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INTRODUCTION

With technologic innovations in computed tomography (CT), 
cerebral CT angiography (CTA) has been established as a use-
ful non-invasive diagnostic modality to assess patients with neu-
rovascular disease (1). Meanwhile, as the remarkable growth in 
the use of CT, awareness is increasing of the potential risk of 
relatively low doses of ionizing radiation from medical diagnos-
tic imaging (2, 3). Therefore, reducing radiation exposure to the 
patient has become an important issue. Recently, various tech-

niques have been developed to reduce radiation dose during CT 
examinations, including X-ray beam collimation, filtration, 
automatic tube current modulation (ATCM) and iterative re-
construction algorithms (4-7). 

Using a lower tube potential is an important technique to re-
duce radiation dose (8-13). It also increases iodine attenuation 
and improves visibility of hypervascular pathologies and vascu-
lar anatomy (8, 9, 14), but the image quality is impaired by high-
er noise. To compensate for the higher noise, other options must 
be adjusted, such as increasing effective tube current-time prod-
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uct (mAseff) or applying iterative reconstruction (15-19). How-
ever, the optimal relationship between tube potential, tube cur-
rent, patient size and image quality have not been determined. 
An automatic tube potential selection (ATPS) algorithm was re-
cently developed, which is based on patient-specific anthropo-
metric measures (attenuation and size estimated from the topo-
gram) and specific diagnostic study objectives. Recent studies 
have used ATPS to reduce the radiation dose while maintaining 
image quality for contrast-enhanced abdominal CT and CTA of 
the thoracoabdominal aorta or coronary artery (20-25). 

The purpose of our study was to determine whether using 
ATPS for cerebral CTA could effectively reduce radiation dose 
and maintain acceptable image quality when compared with 
ATCM alone.

MATERIALS AND METHODS

Normal Volunteers 

The Institutional Review Board of our institute reviewed and 
approved the study protocol (3-2017-0064). Written informed 
consent was obtained from all volunteers. Thirty-six healthy 
volunteers with normal renal function were enrolled in the 
study. The volunteers were randomly assigned to one of two CTA 
protocols: group A (fixed 120-kVp protocol) and group B (ATPS 
protocol). The average age and standard deviation (SD) of the 
volunteers were 45.9 ± 10.0 years (range, 23–65 years). 

Image Acquisition

All scans were obtained with a 128-slice multidetector CT 
(SOMATOM Definition AS Plus, Siemens Healthineers, Forch-
heim, Germany). Group A was scanned with similar scanning 
parameters to those used in daily practice at our institution. 
Scanning parameters were exposure setting of fixed 120 kVp 
and 140 mAseff with ATCM (CARE Dose 4D, Siemens Health-
ineers), pitch of 0.45, rotation time of 0.5 seconds, a beam colli-
mation of 64 × 0.6 mm and slice acquisition of 128 × 0.6 mm 
with a z-flying focal spot technique. The expected volume CT 
dose index (CTDIvol) was 20.2 mGy. The scanning volume 
ranged from the vertex of the skull to the C1 vertebral body. 
Reconstructed images with 0.6 mm slice thickness were sent to 
3D workstations (Aquarius iNtuition, Terarecon Inc, San Ma-
teo, CA, USA) for image quantitative and qualitative analyses.

For group B using the ATPS protocol (CARE kV, Siemens 
Healthineers), the reference tube potential and reference effec-
tive tube current-time product were 120 kVp and 140 mAseff as 
in group A. The other scanning parameters were also the same 
as group A. 

Sixty-four milliliters of contrast media with 370 mg iodine/
mL (Ultravist 370, Schering Korea, Seoul, Korea) was adminis-
tered at 4 mL/s through an 18-gauge cannula placed in the ante-
cubital vein of the right arm using a power injector (Dual shot, 
Nemoto Kyorindo, Tokyo, Japan). Afterward, a 40-mL saline 
chaser was injected at 4 mL/s. Individual contrast was opti-
mized with a bolus-tracking technique (CARE Bolus, Siemens 
Healthineers) in the common carotid artery at the level of C4 
vertebra with a trigger level of 160 Hounsfield units (HU). A 
4-s delay was added before every examination. 

Technical Background of the Automatic Tube Potential 

Selection Tool

The ATPS algorithm is designed to automatically suggest an 
optimal combination of tube potential and tube current for each 
patient according to the patient’s topogram and planned exami-
nation. Each patient’s topogram is used to provide information 
about the patient’s size and attenuation characteristics. Using 
the attenuation profile, the algorithm calculates various combi-
nations of tube potential and tube current that will generate the 
desired contrast-to-noise radio (CNR) with the lowest radiation 
dose. Then, the algorithm selects the most dose-efficient com-
bination of tube potential and tube current in accordance with 
the examination type as follows: CTA imaging, post-contrast 
imaging for soft tissue enhancement, or non-contrast imaging 
(20-22, 25-27).

Quantitative Analysis

The arterial attenuation, signal-to-noise ratio (SNR), and 
CNR of cerebral arteries was measured and calculated in quan-
titative analysis. A radiologist with 4 years’ experience in neuro-
vascular imaging, who did not conduct the qualitative analysis, 
measured arterial attenuation (in HU) in the internal carotid ar-
tery at the T-junction (8, 9). Region of interest (ROI) were care-
fully drawn to be as large as the vessel lumen while omitting the 
outline of the vessel lumen to avoid partial volume effects (range 
of ROI size: 1.5–5.5 mm2). The mean attenuation and SD of the 
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brain parenchyma were measured at the center of an occipital 
lobe avoiding vessels with a 250 mm2 ROI (8, 9). The SD of the 
attenuation of the occipital lobe parenchyma was defined as the 
image noise. All measurements were obtained three times to 
minimize bias from a single measurement and the mean of 
these values was used for analyses. The SNR and CNR of cere-
bral artery were calculated with the following formulas (8, 9, 
28): SNR = arterial attenuation value/image noise; and CNR = 
arterial attenuation value-brain parenchymal attenuation value/
image noise. 

Qualitative Analysis

The subjective score for the arterial attenuation, edge sharp-
ness of the artery, detail visibility of small arteries, venous con-
tamination, image noise and overall image quality of cerebral 
arteries was independently assessed by two radiologists with 11 
years and 4 years of experience in cerebral CTA. They reviewed 
the volume rendered images and the maximum intensity pro-
jection images (axial, coronal, and sagittal) of the cerebral ar-
tery. Before beginning the assessments, the two readers were 
instructed on the criteria for image rating, and they assessed 10 
test cases that were not included in the study to reduce interob-
server variability. They independently scored vascular enhance-
ment, edge sharpness of the cerebral artery and visibility of small 
arteries such as the superior cerebellar, anterior and posterior 
communicating, anterior choroidal, and ophthalmic arteries 
(1 = bad, 2 = poor, 3 = moderate, 4 = good, and 5 = excellent) 
and estimated image noise and venous contamination on a 
5-point scale (1 = major, no diagnosis possible; 2 = substantial; 
3 = moderate, acceptable; 4 = minor; 5 = no graininess, no con-
tamination). Observers subjectively rated overall diagnostic 
image quality on a 5-point scale (1 = non-diagnostic, 2 = sub-
standard, 3 = standard, 4 = better than standard, 5 = excellent). 
CT images were randomized and observers were blinded to the 
scanning parameters. A window level of 200 and width of 800 
were fixed only during the qualitative assessment of arterial at-
tenuation and image noise to compare differences between the 
groups.

Measurement of Radiation Exposure

The CTDIvol and dose length product, which were provided 
by the CT scanner after scanning, were recorded and an approx-

imate effective dose was calculated for each patient by multiply-
ing the dose length product by a conversion factor (0.0023 mSv/
mGy · cm) (29, 30). 

Statistical Analysis

All statistical analyses were performed with SPSS version 21 
(IBM Corp., Armonk, NY, USA). Demographic and morpho-
metric data of the volunteers and quantitative and qualitative 
data were tested for normal distribution with the Shapiro-Wilk 
test. The Mann-Whitney U test for nonparametric data of the 
qualitative analysis and independent t-test for normally distrib-
uted data of the quantitative analysis was used. A linear-weight-
ed kappa statistic was used to assess interobserver agreement in 
scoring and was interpreted using the guidelines of Landis and 
Koch (31). p-values less than 0.05 were considered statistically 
significant.

RESULTS

Age, height, weight, and body mass index did not differ sig-
nificantly between groups A and B (Table 1). All volunteers had 
no intracranial aneurysm or arterial stenosis. A tube potential 
of 80 kVp was automatically selected for all 18 volunteers in 
group B. 

Quantitative Analysis

The mean arterial attenuation value at the internal carotid ar-
tery T-junction was 377.3 ± 58.4 HU (range, 310.0–487.0 HU) 
for group A (Fig. 1) and 587.7 ± 74.6 HU (range, 488.5–707.5 
HU) for group B (Fig. 2). Group B had 55.8% higher arterial at-
tenuation (mean 210.4 HU) than did group A (Table 2). 

The mean attenuation value and SD (image noise) of the oc-

Table 1. Volunteer Characteristics
Characteristics Group A Group B p-Value

Age (years) 45.9 ± 9.6 45.8 ± 12.6 0.986
Gender (male/female) 6/12 8/10 0.500*
Height (cm) 162.9 ± 7.2 164.3 ± 7.9 0.610
Weight (kg) 59.5 ± 10.5 62.8 ± 8.5 0.343
BMI (kg/m2) 22.3 ± 2.6 23.2 ± 1.9 0.278

Data are presented as mean ± standard deviation. Differences were con-
sidered significant when the p-value was less than 0.05. Unpaired t-test or 
*Mann-Whitney U test were used to compare values. Group A, fixed 120-
kVp protocol; Group B, automatic tube potential selection protocol.
BMI = body mass index
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cipital lobe of group B (40.7 HU and 4.7 HU, respectively) were 
significantly higher than those of group A (34.8 HU and 2.1 HU, 
respectively). Although the noise level was significantly higher 
in group B, the mean SNR and CNR of the arteries did not dif-
fer significantly between groups A and B (Table 2). 

Qualitative Analysis 

The interobserver agreement between the two readers was al-
most perfect agreement, with a kappa value of 0.817. In qualita-

tive image analysis, the images acquired with the ATPS (group B) 
were rated significantly higher than those obtained with the fixed 
120-kVp protocol (group A) with regard to arterial attenuation, 
edge sharpness of cerebral artery, visibility of small arteries and 
overall image quality (Table 3). Venous contamination did not 
differ significantly between groups. For image noise, group A 
had statistically better subjective scores than group B for observ-
er 2 (p = 0.047), and there was no significant difference between 
groups for observer 1 (p = 0.104). 

A B C
Fig. 1. Cerebral CTA of 38-year-old woman, using the fixed 120-kVp protocol. Axial (A) and coronal (B) maximum intensity projection images 
with a slab thickness of 10 mm and volume rendering image (C) were assessed. The mean attenuation value of the cerebral arteries (397.5 HU) 
and CNR (25.5) in this volunteer were similar to the mean attenuation value (377.3 HU) and mean CNR (24.7) for cerebral CTA in group A.
CNR = contrast-to-noise radio, CTA = computed tomography angiography, HU = Hounsfield units

A B C
Fig. 2. Cerebral CTA of 50-year-old man, using the automatic tube potential selection protocol. Axial (A) and coronal (B) maximum intensity 
projection images with a slab thickness of 10 mm and volume rendering image (C) were assessed. A tube potential of 80 kVp was selected. The 
mean attenuation value of the cerebral arteries (560.5 HU) and CNR (22.8) in this volunteer were similar to the mean attenuation value (587.7 
HU) and mean CNR (24.2) for cerebral CTA in group B.
CNR = contrast-to-noise radio, CTA = computed tomography angiography, HU = Hounsfield units
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Radiation Exposure

The mean CTDIvol and estimated effective dose for group B 
were 44.0% and 42.9% lower than those of group A, both of which 
were statistically significant (Table 2).

DISCUSSION

The present investigation demonstrates that an ATPS applied 
to cerebral CTA decreased radiation dose by 42.9% without com-
promising image quality, compared with a standard CTA pro-
tocol using a fixed 120 kVp. 

In addition to lowering radiation exposure, the mean arterial 
attenuation of cerebral arteries in the ATPS group was 55.8% 
higher than that in the fixed 120-kVp group, because the lower 
tube potential (80 kVp) was automatically selected and used for 

CT scanning all volunteers in the ATPS group. This increased ar-
terial attenuation was similar to previous phantom and clinical 
studies using lower tube potentials (8, 32). As the mean energy 
of the X-rays approach the k-edge of iodine (33.2 keV), the use 
of lower X-ray tube potentials increases X-ray absorption of io-
dine because the photoelectric effect of the X-ray increases (8, 9, 
33). Therefore, a lower tube potentials leads to higher attenua-
tion of iodine. 

An 80 kVp tube potential was automatically selected for all 18 
volunteers in the ATPS group of our study. However, a previous 
global observational study showed various tube potentials selec-
tion (from 80 kVp to 140 kVp) for cerebral or carotid CTA (27). 
We guessed that the difference in tube potential selection was 
due to the reference scanning protocol and reference radiation 
exposure. The CT scanner used in a previous global study (27) 
had a maximum tube current capacity of 500 mA. For high ra-
diation exposure setting or fast acquisition of CT images by us-
ing accelerated rotation time and high helical pitch, excess tube 
current capacity may be needed. When more than the maxi-
mum possible tube current is needed, the next higher tube po-
tential is suggested by the ATPS algorithm (20, 34). The mean 
CTDIvol of our study was 9.4 ± 1.0 mGy, and that of a previous 
study (27) was 16.1 ± 8.6 mGy. The 80 kVp tube potential and 
tube current under maximum capacity seems to be suitable for 
the scanning parameters of the cerebral CTA protocol used in 
our study. 

The mean CTDIvol and estimated effective dose of group B, 
which used the ATPS algorithm, were 44.0% and 42.9% lower 
than those of group A, which used a fixed 120 kVp. A decrease 
in radiation dose leads to an increase in image noise. Therefore, 
the ATPS algorithm group had an increase in mean image noise 

Table 2. Mean Arterial Attenuation, Objective Image Quality, and Ra-
diation Exposure Values Obtained with Two Cerebral Computed To-
mography Angiography Protocols

Group A Group B p-Value
Attenuation of the cerebral 

artery (HU)
377.3 ± 58.4 587.7 ± 74.6 < 0.001

Attenuation of the occipital 
lobe (HU)

34.8 ± 2.1 40.7 ± 4.7 < 0.001

Image noise (HU) 13.9 ± 1.3 22.7 ± 1.7 < 0.001
SNR 27.2 ± 4.1 26.0 ± 3.7 0.361
CNR 24.7 ± 4.1 24.2 ± 3.5 0.697
CTDIvol (mGy) 16.8 ± 1.4 9.4 ± 1.0 < 0.001
Effective dose (mSv) 0.7 ± 0.1 0.4 ± 0.0 < 0.001

Data are presented as mean ± standard deviation. Differences were con-
sidered significant when the p-value was less than 0.05. The Student’s t-
test was used to compare group values. Group A, fixed 120-kVp protocol; 
group B, automatic tube potential selection protocol.
CNR = contrast-to-noise radio, CTDIvol = volume CT dose index, HU = 
Hounsfield units, SNR = signal-to-noise ratio

Table 3. Subjective Scoring of Pooled Data from Two Observers on a 5-Point Scale
Observer 1 Observer 2

Group A Group B p-Value Group A Group B p-Value
Arterial attenuation 3 (4, 3) 5 (5, 5) < 0.001 4 (4, 3) 5 (5, 5) < 0.001
Edge sharpness 3.5 (4, 3) 4 (4.75, 4) 0.005 3 (4, 3) 4 (4.75, 4) 0.013

Detail visibility 3 (3, 3) 4 (4, 3.25) 0.011 3 (3, 3) 4 (4, 3) 0.034

Venous contamination 3 (3, 3) 3 (3, 3) 0.791 3 (3, 3) 3 (3, 2.25) 0.265

Image noise 3 (3, 3) 3 (3, 2.25) 0.104 3 (3, 3) 3 (3, 2) 0.047
Overall quality 4 (4, 3) 4 (5, 4) 0.012 3.5 (4, 3) 4 (4, 4) 0.019

Data are presented as median scores (25% percentile, 75% percentile). Differences were considered significant when the p-value was less than 0.05. The 
Mann-Whitney U test was used to compare group values. Group A, fixed 120-kVp protocol; Group B, automatic tube potential selection protocol.
Detail visibility = visibility of small arteries, Edge sharpness = edge sharpness of the cerebral artery, Overall quality = overall diagnostic image quality
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of 63.0%. However, SNR and CNR did not differ significantly 
between groups because the ATPS group had a 55.8% higher 
arterial attenuation due to the lower tube potential. The ATPS 
algorithm is designed to use CNR as the image quality index and 
to provide equal CNR at all tube potentials in the CTA setting 
(20, 34). This principle worked well in the current study. 

The increased image noise did not diminish subjective image 
quality, since higher arterial attenuation and greater attenuation 
difference between artery and brain parenchyma partially offset 
the image noise (21). Therefore, images acquired with ATPS in 
this study had higher subjective scores for arterial attenuation, 
edge sharpness of cerebral artery, visibility of small arteries, and 
overall image quality, even though one observer subjectively 
rated image noise as significantly worse in the ATPS group. 

Until recently, the ATPS algorithm has been applied to vari-
ous body regions such as the aorta, coronary artery, pulmonary 
artery, head, abdomen and chest (22-27, 34, 35). The ATPS algo-
rithm significantly reduced radiation dose across most body re-
gions and selected various tube potentials with reference to an 
individual patient’s attenuation profile, type of examination and 
scanning parameters. In our study, the radiation dose was sig-
nificantly reduced and a single lower tube potential (80 kVp) 
was automatically selected. As to the reason why various tube 
potentials were not selected, we assumed that head size or at-
tenuation did not differ significantly among individuals com-
pared with body weight or body mass index (BMI). The previ-
ous study showed mean head circumference of an adult increased 
with height but had no significant difference among individual 
(36). 

Our study had some limitations. First, the size of each group 
was relatively small; nevertheless, the radiation doses and se-
lected tube potentials of the two groups were significantly dif-
ferent. Second, we could not perform intra-individual compari-
sons between protocols because of ethical concerns. However, 
volunteer characteristics (age, height, weight, or BMI) did not 
differ significantly between groups; thus, data analyses and 
comparisons were possible between groups. Third, we could 
not find any report about the diversity of individual head atten-
uation. One article suggested head circumference of an adult 
had no significant difference among individuals (36). However, 
the ATPS algorithm uses patient’s head size and attenuation 
characteristics rather than head circumference. We assumed 

that there may be a correlation between the head attenuation and 
head circumference. Finally, iterative reconstruction was not 
used in this study. We wanted to determine the quality of fun-
damental images of the ATPS algorithm. If an iterative recon-
struction was used, image noise would be significantly reduced, 
and SNR and CNR would be significantly improved. Further 
studies are needed to explore the value of iterative reconstruc-
tion with the ATPS algorithm. 

In conclusion, the ATPS algorithm for cerebral CTA reduced 
the radiation dose by 42.9% without compromising image 
quality, compared with a CTA protocol using a fixed 120 kVp. 
The ATPS algorithm provided higher arterial attenuation and 
similar SNR and CNR, despite lower radiation exposure, because 
lower tube potential was automatically selected. We suggest that 
the ATPS algorithm is a useful method to reduce radiation dur-
ing cerebral CTA. 
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뇌혈관 컴퓨터단층촬영 조영술에서의 감쇄 기반 자동 관전압 선택  
알고리즘: 방사선 조사와 영상 품질에 미치는 영향

최정민 · 김주희 · 강성민 · 유정식 · 정재준 · 조은석*

목적: CT 뇌혈관 촬영에서 감쇠 기반 자동 관전압 선택 알고리즘(automatic tube potential selection; 이하 ATPS)의 유용

성을 조사하고, 방사선량, 혈관 감쇠도 및 영상 질에 대하여 기존의 120-kVp 고정 프로토콜과 비교 평가한다. 

대상과 방법: 36명의 건강한 지원자 중 무작위 선출로 18명은 120-kVp로, 나머지 18명은 ATPS 알고리즘을 이용하여 

CT 뇌혈관 촬영을 시행했다. 방사선량, 대뇌 동맥의 감쇠 정도와 대조도-대-잡음비, 영상의 질을 정량적, 정성적 분석을 

통해 비교하였다. 

결과: ATPS군의 유효선량(0.4 mSv)은 120-kVp (0.7 mSv)군에 비해 42.9% 낮았다. ATPS군의 혈관 감쇠[587.7 

Hounsfield units (이하 HU)]는 120-kVp군(377.3 HU)에 비해 유의하게 높았고, 대조도-대-잡음비는 두 군 간에 유의

한 차이가 없었다(각각 24.2와 24.7). 또한 ATPS군은 동맥 감쇠 및 영상의 질에 대한 주관적 점수가 유의하게 높았다. 

결론: CT 뇌혈관 촬영에서 ATPS 알고리즘은 42.9% 적은 방사선량을 사용했음에도 영상의 질이 유지되었다. 또한 ATPS 

알고리즘을 사용했을 때, 120-kVp군과 비교하여 더 낮은 관전압(80 kVp)이 선택되어 혈관의 감쇠 정도가 유의하게 증가

하였다.
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