomas.115 The compound exhibits 

dose-proportional pharmacokinetics with t 1/2 ~10. Dose 

limiting toxicities include increased neutropenia.116 Table 

3 shown KSP inhibitors in clinical development and some 

side effects.

Drug resistance for KSP inhibitors

Drug resistance is common cause of treatment failure 

for cancer. Resistance to chemotherapeutic drugs is a big 

problem of treatment of patients with cancer that 

encumbers the efficacy of cytostatic drugs.18 Which may 

be caused through the expression of efflux pumps such 

as P-gp121,122 and several KIF proteins, such as KIFC3 and 

MCAK, might be lead to drug resistance.54,57 

The way to target KIF combined with chemotherapy 

can provide a classic manner to treat cancer, when serious 
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chemotherapeutic durg resistance exist then cancer cells' 

anti-apoptotic proteins can also generate drug resis-

tance.18 Preclinical studies mentioned that Ispinesib is 

predicted to be a substrate for drug resistance. A KSP 

inhibitor developed by Merck, MK-0731, has been 

modified and avoided to be the substrate for P-glyco-

protein mediated efflux, giving it more potential for 

entering clinical trials. Binding pocket mutation is another 

origin of drug resistance in cancers. An alteration of the 

L5 pocket of KSP could offset the action of APT 

non-competitive inhibitors binding to it. Prior to patient 

use, this mutation could be measured by structural 

biomarkers predictive of drug potency.123

Side effects of KSP inhibitors

Neutropenia is the most common side effects of KSP 

inhibitors and along other side effects. Because the 

doubling time of granulocyte precursors is very short [17 

hours for myeloblasts, 63 hours for promyelocytes, and 

55 hours for myelocytes]. Thus, reversible neutropenia 

would be expected of an agent targeting a mitotic kinase 

or KSP, because at any one time ~25% of bone marrow 

neutrophils are undergoing mitosis.124 Other common side 

effects are anemia, fatigue, nausea/vomiting and leuko-

penia, overexpression of aspartate or alanine aminotrans-

ferase, hyperbilirubinemia and hyponatremia. Clinical 

studies for AZD4877 and MK0731 have been carried out 

because of leukopenia, elevation of aspartate and alanine 

aminotransferase, hyperbilirubinemia and hyponatremia. 

108,109,119,125 Some cases, no neurotoxicity observed in trials. 

95,110,119 Because some KSP is expressed at low levels in 

the adult nervous system in rodent and KSP inhibitors 

do not target microtubules.126

Conclusions and Perspectives

Going back to 1985 when the first kinesin was 

discovered with 14 kinesin family types, each was 

identified that contains various proteins. Alteration of 

these protein expression and functions leads to human 

disease, including tumorgenesis and progression. KSP 

inhibitors are attractive and promising anti-proliferative 

agents for cancer chemotherapy, such as some solid 

tumors and hematologic malignancies. Compared with 

other antimitotics, KSP inhibitors have shown potent 

anti-proliferative effects without causing significant 

neuropathy. The challenge for clinical development of KSP 

inhibitors observed drug resistance and side effects. 

However novel KSP inhibitors and combination therapy 

is still attractive field. Another unanswered question is 

how do KSP inhibitors induce mitochondria mediated cell 

death? Although it is suggested that KSP inhibition 

enhances caspase mediated apoptotic cell death but the 

underlying mechanism is not yet clear. These concerns 

are needed to be answered in the future studies. Besides 

blocking tumor cell proliferation, kinesin inhibitors 

showed potential to block angiogenesis127 which further 

suggest novel mechanism of kinesin inhibitors in 

pathophysiological modulation of vascular forming and 

functions. 
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