```
1
                                                1,2
         가
                               15
                                           28 , 43
                                                                                     1.5 T
                  STimulated - Echo Acquisition Mode (STEAM)
                                                                   67.9% (19/28)
             : 1.3 ppm
                                             26.7% (4/15)
                                                                           0.38 \pm 0.30 \times 10^{-6}
                                                            0.83 \pm 0.74 \times 10^{-6} 1.50 \pm 2.94 \times
            8.42 \pm 23.24 \times 10^{-6}
          10<sup>-6</sup>
                                              0.57 \pm 0.64 2.44 \pm 3.26
                가
                         (p < 0.05).
             :
                                                       MRI
                                                                           가 5 cm
                                                      (internal structure)
                                                               3
                                                                                         가
                                                                            15 ,
                                                                                        28 ,
                                                                                                43
                                                                           가 3 , 가 12
                         가
                                                          42 70
                                                                           61.3
                                                          가 15 , 가 13 ,
                                                                                           29
                                                                                                    79
                                                            60.3 .
                                                                1.5 Tesla
                                                                                  Magnetic Resonance
                                                    Imaging System, GE Signa Horizon (Milwaukee, WI, U.S.A.)
                                                                 (body coil)
                                                    STEAM (STimulated Echo - Acquisition Mode)
                                                                   (manual prescan)
                                                        (region of interest; ROI) 8 ml (2×2×2 cm³)
2002 4
                                         , CT,
                                                           (single - voxel)
                                                                  (Fig. 1A, 2A). MRS
                                                    TR=3,000 ms , TE=30 ms, Number of scans=128,
                                                        NEX=1
                                                                                                15
                                                                                           10
      2003 1 24
                        2003 4 14
```

421

12.5

¹H - MR

fast multiplanar

spoiled gradient - refocused acquisition in steady state

(FMPSPGR) v9.0 가 (global

shimming) (volume of

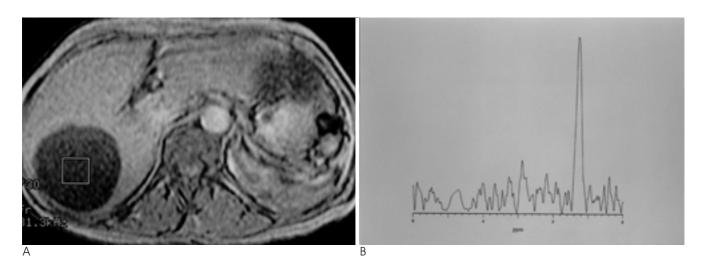
interest, VOI) Pearson (local shimming) Correlation

MR

MRS (post processing)

SUN SPARC 20 가 (SUN (1) electronic system, U.S.A.) Spectral Analysis/ General

Electric (SA/GE)


가

1H - MR

¹H - MR 43 MR

2-4 ppm 1.3 ppm 4.8 ppm 가 1H - MR 1.3 , 2 - 4 ppm

ppm

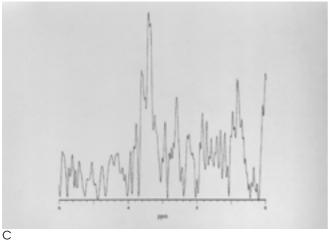


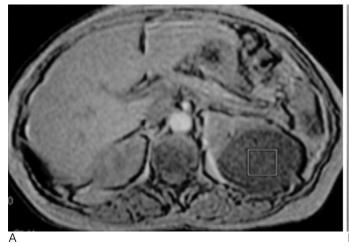
Fig. 1. A. Scanogram for 1H MR spectroscopy shows the localization of voxel with 8 ml $(2 \times 2 \times 2 \text{ cm}^3)$ is located in the hepatic

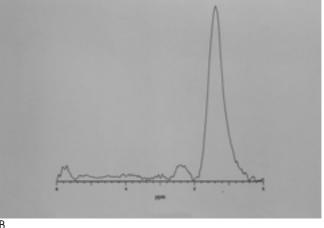
- B. MR spectrum demonstrates intense lipid peak at about 1.3 ppm in hepatic cyst.
- C. MR spectrum demonstrates no dominant lipid peak at about 1.3 ppm in hepatic cyst.

15 4 가 11 가 (Fig. 1B, C), 28 19 가 (Fig. 2B, C) (Table 1).

가 (Table 2, 3).

$$0.38 \times 10^{-6} \pm 0.30 \, (\quad 0.93 \times 10^{-6}, \quad 0.04 \times 10^{-6}) \quad , \qquad 8.42 \times 10^{-6} \pm 23.24 \, (\quad 113.81 \times 10^{-6}, \quad 0.10 \times 10^{-6}) \quad , \qquad \qquad 0.83 \times 10^{-6} \pm 0.74 \, (\quad 3.15 \times 10^{-6}, \quad 0.17 \times 10^{-6}) \quad , \qquad \qquad$$


Table 1. Number of Prominent Peaks from in vivo $^1\mathrm{H}$ MR Spectroscopy in 15 Hepatic Cysts and 28 Renal Cysts.


Peak Cyst	Lipid	Protein	No
Hepatic $(n = 15)$	4 (26.7%)	0	11 (73.3%)
Renal $(n=28)$	19 (67.9%)	0	9 (32.1%)

$1.50 \times 10^{-6} \pm 2.9$	4 (1	5.03 × 10 ⁻⁶	, 0.24	× 10 ⁻⁶) ,
	0.57 ±	0.64 (2.66,	0.23)
2.44 ±	3.25 (13.62,	0.25)	(Table 4).

Table 2. Relative Peak Area Ratios of Lipid to Water, Protein to Water, and Lipid to Protein from *in vivo* ¹H MR Spectroscopy in Hepatic Cysts.

	R Lipid/Water	R Protein/Water	R Lipid/Protein
Case 1	0.00000004	0.00000017	0.26
Case 2	0.00000026	0.00000110	0.24
Case 3	0.00000013	0.00000058	0.23
Case 4	0.00000060	0.00000097	0.62
Case 5	0.00000017	0.00000048	0.36
Case 6	0.00000014	0.00000039	0.37
Case 7	0.00000093	0.00000315	0.30
Case 8	0.00000043	0.00000096	0.45
Case 9	0.00000034	0.00000064	0.53
Case 10	0.00000069	0.00000026	2.66
Case 11	0.00000005	0.00000018	0.26
Case 12	0.00000093	0.00000071	1.32
Case 13	0.00000052	0.00000150	0.35
Case 14	0.00000026	0.00000095	0.27
Case 15	0.00000013	0.00000039	0.32

C.

Fig. 2. A. Scanogram for 1H MR spectroscopy shows the localization of voxel with 8 ml $(2 \times 2 \times 2 \text{ cm}^3)$ is located in the renal cyst. B. MR spectrum demonstrates intense lipid peak at about 1.3 ppm in renal cyst.

C. MR spectrum demonstrates no dominant lipid peak at about $1.3\,\mathrm{ppm}$ in renal cyst.

(2). (3) ; =0.614, p<0.05, ; =0.960, p<0.001) (Fig. 3). 가 (p < 0.05),1980 (p < 0.01),가 Gotsis (4) 가 가 가 가 (5) 가 43% 가

Table 3. Relative Peak Area Ratios of Lipid to Water, Protein to Water, and Lipid to Protein from *in vivo* ¹H MR Spectroscopy in Renal Cysts.

R Lipid/Water	R Protein/Water	R Lipid/Protein
0.00000026	0.00000039	0.67
0.00011381	0.00001503	7.57
0.00000280	0.00000037	7.59
0.00000053	0.00000072	0.74
0.00000017	0.00000029	0.60
0.00000048	0.00000048	1.01
0.00000030	0.00000055	0.54
0.00000013	0.00000048	0.28
0.00000017	0.00000046	0.36
0.00000010	0.00000032	0.30
0.00000024	0.00000047	0.51
0.00000045	0.00000079	0.57
0.00000023	0.00000053	0.44
0.00000102	0.00000040	2.57
0.00000014	0.00000050	0.29
0.00001261	0.00000187	6.76
0.00000409	0.00000118	3.46
0.00000036	0.00000046	0.80
0.00005061	0.00000372	13.62
0.00001852	0.00000267	6.93
0.00000120	0.00000075	1.61
0.00002258	0.00000621	3.63
0.00000011	0.00000024	0.45
0.00000015	0.00000060	0.25
0.00000034	0.00000058	0.59
0.00000324	0.00000088	3.67
0.00000102	0.00000047	2.19
0.00000024	0.00000054	0.45
	0.00011381 0.00000280 0.00000053 0.00000017 0.00000048 0.00000013 0.0000011 0.00000010 0.00000024 0.00000024 0.00000012 0.0000014 0.00001261 0.00000161 0.000001852 0.0000120 0.00000120 0.00000120 0.00000120 0.0000015 0.0000015 0.0000015 0.0000015 0.0000015 0.0000014	0.00000026 0.00000039 0.00011381 0.00001503 0.00000280 0.00000037 0.00000053 0.00000072 0.00000017 0.00000029 0.00000048 0.00000048 0.0000013 0.00000048 0.0000017 0.00000046 0.0000017 0.00000047 0.00000024 0.00000047 0.00000023 0.00000053 0.00000024 0.00000053 0.0000012 0.00000040 0.00001261 0.00000187 0.0000049 0.0000018 0.000005061 0.00000372 0.0000125 0.00000267 0.00002258 0.00000621 0.0000015 0.00000058 0.00000324 0.00000058 0.00000324 0.00000088 0.00000102 0.00000047

Toble 4. Mean Value and Standard Deviation of Relative Peak Area Ratios of Lipid to Water, Protein to Water, and Lipid to Protein from *in vivo* ¹H MR Spectroscopy in Hepatic and Renal cysts.

89%

Peak Area Rat	io R _{Lipid/Water}	R Protein/Water	R Lipid/Protein
Hepatic Cyst	$0.38 \times 10^{-6} \pm 0.30$	$0.83 \times 10^{-6} \pm 0.74$	0.57 ± 0.64
Renal Cyst	$8.42 \times 10^{-6} \pm 23.24$	$1.50 \times 10^{-6} \pm 2.94$	2.44 ± 3.25

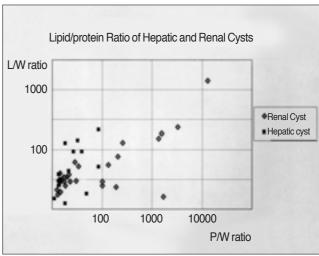


Fig. 3. It shows positive correlation between lipid and protein in hepatic and renal cysts with ratio of area of lipid to protein, lipid to water, and protein to water from *in vivo* ¹H MR spectroscopy.

#L/W: Lipid/Water, P/W: Protein/Water,

^{*} hepatic cysts (=0.614, p<0.05) and renal cysts (=0.960, p<0.001)

		(Biliary cys	(6, 7). stadenoma)	(cys-	
tadenocard	cinoma)		,	` ,	
		가			4.5
					(12) 가
				•	21
				(8).	·
				가	가 .
					가
					·
	•			,	
	,	(transudate)		가	
				(total	
lipid),	L	_DH (lactic deh	nydrogenase)フ	ŀ	
		_			•
		가	(9).		
	(c	omplicated)	, ,		
			,		1. , ,
		7	가 가	٠	2. Bore P. The role of magnetic resonance spectroscopy in clinical
					medicine. Magn Reson Imaging 1985;3:407-413
	, 가	가		,	
			0, 11).		2002;46:127-132 4. Gotsis ED, Fountas K, Kapsalaki E, Toulas P, Peristeris G, Papada
					kis N. In vivo proton MR spectroscopy: the diagnostic possibilities
					of lipid resonances in brain tumors. <i>Anticancer Res</i> 1996; 16:1565-1567
					5. Lee JH, Cho KS, Kim YM, et al. Localized in vivo 1H nuclear MR
					spectroscopy for evaluation of human uterine cervical carcinoma. AJR Am J Roentgenol 1998;170:1279-1282
				•	6. , , , , , , .
					7. Benhamou JP, Menu Y. Non-parasitic cystic diseases of the liver
					and intrahepatic biliary tree. In Bircher J, Benhamou JP, McIntyre
					N, Rrzzetto M, Rodes J. Oxford textbook of clinical hepatology. 2nd ed. New York:Oxford, 1999:817
			•		8. Choi BI, Lim JH, Han MC, et al. Biliary cystadenoma and cystadeno-
					carcinoma: CT and Sonographic Findings. <i>Radiology</i> 1989; 171:57-61 9. Welling LW, Grantham JJ. Cystic diseases of the kidney. In Tisher
					CC, Brenner BM. Renal pathology with clinical and functional corre-
					lations. 2nd ed. Philadelphia; Lippincott 1994:1337-133910. Bosniak MA. Difficulties in classifying cystic lesions of the kidney.
			(1)	가	Urol Radiol 1991;13:91-93
			(1)	* 1	11. Bosniak MA. Diagnosis and management of patients with complicated cystic lesions of the kidney. <i>AJR Am J Roentgenol</i> 1997;169:
				가	819-821 12. , , . :
			5 cm		12. , , : 1999;40:77-81

In vivo ¹H MR Spectroscopic Features of Hepatic and Renal Cysts¹

Eun Joo Yun, M.D.^{1,2}, Chang Hae Suh, M.D.

¹Department of Radiology, Inha University College of Medicine ²Department of Radiology, Hanllym University College of Medicine

Purpose: To evaluate the feasibility of *in-vivo* ¹H magnetic resonance spectroscopy (¹H-MRS) for differentiation between hepatic and renal cysts, with emphasis on the analysis of cystic content.

Materials and Methods: The ¹H-MR spectra of 43 cystic lesions (15 hepatic and 28 renal) obtained using *in -vivo* ¹H-MRS at 1.5 T and with a localized proton STEAM sequence were evaluated. We calculated the ratio of the peak area of lipid/water (R_{lipid/water}), protein/water (R_{protein/water}) and lipid/protein (R_{lipid/protein}), paying particular attention to identifying differences in peak area ratios between the two types of cyst.

Results: The ¹H-MR spectra from 26.7% (4/15) of hepatic and 67.9% (19/28) of renal cysts showed the lipid peak as most prominent. Mean \pm standard deviations of the Rlipid/water of hepatic and renal cysts were $0.38 \pm 0.30 \times 10^{-6}$ and $8.42 \pm 23.24 \times 10^{-6}$, respectively; for R_{protein/water} the corresponding figures were $0.83 \pm 0.74 \times 10^{-6}$ and $1.50 \pm 2.94 \times 10^{-6}$, and for R_{lipid/protein}, 0.57 ± 0.64 and 2.44 ± 3.26 . All differences were statistically significant (p < 0.05), and positive correlation between lipid and protein in hepatic and renal cysts was demonstrated.

Conclusion: The different *in-vivo* ¹H-MRS findings, for hepatic and renal cysts can be used in comparative study of cystic tumors of the liver and kidney.

Index words: Hepatic cyst

Renal cyst

Magnetic resonance (MR), spectroscopy

Address reprint requests to: Chang Hae Suh, M.D., Department of Radiology, Inha University Hospital, 7-206 3rd St., Shinheung-dong, Choong-gu, Incheon 400-103, Korea.

Tel. 82-32-890-3401 Fax. 82-32-890-2743 E-mail: suhchae@inha.ac.kr