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Effects of Polyphosphate on the Fusion of Rabbit Lumbar Spine
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— Abstract —

Study Design: Posterior and posterolateral fusions were performed in rabbit lumbar spines.

Objectives: To investigate the osteoinductive effect of polyphosphates.

Summary and Literature review: Inorganic polyphosphates are known to be rich in osteoblasts and involved in the mineraliza-
tion process in bone metabolism. However, no study has been undertaken to investigate the osteoinductive effect of polyphos-
phates.

Materials and Methods: Forty adult New Zealand white rabbits underwent monolevel lumbar fusions, and were divided into
two groups according to the fusion beds: twenty each between the laminae (posterior fusion group, PF group) and between the
transverse processes (posterolateral fusion group, PLF group). In ten of twenty rabbits in the PF group, 0.8gm of autogenous
iliac bone was grafted onto the right sides of the laminae, which were used as a control group (C1), with 0.4gm autogenous bone
immersed in polyphosphate solution in the left sides as an experimental group (E1). In the other ten, 0.8gm of autogenous bone
was grafted onto the right sides (C2) and 0.8gm of tricalcium phosphate porous blocks containing polyphosphate in the left sides
(E2). The other twenty rabbits of the PLF group were similarly divided into C1, E1, C2 and E2 groups by grafting the same
amount of materials between the transverse processes. The animals were sacrificed at the 16th postoperative week and the
fusions evaluated grossly, radiologically and histologically. Statistical differences between the groups (Cl vs. E1, C2 vs. E2 and
El vs. E2) in each of the PF and PLF groups were compared by chi-square tests.

Results: The fusions were finally determined by the gross finding using manual palpation. In the PF group, bony fusions were
obtained in 90, 80, 90 and 70% of the C1, E1, C2 and E2 groups, respectively. In the PLF group, these were 80, 70, 60 and 0% of
the C1, E1, C2 and E2 groups, respectively. Statistical analysis revealed differences only between C2 and E2 (p=0.005), and
between El and E2 (p=0.002) of the PLF group. Histologically, B-tricalcium phosphate particles containing polyphosphate were
transformed into the osteoid in some areas of the PLF-E2 group, although only fibrous unions were obtained grossly.
Conclusions: It is suggested that the polyphosphate may have an osteoinductive effect, even though the osteoinductive potency

Address reprint requests to

Kee-Yong Ha, M.D.

Department of Orthopaedic Surgery, The Catholic University of Korea, Kang-Nam St. Mary’ s Hospital,
505, Banpo-dong, Seocho-gu, Seoul, 137-701, Korea

Tel: 02-590-1464, Fax: 02-535-9834, E-mail: kyh@cuk.cmc.ac.kr

* 2003 20
* (02-PJ3-PG4-PT03B-0003)

-1-



Vol. 11, No. 1, 2004

was very week in this fusion model of the rabbit lumbar spine. Therefore, further explorations, such as the threshold and opti-

mal concentrations of polyphosphate in vivo and the best carrier material of polyphosphate, should be performed to obtain the

optimal conditions for fusion.
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Fig. 1. Operation methods (ABG: autogenous bone graft, TCP: B-tricalcium phosphate, PolyP: polyphosphate, PF: posterior fusion,

PLF: posterolateral fusion)
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Table 1. The surgica results. Plus (+) means fusion and minus (-) means non-fusion. (ABG: autogenous bone graft, TCP: -tricalci-
um phosphate, PolyP: polyphosphate, C: control group, E: experimental group)

Posterior fusion group Posterolateral fusion group
ABG 12 ABG ABG TCP ABG 1/2 ABG ABG TCP
+polyP +polyP +polyP +polyP
C1 El Cc2 E2 C1 El Cc2 E2

1 + + + + + + + -

2 + + + + + + + -

3 + + + + + + + -

4 + + + + + + + -

5 + + + + + + + -

6 + + + + + + + -

7 + + + - + - - -

8 + - + - + + - -

9 + - + - - - - -

10 - + - + - - - -
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Fig. 2. Fusion rates(%) by inspection and manual palpation. Black bars indicate posterior fusion group and gray bars indicate pos-
terolateral fusion group. (C: control group, E: experimental group, ABG: autogenous bone graft, TCP: (3-tricalcium phosphate,
PF: posterior fusion, PLF: posterolateral fusion)
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Fig. 3. PA views of gross lumbar fusion specimens obtained at postoperative 16weeks. Leftward arrows in right sides indicate fusion
masses of control groups and rightward arrow in left side that of experimental group. Small upward arrows indicate PMMA
cements bridging the spinous processes. (A) Posterior fusion group: the fusion masses of control group and experimental
group 2 show bony union bridging the upper and lower laminae. (B) Posterolateral fusion group: the fusion masses of control
group and experimental group 1 show bony union bridging the transverse processes. (C, D) Posterolateral fusion group: the
fusion mass of experimental group 2 shows fibrous union, which was confirmed by manual compression and distraction stress
test(D).
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Fig. 4. Computerized tomograms at postoperative 16weeks, sagitally cutting the gross fusion specimens including fusion masses,
which all show continuous fusion mass(large arrow) bridging the laminae or transverse processes(small arrows). (A) Experi-
mental group 2 in the posterior fusion group. (B-D) Control group(B), experimental group 1(C) and 2(D) in the posterolateral
fusion group
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Fig. 5. Plain PA radiographic findings. (A, B) The fusion masses on the laminae of posterior fusion group were overlapped with the
vertebral bodies, so it isimpossible to determine whether fused or not. (C, D) The fusion masses between the transverse
processes of posterolateral fusion group control group (right sides of C and D), experimental group 1 (left side of C) and
experimental group 2 (left side of D) were all considered to be fused.

-7 -



Vol. 11, No. 1, 2004

20 17 (85%)
.3
1
8 (80%)
(Fig.5-C). 2
8
16
5-D).
3.
H-E (woven bone)
H-E

. Masson’ strichrome

(Fig. 6).

10

(Fig.

7-A). 1 H-E
, Masson’ strichrome
(Fig.
7-B).
1
2
10
(central zone, Fig. 7-D) (transverse
process zone, Fig. 7-C)
1 3 1 L
2 2 90%, 80%, 90%
70%
PMMA
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Fig. 7. Postoperative 16 weeks histologic findings of fusion masses in posterolateral fusion group with hematoxyline-eosin staining
(left side or upside) and Masson’ s trichrome staining(right side or downside). (A) Control group: woven bone formation com-
pletely bridging the transverse processes (x 40). (B) Experimental group 1: woven bone formation bridging the transverse
processes with interpersed collagen fibers (x 100). (C) Experimental group 2 (transverse process zone): transformation of tri-
calcium phosphate particles into woven bones (x 100). (D) Experimental group 2 (central zone): transformation of tricalcium
phosphate particles into woven bones, less frequently than in the transverse process zone(x 100). (TP: transverse process,
LAM: lamina, WB: woven bone, TCP: 3-tricalcium phosphate particle)
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