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INTRODUCTION

CT and magnetic resonance imaging (MRI) are the two select-
ed imaging modalities for the diagnosis and staging of head and 
neck tumors. Although both diagnostic tools have high accura-
cies for detecting and staging such cancers, the imaging features 
of benign and malignant head and neck lesions are often non-
specific and overlapping, because these techniques evaluate the 
macroscopic morphologies of biologic tissues and do not reflect 
microstructural differences (1). Although both diagnostic tools 
have high accuracies for detecting and staging such cancers. 

However, advanced MR techniques are being developed which 
provides information concerning the metabolic, molecular and 
pathophysiological aspects of tumors; and imaging biomarkers 
are important tools for the detection and characterization of 
cancers and for monitoring the response to therapy.

Diffusion-weighted imaging (DWI) is a non-invasive tech-

nique that analyzes the structures of biologic tissues at the mi-
croscopic level. Furthermore, DWI has the advantages of being 
non-invasive, thus, requiring no exogenous contract agents or 
ionizing radiation, it owns a short imaging time and can be easi-
ly incorporated into routine evaluations (2, 3). 

Several studies (4-7) have suggested that DWI could be used 
to differentiate and characterize head and neck lesions and to 
monitor responses to therapy. Recently, DWI has been used 
clinically to differentiate benign and malignant head and neck 
lesions. In this paper, we review the role and utility of DWI for 
assessing head and neck tumors and discuss the limitations and 
future perspectives.

THE BIOLOGICAL CONCEPT OF DWI IN 
HEAD AND NECK TUMORS

Biological tissues are composed of intra- and extra-cellular com-
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Conventional MRI and CT are the chosen imaging modalities when evaluating head 
and neck cancers; however, sometimes both diagnostic tools yield low sensitivity and 
accuracy in making the diagnosis, staging, and assessing the post-treatment response. 
This article reviews the role and utility of diffusion-weighted imaging (DWI) in assess-
ing head and neck cancer. DWI is a technique which analyzes the structures of biolog-
ic tissues at a microscopic level. Apparent diffusion coefficient value, determined from 
DWI, can help detect the differences in the microstructures of tumor tissues and non-
tumor tissues. Therefore, DWI is a useful technique in a clinical practice, which pro-
vides information of histopathological characterization, differential diagnosis, and 
stage of head and neck cancer and assessment of treatment response. 
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ty in malignant tumors can be explained as follows. Within ma-
lignant tumors, the translational motion of water molecules is 
diminished due to increased extracellular space tortuosity, in-
creased nuclear-to-cytoplasmic ratio, hyperchromatism, and hy-
percellularity. These histopathological characteristics of malig-
nant tumor reduce the extracellular to intracellular volume ratio 
and the diffusion space available to water molecules, which re-
duce ADC values (4, 6). 

The ADC Values for Benign and Malignant Lesions

The mean ADC values for differentiation of benign and ma-
lignant lesions in the head and neck have been reported as pat-
terns of disease entity or lesion sites. The mean ADC values for 
differentiation of benign and malignant lesions in the head and 
neck were revealed with a wide range. In general, cut-off values 
for differential diagnosis of benign and malignant lesions have 
been accepted as under 0.9 - 1.1 × 10-3 mm2/s (Figs. 1, 2). Kwon 
et al. (12) reported sensitivity, specificity, positive predictive, neg-
ative predictive values and accuracy as 92%, 66.6%, 87.8%, 76.1% 
and 85%, respectively, in differentiation of benign and malig-
nant lesions in the pharynx with the cut-off ADC value as 1.1 × 
10-3 mm2/s. Sasaki et al. (13) found that the ADCs of malignant 
tumors (0.87 ± 0.32 × 10-3 mm2/s) were significantly lower than 
those of benign (1.35 ± 0.29 × 10-3 mm2/s, p < 0.0001) and in-
flammatory (1.50 ± 0.50 × 10-3 mm2/s, p < 0.0002) lesions. Fried-
rich et al. (14) reported lower mean ADC value for head and 
neck squamous cell carcinoma (SCC) of 0.64 ± 0.28 × 10-3 mm2/s, 
and the result was probably because of one specific disease enti-
ty of squamous cell carcinoma enrolled in the study.

In the parotid gland, however, due to an overlap not only with-
in the group of benign and malignant lesions but also an overlap 
between these groups, diagnoses should not be addressed on the 
basis of ADC values solely (15). Especially among those parotid 
gland tumors, Warthin’s tumors revealed lower ADC values 
(mean ADC value of 0.89 ± 0.16 × 10-3 mm2/s) than those of pleo-
morphic adenoma and carcinoma (Fig. 3). This low ADC value 
is related to the hypercellularity of Warthin’s tumor (16). 

1.5 T versus 3.0 T

The majority of the previous studies have been performed us-
ing 1.5 telsa (T) magnetic resonance systems. Srinivasan et al. 
(6) reported ADC values for benign and malignant head and 

partments. In these tissues, water molecules are in a state of contin-
uous exchange between these two compartments. In the human 
body, free diffusion of water molecules does not exist due to re-
strictions imposed by cell membranes and molecular boundaries. 

The biophysical mechanism underlying DWI is based on the 
different microscopic mobilities of water molecules in biological 
tissues. This mobility or Brownian motion, is highly influenced 
by the cellular environment, and is restricted by cellular packing 
and barriers, such as, intracellular organelles, cell membranes, 
and macromolecules.

Diffusion in the extracellular space is restricted by macromol-
ecules and membranous organelles, whereas diffusion in the in-
tracellular space is more restricted by physical (macromolecules 
and organelles) and chemical (specific binding and protein tran-
sitions and movements) factors and syneresis. Diffusion-weight-
ed MR images are obtained using an echo planar imaging (EPI) 
technique, which can be performed rapidly and enables data ac-
quisition, with different b-values, within a relatively short amount 
of time (8).

During diffusion-weighted MRI, translational motion causes 
phase dispersion of excited water protons, which leads to a DWI 
signal loss (9, 10) that can be quantified by calculating the ap-
parent diffusion coefficients (ADC). ADCs are calculated dur-
ing post-processing using at least two different b-values. Varia-
tions in ADC values reflect redistributions of water molecules 
between intracellular and extracellular tissue compartments, 
and thus, ADC values depend on microstructure and patho-
physiologic state (4, 11).

UTILITY OF DWI IN HEAD AND NECK 
TUMORS

Characterization and Differential Diagnosis of Head 

and Neck Tumors

The differential diagnosis of benign and malignant lesions of 
the head and neck is critical as it enables clinicians to adopt ap-
propriate management strategies. DWI has the ability to differen-
tiate malignant and benign tumors in the head and neck lesions. 

Mechanism of Diffusion Restriction in Malignant Tumors

The reason why malignant tumors have lower ADC values is 
poorly understood. However, the concept of restricted diffusivi-
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Lymphoma versus Carcinoma

Some investigators have also reported significantly lower ADC 
values in lymphoma than in SCC of the head and neck (Fig. 4). 
Maeda et al. (7) reported a mean ADC value of 0.96 ± 0.11 × 10-3 
mm2/s for SCC and of 0.65 ± 0.09 × 10-3 mm2/s for lymphoma (p 
< 0.001). In a study by Sumi et al. (17), authors evaluated the di-

neck lesions at 3.0 T, and found a significant difference (p < 
0.004) between the mean ADC values of benign (1.50 ± 0.48 × 
10-3 mm2/s) and malignant (1.07 ± 0.29 × 10-3 mm2/s) lesions. 
However, it is unclear as to how ADC values vary at different 
field strengths, although the results obtained by Srinivasan et al. 
(6) were similar to those obtained using 1.5 T MR systems. 

Fig. 1. A 47-year-old woman with SCC in the tongue. Axial T2- (A) and contrast enhanced T1-weighted images (B) show a mass in the right lat-
eral tongue (arrow). DWI with b value of 1000 (C) reveals high signal intensity of the mass. The mean ADC value within the lesion measured 
0.914 × 10-3 mm2/s on the ADC map image (D, open arrow). 
Note.-ADC = apparent diffusion coefficient, DWI = diffusion-weighted imaging, SCC = squamous cell carcinoma

Fig. 2. A 5-year-old male with lymphangioma in the left cheek. Axial T2- (A), T1-weighted images (B) reveal a mass with heterogenous signal 
intensity (arrows). The mass is enhanced in the central portion on contrast enhanced T1-weighted image (C). The mean ADC value of the mass 
measured 1.936 × 10-3 mm2/s on the ADC map image (D, open arrow).
Note.-ADC = apparent diffusion coefficient

Fig. 3. A 47-year-old female with Warthin’s tumor in the left parotid gland. Axial T2-weighted image (A) shows a round bright signal intensity 
mass (arrow). On T1-weighted image (B) the mass reveals low signal intensity. The mass represents high signal intensity on the DWI (C, arrow) 
and the ADC map image (D, open arrow). The ADC value of the lesion measured 0.731 × 10-3 mm2/s. 
Note.-ADC = apparent diffusion coefficient, DWI = diffusion-weighted imaging
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metastatic lymph nodes (18). Thus, anatomic imaging modali-
ties, such as, CT and MR imaging rely mainly on node sizes to 
detect malignant and metastatic lymphadenopathies because of 
a lack of reliable morphologic criteria (19). In particular, for 
conventional MRI, the morphologic criteria used for nodal stag-
ing do not seem to exceed those of CT. As a metabolic imaging, 
18F-fluorodeoxyglucose-positron emission tomography (FDG-
PET) scans help this differentiation, but they cannot detect small 
tumor deposits with non-enlarged LNs. They are also expensive 
with less availability and have low spatial resolutions (20). 

Several studies have reported that DWI can differentiate ma-
lignant and benign lymph nodes in the neck, and that malignant 
nodes exhibit lower ADC values than benign lymph nodes (5, 
20, 21). In a study that evaluates the use of DWI for the detec-
tion of nodal metastasis in head and neck SCC, Vandecaveye et 
al. (21) reported that the mean ADC of malignant LNs (0.85 ± 
0.27 × 10-3 mm2/s) was significantly lower than that of benign 
LNs (1.19 ± 0.22 × 10-3 mm2/s), and at a threshold ADC of 0.94 
× 10-3 mm2/s, obtained a sensitivity of 84%, a specificity of 94%, 
and an accuracy of 91% for the differentiation of malignant and 

agnostic ability of DWI with respect to the differentiation of 
lymphomas and carcinomas in the pharynx, and found that the 
ADCs of lymphomas (0.454 ± 0.075 × 10-3 mm2/s) were signifi-
cantly lower than those of pharyngeal carcinomas (0.863 ± 0.238 
× 10-3 mm2/s). Furthermore, when an ADC < 0.560 × 10-3 mm2/s 
was used to predict lymphoma, accuracy was maximal at 96% 
whereas sensitivity, specificity, positive predictive value, and 
negative predictive value were 100, 94, 86, and 100%, respective-
ly. The lower ADC values of lymphoma than SCC can be ex-
plained by the histopathological characteristics of lymphomas, 
which contained densely packed cells with relatively high nucle-
ar-to-cytoplasm ratios that decreased water diffusivity in the in-
tra- and extracellular spaces.  

Evaluation of Pathological Lymph Nodes

It is difficult to differentiate inflammatory lymph nodes (LNs) 
from metastatic lymphadenopathy on CT or MR images. Fur-
thermore, morphologic features of malignancy, such as, necro-
sis, indistinct margins, and loss of fatty hilum in lymph nodes, 
are relatively infrequent findings, especially for small (< 10 mm) 

Fig. 4. MR images of diffuse large B-cell lymphoma (A-C) in a 71-year-old woman and SCC (D-F) in a 58-year-old woman. In both patients, 
masses are located in the left nasopharynx (arrow), revealing hypointensity on T2-weighted image (A, D) and hyperintensity on DWI (B, E). The 
ADC value measured 0.526 × 10-3 mm2/s in lymphoma (C, open arrow), which was lower than that of patient with SCC (F, 0.877 × 10-3 mm2/s, 
open arrow).
Note.-ADC = apparent diffusion coefficient, DWI = diffusion-weighted imaging, SCC = squamous cell carcinoma
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hypo-intense on DW images and have higher ADC values. 
The difference between the ADC values of benign and malig-

nant lymph nodes is probably related to different cellularities and 
histopathological features. As mentioned, malignant nodes have 
enlarged nuclei exhibits hypercellularity, and hyperchromatism, 
which decreases the ADC values of malignant lymph nodes. 

Nevertheless, ADC values have potential for the detection of 
sub-centimeter nodal metastases, the lower in-plane resolution 
of ADC maps and potential image artifacts, especially if the 
nodes are located at the air-tissue interface, thus, result in tech-
nical limitations. Partial volume effects from the regions of in-
terest which are used to measure the ADC values of these small 
lymph nodes may also lead to inaccurate ADC values.

Differentiation of Viable Tissue and Necrosis in 

Malignant Tumors

For head and neck cancer patients, an accurate depiction of 
viable and necrotic tumor regions is important for diagnosis 
and treatment planning, as well as being essential when choos-
ing a biopsy site, because unsuitable choices may result in incor-
rect histological diagnosis. On contrast-enhanced T1-weighted 
images, tumors are usually visualized as contrast-enhancing le-
sions, and biopsy usually reveals that the enhanced portions of 
tumors contain viable tumor cells. However, non-enhanced por-
tions may contain viable or necrotic tissues. 

Razek et al. (25) investigated whether DWI could differentiate 
viable and necrotic regions in head and neck tumors. In this 
study, the mean ADC of viable tumor portions was 1.17 ± 0.33 × 
10-3 mm2/s and that of necrotic portions was 2.11 ± 0.05 × 10-3 
mm2/s. Low-signal-intensity regions with low ADC values on the 

benign LNs. 
DWI is especially helpful for diagnosis of small malignant 

lymph nodes which is difficult with conventional CT or MR im-
ages (Fig. 5). Small lymph nodes with a maximum short axial 
diameter below 10 mm are more challenging for differential di-
agnosis, because the mere use of this size criterion will result in 
misclassification of malignant lymph nodes as normal on MRI 
evaluation. de Bondt et al. (22) studied the ADC value in espe-
cially small lymph nodes (smaller than 10 mm) in the head and 
neck squamous cell carcinoma, and reported that sensitivity 
92.3% and specificity 83.9% with the ADC threshold as 1.0 × 
10-3 mm2/s. Within this study, observations on the predominant-
ly small lymph nodes show that the ADC criterion is the stron-
gest independent predictor of presence of metastasis. 

King et al. (23) reported that DWI showed significant differ-
ences between malignant nodes of SCC, lymphoma, and naso-
pharyngeal carcinoma (NPC), and found that ADC threshold 
values could help differentiate SCC and lymphoma (23). Mean 
ADC values for nodes of lymphoma, NPC, and SCC were 0.664 
± 0.071 × 10-3 mm2/s, 0.802 ± 0.128 × 10-3 mm2/s, and 1.057 ± 
0.169 × 10-3 mm2/s, respectively, with significant differences be-
tween SCC and lymphoma or NPC (p < 0.001) and between 
NPC and lymphoma (p < 0.04).

DWI has also been used to characterize enlarged necrotic 
nodes associated with inflammation or neoplastic diseases, es-
pecially when the differentiation of central necrosis in metastat-
ic nodes and in infectious necrotic nodes is difficult by conven-
tional MRI. Koç et al. (24) reported that abscesses and necrotic 
lymphadenitis appear hyperintense on DW images and exhibit 
lower ADC values than necrotic nodal metastases that appear 

Fig. 5. A 64-year-old man with lymph nodal metastasis. Axial T2-weighted (A) and contrast enhanced T1-weighted images (B) reveal a 1-cm 
sized lymph node at the left level II, which is difficult to differentiate benign and malignant node. However, the node shows hyperintensity on 
DWI (C, arrow) and decreased ADC value (0.654 × 10-3 mm2/s) on the ADC map image (D, open arrow).
Note.-ADC = apparent diffusion coefficient, DWI = diffusion-weighted imaging
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the first 4 months after radiation therapy (27). In addition, PET 
commonly produces false positive findings and suffers from low 
spatial resolutions that cause false negative findings within small 
volume of diseases. Biopsy is often necessary, but results of his-
topathologic speciments can be inaccurate due to sampling er-
rors. Surgeons also fear initiating or aggravating radiation necro-
sis in previously irradiated areas when multiple or deep biopsy 
specimens are obtained (28-30).

The results of recent studies deduce that diffusion-weighted 
MRI has the potential to distinguish post-radiation changes from 
recurrent cancer based on the ADC value differences (Fig. 7). 
Abdel Razek et al. (31) reported significant mean ADC value 
differences between post-treatment changes and residual/recur-
rent head and neck cancer; the mean ADC value of residual or 
recurrent lesions (1.17 ± 0.33 × 10-3 mm2/s) was significantly 
lower (p < 0.001) than that of post-treatment changes (2.07 ± 
0.25 × 10-3 mm2/s). 

Differences in ADC values reflect distinct histopathologic dif-
ferences, water proton distribution in tumors, and post-treat-
ment soft tissue changes. In tissues exhibiting post-treatment 
change, histopathological characteristics, such as, low cellularity 
associated with variable degrees of edema and inflammatory re-
action increasing interstitial water contents, and thus, increases 
the ADC values (4, 31, 32).

Assessment of Treatment Response

As a reliable prediction method of therapeutic response dur-
ing the early treatment stage, imaging markers may assist in the 
tailoring of treatment regimens and improve overall clinical out-

ADC maps were found to represent viable tumor regions, where-
as high signal intensities with high ADC values represented ne-
crotic regions, and these ADC values of viable tumors was report-
ed to be significantly lower than that for necrotic parts (Fig. 6). 
The sensitivity, specificity, and accuracy of ADC values were 
92.9%, 93%, and 94.6%, respectively. 

Tumor necrosis is characterized by increased membrane per-
meability and cell membrane breakdowns, which results in free 
diffusion and an increase in the mean free-path length of diffus-
ing molecules. These changes lead to increased mobility and wa-
ter molecule diffusion in necrotic regions (25).

The Differentiation of Tumor Recurrence and  

Post-Treatment Change

Currently, majority of patients with head and neck cancer un-
dergo induction chemotherapy, and concurrent chemo-radio-
therapy (CCRT) with surgery. After surgery, normal anatomic 
structures can be extensively distorted, and such radiotherapy 
can cause edema, fibrous inflammatory reactions, and scarring 
of adjacent normal soft tissues. The challenge presented to im-
aging methods is the differentiation of tumor recurrences and 
post-treatment changes, which is important for clinical decision-
makings and patient management. However, after surgery and 
CCRT in patients with head and neck cancer, residual and re-
current lesions and treatment-induced changes exhibit similar 
imaging characteristics, and are, therefore, difficult to differenti-
ate on routine follow-up MR images (26). Although FDG-PET/
CT can aid the detection of recurrent head and neck cancer, it is 
prone to false positives owing to inflammatory changes within 

Fig. 6. A 49-year-old man with squamous cell cancer in the left tongue. Axial T2-weighted (A) and contrast enhanced T1-weighted images (B) 
show a malignant mass in the left tongue base (arrow), biopsy-proven SCC. A large metastatic lymphadenopathy is also seen in the left level II. 
The node shows hyperintensity with central hypointensity on DWI (C). The ADC map (D) reveals low signal intensity of the enhanced peripheral 
part of the tumor with low ADC value (0.987 × 10-3 mm2/s, open arrow) representing a viable portion of the tumor. The non-enhancing central 
part of the tumor shows high signal intensity with high ADC value (1.597 × 10-3 mm2/s, asterisk) representing a necrotic portion of the tumor. 
Note.-ADC = apparent diffusion coefficient, SCC = squamous cell carcinoma
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therapies prior to reductions in tumor volume, and thus, enable 
the early detections of tumor response. Furthermore, in these 
studies it was also found that tumors with higher ADC values 
were associated with a reduced response to therapy, and low 
ADC tumors responded better to treatments than high ADC 
tumors. 

In the follow-up imaging work-up of head and neck malig-
nant lesions, the assessment of treatment response is often diffi-
cult for conventional CT or MR imaging due to anatomical de-
rangement or alteration of primary lesions (Fig. 8). Recently, the 
potential use of ADC values for the prediction or early detection 
of treatment response in head and neck cancer was described by 
Kim et al. (46). In this study, patients that responded favorably 
to chemoradiation therapy were found to have significantly low-
er pretreatment ADC values than partial respondents or non-
respondents. Furthermore, a significant increase in ADC was 
observed in full respondents within 1 week of treatment, and 

comes. Several studies have already been published on the roles 
of DWI in the assessment and prediction of treatment responses 
for animal models and human brain tumors. Previous studies of 
animal models (33-36) and of human brain tumors (37-40) have 
demonstrated the sensitivity of DWI for detecting early changes 
induced by chemotherapy. In a study by Zhao et al. (41), it was 
found that ADC increased in a mouse RIF-1 tumor after treat-
ment with the anticancer drug cyclophosphamide prior to a re-
duction in tumor volume, and thereafter, several groups have 
shown increased water diffusions through experimental tumors 
after treatment with anti-cancer drugs (35, 39) or gene therapy 
(36, 42). Furthermore, clinical studies on the efficacy of ADC 
for the prediction or early detection of treatment response have 
been conducted on brain tumors (43), breast cancer (44), and 
cervical cancer (45).

These several studies in animal and human models have 
shown that ADC values increase after treatment with antitumor 

A B C D
Fig. 7. A 71-year-old man with recurrent squamous cell cancer in the left maxillary sinus. Axial T1-weighted image (A) shows a mass at the lat-
eral margin of previous resection site in the left maxillary sinus (arrows). On axial contrast T1-weighted image (B), the lesion is well-enhanced. 
The ADC map image (C) shows low signal intensity with a mean value of 0.581 x 10-3mm2/s, representing recurrence. Increased FDG uptake is 
noted in the lesion on PET/CT scan (D). 
Note.-ADC = apparent diffusion coefficient, FDG = fluorodeoxyglucose, PET/CT = positron emission tomography/CT

Fig. 8. A 54-year-old man with adenoid cystic carcinoma in the left hard palate. Initial contrast enhanced T1-weighted image (A) reveals an en-
hancing solid mass in the left palatal bone (arrows). Follow-up T1-weighted image (B) after post-radiation 1 1/2 year (B) shows markedly inter-
val improving state. However, on the ADC map image at the same day (C), a focal area reveals diffusion restriction with a mean value of 0.74 × 
10-3 mm2/s (open arrow), representing a remnant mass. The lesion is aggravated diffusely on the 5-month follow-up contrast enhanced T1-
weighted image (D, arrows).
Note.-ADC = apparent diffusion coefficient
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ity artifacts, chemical shift artifacts, and Nyquist (N/2) ghosting 
artifacts in the phase-encoding direction, are considerably more 
severe in the head and neck regions. Susceptibility artifacts are 
caused by the many air-bone and soft tissue-bone interfaces in 
the head and neck region, and result in image distortions and 
can present serious problems during diffusion-weighted image 
analysis. Other sources of susceptibility artifacts include metallic 
dental fillings. 

One way to reduce susceptibility artifacts is to acquire DWI 
using the sensitivity encoding (SENSE) technique. Reduced echo 
train length at SENSE DWI reduces susceptibility artifacts, and 
thus, provides images of higher overall quality (53, 54). Newer 
techniques, such as, split acquisition of fast spin-echo signals 
(SPLICE) (55), DWI with line scan data acquisition (LSDWI) 
(7), and fast asymmetric SE (56) which are insensitive to suscep-
tibility artifacts, have also been recently proposed for the acqui-
sition of DWI data. 

In LSDWI, multiple diffusion-weighted, spin-echo column 
excitations are used to obtain a two-dimensional image. This 
method is relatively insensitive to motion artifacts because the 
images are constructed column by column, and the acquisition 
time required for an individual column is approximately equal 
to the TE (7).

EPI often contains an aliased image or ‘ghost’ displaced by 
N/2 point from the main image along the phase-encode axis. 
The so-called ‘Nyquist (N/2) artifact’ describes a ghost image in 
half view of the phase-encoding direction. These artifacts are 
caused by zigzag data acquisition patterns in the EPI sequence, 
and can be reduced by using a calibrated scan, which is obtained 
at the beginning of the EPI sequence with the phase-encoding 
gradient being turned off (57).

Motion artifacts in head and neck area on DWI are associated 
with the continuous physiological motions associated with 
breathing and swallowing. Another source of motion artifacts by 
DWI is the pulsation of large arterial vessels. Thus, careful selec-
tion of the reference slice, avoiding vascular structures, is manda-
tory to obtain good diffusion-weighted image quality and reliable 
information about the diffusion capacity of the tumor under in-
vestigation (14). Increasing the speed of image acquisition, which 
is now possible with single-shot EPI, and the use of parallel im-
aging also provides possible means of reducing this artifact (3).

Partial volume effects from the regions of interest used to mea-

complete respondents also showed significantly greater increas-
es in ADC values than partial respondents after one week of 
chemoradiation therapy.

A change in ADC values has also been reported to be associ-
ated with increased numbers of apoptotic cells and loss of cellu-
larity during apoptosis targeted cancer therapy (47). Although 
the mechanism underlying increased water diffusions following 
cytotoxic chemotherapy in experimental and human tumors is 
not fully understood, the cytotoxic chemotherapy triggers apop-
totic pathways which reduce cell density and enlarge extracellu-
lar spaces, which could explain the increase in ADC values ob-
served after treatment (48). Although the mechanism underlying 
increased water diffusions following cytotoxic chemotherapy in 
experimental and human tumors is not fully understood, the 
cytotoxic chemotherapy which triggers apoptotic pathways re-
ducing cell density and enlarging extracellular spaces are expla-
nations for the ADC value increases after the treatment. 

In addition, several studies have been conducted to determine 
the merits of imaging modalities, such as, perfusion CT (49), ar-
terial spin labeling (50), and blood oxygen level dependent MRI 
(51), for the predictions of therapeutic responses. Zima et al. (52) 
reported that higher levels of blood flow and blood volume as 
measured by CT perfusion may be correlated with better oxygen 
and drug delivery, and suggested that such techniques might be 
useful to predict responses to radiotherapy and/or chemothera-
py. In these studies, the authors emphasized the role that the tu-
mor vasculature plays in the supply of nutrients and oxygen and 
acting as the chemotherapeutic agents to tumor cells.

TECHNICAL PITFALLS OF DWI

Image quality in diffusion-weighted MRI is characterized by 
signal-to-noise ratio (SNR) and freedom from artifacts. To ob-
tain high quality images for qualitative or quantitative assess-
ments, scanning factors should be optimized to maximize SNR 
and reduce artifacts. In order to optimize SNR, parallel imaging 
should be used because this shortens echo-train lengths and re-
duces susceptibility artifacts, and the echo time (TE) should be 
as short as possible. 

EPI pulse sequences are highly susceptible to magnetic field 
heterogeneities, which result in geometric distortion artifacts. 
The intrinsic difficulties associated with EPI, such as susceptibil-
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tissues, and the diffusion in biologic systems is affected by water 
exchanging between intracellular and extracellular compart-
ments and the tortuosity of extracellular spaces.

The ADC values of malignant tumors are significantly lower 
than those of benign lesions. The histopathological characteris-
tics of malignant tumors, such as, an elevated nuclear/cytoplasm 
ratio, hyperchromatism, and hypercellularity, reduce the extra-
cellular to intracellular volume ratio and the space available for 
water molecule diffusion. The delineations of viable and necrotic 
tumor regions are essential for identifying biopsy sites, diagnosis 
and treatment planning. The mean ADC values of viable tumors 
have been reported to be significantly lower than those of necrot-
ic regions. On conventional MR images, residual or recurrent le-
sions and treatment-induced changes appear similarly and are 
often difficult to distinguish. However, residual and recurrent le-
sions have lower ADC values than post-treatment changes. DWI 
changes may provide a means of determining, at an early stage, 
likely treatment outcomes. For most malignant tumors, success-
ful treatment is reflected by an increase in ADC values.

DWI is a useful clinical technique that provides information 
about histopathological characteristics, differential diagnosis, 
and stages of  head and neck cancer and it also provides a means 
of assessing treatment responses. Due to the inherent drawbacks 
associated with EPI and the technical pitfalls of DWI, new ac-
quisition methods are needed to improve image quality and re-
duce artifacts. Furthermore, larger-scale studies are required to 
ascertain whether DWI offers a robust and reproducible means 
of determining responses to anticancer therapies.
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두경부 종양의 평가에 있어서 확산강조영상의 역할과 유용성: 종설1

설유리1 · 김학진1 · 이병주2

두경부 악성종양의 영상검사로 MRI와 CT가 가장 적절하다. 그러나 이 둘은 두경부 종양의 진단, 병기결정 및 치료 후 평

가 등에 있어서 민감도와 정확도가 떨어진다. 이 종설은 두경부 종양에서 확산강조영상의 역할과 유용성에 대해 살펴본

다. 확산강조영상은 조직을 현미경적 수준으로 분석하는 기법이며 여기서 나온 apparent diffusion coefficient 값은 종양과 

비종양조직의 미세구조 차이를 구분할 수 있다. 따라서 확산강조영상은 두경부 종양의 병리조직 특성, 감별진단, 병기결정 

및 치료 후 평가 등에 도움이 되는 정보를 제공하여 임상적으로 유용한 기법이다.
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