대한안과학회지 2012년 제 53 권 제 5 호 J Korean Ophthalmol Soc 2012;53(5):694-699

pISSN: 0378-6471 eISSN: 2092-9374

http://dx.doi.org/10.3341/jkos.2012.53.5.694

에탐부톨 안독성의 조기진단을 위한 시기능 검사의 연구

한림대학교 의과대학 강동성심병원 안과학교실¹, 내과학교실 호흡기알레르기내과²

목적: 에탐부톨 안독성의 조기진단에 유용한 시기능 검사를 알아보고자 한다.

대상과 방법: 에탐부톨 복용예정인 결핵환자 10명(20안)을 대상으로 시력, 시야, 색각, 안저, 대비감도 및 빛간섭단층촬영검사를 복용 전부터 복용 후 5달까지 1달 간격으로, 시유발전위검사를 2달 간격으로 실시하여 복용 전의 검사결과와 비교하였다. 또한, 각각의 눈에서 복용 전 검사의 평균값으로부터 2표준편차(SD) 이상의 변화가 있는 경우를 에탐부톨 안독성에 의한 변화로 생각하고 그 유무를 전향적으로 조사하였다.

결과: 빛간섭단층촬영검사에서 에탐부톨 복용 4개월 후부터 전체 환자의 평균 망막신경섬유층 두께의 증가가 나타났고(p<0.05), 시유 발전위검사에서 복용 2, 4개월 후에 평균 P_{100} 잠복기의 지연이 나타났다(p<0.05). 그러나 각 눈에서 2 SD 이상의 변화는 빛간섭단층 촬영검사에서는 관찰되지 않았고 시유발전위검사에서는 총 6안에서 나타났다. 관찰기간 내 시력, 색각, 안저, 대비감도 및 시야의 변화는 없었다.

결론: 시유발전위검사는 에탐부톨 안독성을 조기에 반영하는 것으로 보이며, 에탐부톨 복용 환자, 특히 고위험군에서 안독성의 조기진 단에 도움이 될 것으로 생각한다.

〈대한안과학회지 2012;53(5):694-699〉

에탐부톨(ethambutol hydrochloride)은 결핵치료의 일 차선택 약제로서 에탐부톨에 의한 안독성(ocular toxicity) 또는 시신경독성은 에탐부톨의 가장 흔하고 심각한 합병증 으로 알려졌다.¹⁻³

에탐부톨에 의한 안독성은 복용환자의 약 1-5%에서 발생하고²⁻⁵ 대부분 복용 3-5개월 내에 발생한다.^{1,4-7} 손상된 시기능은 대개 약 중단 후 수개월 내에 회복되는 것으로알려졌으나, 약제 중단에도 불구하고 영구적인 시력소실이약 40-50%의 환자에서 나타났음이 보고되기도 하였다.^{7,8}이러한 보고들은 안독성의 진단시점이 이미 증상이 발생된이후에 이뤄졌다는 공통점이 있다. 안독성의 조기진단 여부가 시기능 손상의 가역성과 연관이 있음을 고려할 때,⁹ 중상발생 이전부터 시기능의 이상유무를 조기에 발견하는 것이 영구적인 시력손상을 예방하는 데 도움이 될 것으로 추측되다.

그러나 아직까지 무증상 에탐부톨 안독성의 진단에 확립 된 검사방법은 없으며, ^{5,9,10} 국내에는 에탐부톨 안독성의 조

■ 접 수 일: 2011년 4월 12일 ■ 심사통과일: 2011년 8월 25일

■ 게재허가일: 2012년 4월 7일

■책임저자:박성표

한림대학교 강동성심병원 안과 서울특별시 강동구 성안로 150 Tel: 02-2224-2274, Fax: 02-470-2088 E-mail: sungpyo@hananet.net 기진단과 관련한 보고가 없다. 이에 저자들은 무증상의 에 탐부톨 안독성의 조기진단에 유용한 검사를 알아보고자, 결핵 진단 후 에탐부톨 복용이 예정되어 있는 환자들을 대상으로 각종 시기능 검사를 반복 시행하여 그 유용성을 전향적으로 조사해 보고자 하였다.

대상과 방법

본 연구는 2010년 7월부터 2011년 2월까지 본원 내과에서 결핵을 확진 받고 에탐부톨(마이암부톨 제피 정 400 mg, 유한양행) 복용이 예정되어 있는 환자를 대상으로 하여 전향적으로 진행하였다. 본 논문의 모든 연구과정은 환자의 사전동의하에 시행되었으며, 본원 기관윤리심의 위원회의 승인을 받았다(IRB No. 10-070). 모든 환자의 에탐부톨 복용은 대한결핵및호흡기학회의 결핵 진료지침을 따랐다(15-20 mg/kg, 1일 1회, 식후복용). 연구에 포함된환자들은 당뇨, 고혈압, 신부전 등의 전신 질환이 없고, 녹내장, 시신경염 등 시신경병증을 일으킬만한 기저질환이 없으며, 세극등현미경검사 및 안저검사에서 매체혼탁이나 망막질환이 없는 환자로 하였으며, 에탐부톨 복용 전 시행한검사에서 색각이상이나 시야결손 등 기저에 이상소견을 보였거나 최대교정시력이 20/20 이하인 경우, 안압이 21 mmHg 이상인 경우, 건성안, 굴절이상 외의 안질환이 있는

경우, 결핵치료약제 이외에 시신경독성이 보고된 약제를 복용한 경우는 연구 대상에서 제외하였다.

초진 시 에탐부톨 복용 전의 모든 환자에게 병력조사, 최대교정시력, 안압, 암슬러 격자검사, 세극등현미경검사, 색각검사, 대비감도검사, 시야검사, 빛간섭단층촬영검사, 문양 시유발전위검사, 산동 후 안저검사 및 시신경유두촬영 과 망막신경섬유층 사진촬영을 실시하였다.

색각검사는 Hardy-Rand-Rittler plate를 이용하였고, 대비감도검사는 Pelli-Robson chart를 이용하였다. Pelli-Robson chart의 연령대별 정상범위는 Mantyjarvi et al¹¹의 연구를 참고하였다. 안압은 골드만 압평안압계로 측정하였 고, 시야검사는 Humphrey 자동시야검사(central 24-2 pattern of the standard Swedish Interactive Threshold Algorithm; Carl Zeiss Meditec, Dublin, CA, USA)를 이용 하였고, 정확도가 떨어지는 검사결과(위양성 또는 위음성 이 15%를 넘을 경우 또는 주시상실이 20%를 넘을 경우) 는 반복 측정을 통해 신뢰도를 높였다. 빛간섭단층촬영검사 는 산동 후 Stratus (Carl Zeiss Meditec, Dublin, CA, USA)의 "Fast RNFL thickness" 프로토콜을 이용하여 시 신경유두 주위 망막신경섬유층의 두께를 측정하였다. 이 중 신호강도가 7 이상인 경우만 연구에 포함시켰으며, 망막신 경섬유층의 두께는 전체 두께 및 각 사분면으로 나누어 측 정하였다. 문양 시유발전위 검사는 Nicolet Bravo EP와 Nicolet 1015 visual stimulator (Nicolet Biomedical, Madison, Wisconsin, USA)를 이용하였고 전극의 위치는 활성전극은 뒤통수점 바로 위의 후두두피에, 보조전극은 앞 이마의 바로 위인 전두골의 정중선에 위치시켰고, 접지전극 은 정수리에 위치시켰다. 피검자는 굴절이상을 최대로 교정 한 뒤 편안하게 앉은 상태에서 100 cm 앞의 12인치 TV 모 니터를 주시하도록 하였다. 문양의 수는 6×8개, 각각의 문 양의 크기는 31.3×31.3 mm였으며 흰색과 검은색의 문양 역전율은 1.9회/초, 필터는 0.5 Hz에서 100 Hz로 설정하였 다. 정확한 측정을 위해 검사자는 피검자의 검사 집중도를 관찰하면서 주시 상태가 유지되도록 지속적으로 주지시켜 검사를 시행하였다. 시신경유두촬영과 망막신경섬유층 사 진은 CF-60UD 디지털 카메라(Canon, Tokyo, Japan)로 촬영하였다.

모든 환자는 에탐부톨 복용 전과 복용 후 5개월까지 시유 발전위검사를 제외한 모든 검사를 한달 간격으로 시행하였 으며, 시유발전위검사는 검사 소요시간, 검사의 복잡성 및 환자의 순응도를 고려해 초진 시, 복용 후 2개월 및 4개월 에 측정하였다. 모든 검사는 숙련된 검사자 1인에 의해 시 행되었다.

각 검사시기마다 검사결과의 변화여부는 복용 전 검사결

과와 비교하여 paired t—test로 분석하였고, 통계학적인 분석은 SPSSTM software version 12.0 for Windows (SPSS Inc., Chicago, IL, USA)를 사용하였으며, 통계적인 유의성은 p—value가 0.05 이하일 때로 정의하였다. 또한 각각의 눈에서 검사결과가 초진 시 검사결과의 평균으로부터 2 SD (standard deviation) 이상의 변화가 있는 경우를 의미 있는 변화로 보고 그 유무를 분석하였다.

결 과

총 21명 42안 중에서 경과관찰 중 누락된 환자 9명 및 검사협조가 되지 않아 부정확한 검사결과를 보인 2명을 제외하고 총 10명 20안이 연구에 포함되었다(남 8안, 여 12 안). 환자의 평균 나이는 39.3 ± 18.0세(20-73세)였으며, 모두 한국인이었고, 에탐부톨 복용 용량은 모든 환자에서 15-19 mg/kg이었다. 모든 환자는 초진 시 특별한 시각증상을 보이지 않았고 에탐부톨 복용 전의 기저검사에서 모두 정상범위의 결과를 보였다. 총 추적 관찰 기간 동안 모든 환자에서 시력의 저하나, 기타 시각 증상들은 나타나지않았고, 안압, 암슬러 격자검사, 색각검사, 대비감도검사, 안저검사, 시신경유두촬영, 망막경섬유층 사진 및 시야검사는 기저검사와 비교하여 특별한 변화를 보이지 않았으며, 모두 정상범위에 속했다.

빛간섭단층촬영검사로 측정한 전체 환자의 평균 망막신 경섬유층의 두께는 에탐부톨 복용 전의 기저검사의 평균값과 비교하였을 때 복용 4개월 및 5개월 후에 유의한 두께증가를 보였으며(각각 p=0.027, 0.032), 각 사분면으로 나누어 보았을 때는 상측은 복용 5개월 후(p=0.031), 하측은 복용 3, 4, 5개월 후에 유의하게 두께가 증가했다(각각p=0.022, 0.014, 0.003). 비측과 이측에서는 유의한 두께의 변화는 보이지 않았다(Table 1).

문양 시유발전위검사에서는 뚜렷한 진폭의 변화는 보이지 않았으나, 기저검사의 잠복기의 평균값과 비교하였을 때복용 2개월과 4개월 후 모두에서 P_{100} 파형 잠복기 평균값의유의한 지연이 나타났다(각각 p=0.025, 0.001) (Table 2).

20안 각각에서 빛간섭단층촬영검사를 통한 망막신경섬 유층의 두께는 기저검사의 평균치로부터 2 SD (전체: 2×9.8 μm, 상측: 2×14.2 μm, 하측: 2×15.6 μm, 비측: 2×19.9 μm, 이측: 2×12.6 μm) (Table 1) 이상의 두께변 화를 보인 눈이 나타나지 않았으며, 시유발전위검사에서는 기저검사의 P₁₀₀ 파형 잠복기의 평균으로부터 2 SD (2×4.3 msec) (Table 2) 이상의 잠복기의 증가를 보인 눈이 복용 2개월 후에는 2안(환자 7 우안, 환자 8 좌안), 복용 4개월 후에는 6안(환자 7, 8, 10 양안)에서 나타났다(Table 3).

Table 1. Retinal nerve fiber layer thickness on optical coherence tomography (n = 20)

		Baseline	1 mon	2 mon	3 mon	4 mon	5 mon
Average	Mean (µm)	107.0	105.9	107.4	108.6	109.7	110.0
	SD	9.8	7.1	9.8	8.0	7.1	6.3
	<i>p</i> -value [*]		0.333	0.789	0.106	0.027^{\dagger}	0.032^{\dagger}
Superior	Mean (µm)	131.6	131.3	131.4	133.1	134.9	134.8
	SD	14.2	12.9	13.8	15.4	12.8	14.4
	<i>p</i> -value [*]		0.849	0.937	0.469	0.063	0.031^{\dagger}
Inferior	Mean (µm)	136.6	135.7	137.1	140.9	141.2	142.2
	SD	15.6	13.7	11.6	13.4	13.0	12.1
	<i>p</i> -value*		0.665	0.790	0.022^{\dagger}	0.014^{\dagger}	0.003^{\dagger}
Nasal	Mean (µm)	80.4	76.2	79.4	78.6	81.1	81.8
	SD	19.9	12.8	13.7	12.3	15.8	14.4
	<i>p</i> -value*		0.194	0.748	0.500	0.824	0.679
Temporal	Mean (µm)	79.8	80.4	80.1	80.9	81.7	82.2
	SD	12.6	11.7	11.7	12.2	10.8	12.7
	<i>p</i> -value*		0.627	0.736	0.449	0.213	0.119

SD = standard deviation.

Table 2. Pattern-visual evoked potential latency (n = 20)

	Baseline	2 mon	4 mon
Mean (msec)	102.8	105.8	110.3
SD	4.3	6.5	7.9
<i>p</i> -value [*]		0.023^{\dagger}	0.001^{\dagger}

SD = standard deviation.

Table 3. Changes of visual evoked potential latency in each individual eye

		Pt 1	Pt 2	Pt 3	Pt 4	Pt 5	Pt 6	Pt 7	Pt 8	Pt 9	Pt 10
2 mon*	OD	3.0	0.5	8.5	-3.5	1.5	7.0	17.5 [‡]	8.0	-1.0	1.5
	OS	4.5	-0.5	1.0	0.5	3.5	-2.0	6.0	10.0^{\ddagger}	1.5	1.5
4 mon [†]	OD	5.5	7.0	8.5	-2.0	1.5	5.5	23.0^{\ddagger}	17.0^{\ddagger}	2.0	9.5^{\ddagger}
	OS	4.5	1.0	2.0	-2.0	-1.5	5.5	20.5^{\ddagger}	14.5^{\ddagger}	5.0	22.5^{\ddagger}

Pt = patient; OD = right eye; OS = left eye.

고 찰

증상이 발현된 에탐부톨 안독성(clinical ocular toxicity)의 진단에 시야검사, 46.12 빛간섭단층촬영검사, 2.3.10 대비감도 검사, 13 시유발전위검사, 14 망막전위도검사 15 및 안전위도검사 16 등이 유용한 것으로 알려졌으나, 아직까지 무증상에탐부톨 안독성(subclinical ocular toxicity)의 조기 진단에 유용한 검사는 확립되지 않았다. 5.9.10 본 연구는 에탐부톨 복용이 예정된 결핵 환자를 대상으로 무증상 에탐부톨 안독성의 조기발견에 유용한 시기능 검사를 알아보고자 각검사를 전향적으로 비교한 연구로 국내 첫 보고라는 의의를 가진다.

본 연구의 대상 환자 중 시력저하 등의 주관적인 증상이 발생한 환자는 총 경과관찰 기간 동안 관찰되지 않았다. 또 한 시력, 색각, 시야, 대비감도검사 및 안저검사는 복용 전의 검사결과와 유사하였으며, 모두 정상범위에 속했다. 이는 Menon et al⁹의 연구에서 에탐부톨 복용 2개월 후 시력, 색각, 대비감도검사 및 안저검사의 변화가 나타나지 않은 것과 유사한 결과이다. 그러나 시야검사에서 주변부시야의 결손이 관찰된 점에서는 본 연구와 차이를 보였다.

빛간섭단층촬영검사를 이용한 대다수의 연구들은 에탐부 톨 복용 후 이측 망막신경섬유층의 두께가 감소되었음을 보고하였으며, 이것이 유두황반다발(papillomacular bundle)의 손상에 의한 것으로 추정하였다.^{2,3,9} 반면 본 연구에서는 전체 및 상, 하측 망막신경섬유층의 두께증가가 나타났으며 Kim et al¹과 Zoumalan et al¹⁷ 또한 각각 이측 및 하측 망막신경섬유층의 두께가 증가하였음을 보고하여 본 연구와유사한 결과를 보였다. 이와 연관된 국내 연구로 Kim and

^{*}Comparison between baseline (before taking ethambutol) and each month (after taking ethambutol) (paired t-test); $^{\dagger}p < 0.05$.

^{*}Comparison between baseline (before taking ethambutol) and each month (after taking ethambutol) (paired t-test); $^{\dagger}p < 0.05$.

^{*2} month after taking ethambutol – Baseline (before taking ethambutol); $^{\dagger}4$ month after taking ethambutol – Baseline (before taking ethambutol); $^{\dagger}>2$ standard deviation (SD) change from the mean of VEP latency at baseline.

Ahn¹⁸이 에탐부톨에 의한 시신경병증이 진단된 환자에서 망막신경섬유층의 전반적인 감소 특히, 이측 망막신경의 두께가 감소되었음을 보고한 바 있는데, 본 연구와는 달리 이미 시신경독성이 진단되고 평균 5주간의 증상이 있는 환자를 대상으로 한 점이 본 연구 결과와의 차이를 가져온 것으로 판단된다. 본 연구결과와 같은 망막신경섬유층 두께의 증가는 망막신경절세포 축삭의 부종(axonal swelling)에 의한 것으로 보이며 보다 초기의 약물반응의 결과로 추정되다.¹

그러나 전체 환자의 특정 검사결과의 평균값만으로 에탐 부톨에 의한 독성유무를 판단하는 것은 대부분의 기존 연 구와 같이 에탐부톨 복용 후 이상이 나타나는 검사의 종류 를 후향적으로 조사하는 데에는 유용할지 모르나, 실제 진 료 상황에서 각 개인의 이상유무를 조사할 때에는 적용하 기 어려운 한계가 있다. 따라서 저자들은 에탐부톨 복용 전 의 망막신경섬유층 두께의 평균으로부터 2 SD 이상의 두께 변화를 의미있는 변화로 보고 각각의 눈에서 그 유무를 조 사하여 보았다.

본 연구에서 에탐부톨 복용 후 복용 전에 비하여 전체 환자의 평균 망막신경섬유층 두께의 유의한 증가가 나타났으나, 각각의 눈에서 2 SD 이상의 두께 증가를 보인 눈은 관찰되지 않았다. 저자들은 에탐부톨 복용 초기의 약물반응에의해 망막신경절세포 축삭의 부종이 생기고 이것이 전반적인 망막신경섬유층 두께의 증가로 반영되었지만, 각각의 눈에서 2 SD 이상의 큰 변화는 나타나지는 않았기 때문에이러한 변화를 비정상으로 판단하는 것은 무리가 있을 것으로 판단하였다. 복용기간이 지속됨에 따라 각 눈에서 2 SD이상의 변화로 진행되는지에 대한 추적이 필요하겠으나 빛간섭단층촬영검사는 에탐부톨 복용 5개월이내의 에탐부톨 안독성에 의한 변화를 감별하는데 한계가 있는 것으로 보인다.

시유발전위검사는 광수용체로부터 대뇌 후두엽 피질까지의 시로의 이상을 비교적 객관적으로 검사할 수 있는 방법으로 탈수초 시신경병증, 초기 압박 시신경병증, 중독성시신경병증 등 시신경 이상의 진단에 사용할 수 있다. ¹⁹ 시유발전위검사의 판정 지표로 흔히 P₁₀₀의 진폭과 잠복기가쓰이나 진폭은 개인차가 심한 단점이 있어 잠복기가 보다신뢰성 있는 지표로 쓰인다. ²⁰ 실제로 에탐부톨 안독성의진단에 관한 다수의 연구에서 잠복기의 지연 여부를 판정지표로 사용하였으며, ^{6,9,14} 본 연구에서도 잠복기를 지표로이상유무를 조사하였다.

Yiannikas et al 14 과 Menon et al 9 은 에탐부톨 복용 후 무증상의 환자에서 P_{100} 파형의 잠복기가 유의하게 길어졌음을 보고하였고 본 연구 역시 에탐부톨 복용 후 2 개월, 4 개

월에 복용 전과 비교하여 P_{100} 파형 잠복기의 유의한 지연이 나타남을 관찰할 수 있었다. 에탐부톨 독성의 정확한 기전은 아직 밝혀지지 않았지만 에탐부톨에 의해 축삭돌기 (axonal process)의 부종이나 수초(myelin sheaths)의 얇아짐이 생기고, 축색원형질 수송(axoplasmic transport)이 저하되는 것이 알려졌는데 5,21,22 시유발전위검사가 이러한 변화를 잘 반영하는 것으로 보인다.

또한 시유발전위검사에서는 복용 전 잠복기의 평균으로 부터 2 SD 이상의 잠복기의 지연이 30% (6/20안)의 눈에서 관찰되었다. 추후 6안에서 시력저하가 나타나거나 다른시기능 검사의 이상이 동반되는지 확인이 필요하겠으나, 저자들은 복용 전에 비해 2 SD 이상의 변화가 나타난 것을 에탐부톨 안독성에 의한 것으로 추측하였다. 복용 4개월 후 2 SD 이상의 변화를 보인 눈이 복용 2개월 후에 변화를 보인 2안을 모두 포함하여 나타난 것을 통해 2 SD 이상의 변화가 일회성이 아님을 알 수 있으며, 복용 4개월에 이러한 변화가 모두 양안에서 나타난 것은 에탐부톨 안독성이 대부분 양안에 생기는 특성⁵을 반영한 것으로 판단하였다. 이를통해 저자들은 시유발전위검사가 빛간섭단층촬영검사에 비하여 초기의 변화를 좀 더 민감하게 반영하는 검사이며, 무증상의 에탐부톨 복용 환자의 안독성을 조기진단 하는데도움이 될 것으로 추측하였다.

시유발전위검사는 검사에 많은 시간이 소요되며, 정확한 결과를 얻기 위해서는 본 연구에서와 같이 피검자의 굴절 이상을 완전히 교정해야 하고, 검사 내내 피검자의 주시가 유지되도록 검사자가 지속적으로 주지를 시켜야 하는 불편 함이 있기 때문에 20 에탐부톨을 복용하는 모든 환자에게 시유발전위검사를 시행하는 것은 현실적으로 어려울 수 있다. 그러나 고용량(>21.4 mg/kg/day)을 복용하거나 장기간 복용하는 경우, 고령, 당뇨가 있는 경우, 만성 신부전과 같이 신장기능이 저하된 환자 등 에탐부톨 안독성의 고위험군 23 에서는 시유발전위검사로 P_{100} 잠복기의 지연 여부를 확인하는 것이 필요하다고 생각한다.

본 연구는 전향적 방법으로 이루어졌지만 대상 환자수가 비교적 적고, 경과관찰 기간이 짧은 한계가 있어 이를 보완 한 추가적인 연구가 필요할 것으로 보이며, 또한 시유발전 위검사가 매달 시행되지 않았으므로 잠복기의 증가가 복용 2개월 전에 나타나는지 여부도 추가적인 확인이 필요할 것 으로 생각한다.

결론적으로 시유발전위검사는 검사에 많은 시간이 소요되고, 검사방법이 복잡하다는 단점이 있으나 본 연구에서처럼 주관적인 시각증상이 없고 시력, 색각, 대비감도, 시야에이상이 나타나지 않은 에탐부톨 복용환자에서 에탐부톨의 안독성 반응을 비교적 조기에 반영할 수 있는 검사이기 때

문에 에탐부톨을 복용하는 무증상 환자, 특히 고위험군에서 는 안독성의 조기진단을 위해 시유발전위검사를 고려해야 한다고 생각한다.

참고문헌

- Kim U, Hwang JM. Early stage ethambutol optic neuropathy: Retinal nerve fiber layer and optical coherence tomography. Eur J Ophthalmol 2009;19:466-9.
- Chai SJ, Foroozan R. Decreased retinal nerve fibre layer thickness detected by optical coherence tomography in patients with ethambutol-induced optic neuropathy. Br J Ophthalmol 2007;91:895-7.
- Zoumalan CI, Agarwal M, Sadun AA. Optical coherence tomography can measure axonal loss in patients with ethambutol-induced optic neuropathy. Graefes Arch Clin Exp Ophthalmol 2005;243:410-6.
- 4) Chan RY, Kwok AK. Ocular toxicity of ethambutol. Hong Kong Med J 2006;12:56-60.
- Fraunfelder FW, Sadun AA, Wood T. Update on ethambutol optic neuropathy. Expert Opin Drug Saf 2006;5:615-8.
- Lee EJ, Kim SJ, Choung HK, et al. Incidence and clinical features of ethambutol-induced optic neuropathy in korea. J Neuroophthalmol 2008;28:269-77.
- Tsai RK, Lee YH. Reversibility of ethambutol optic neuropathy. J Ocul Pharmacol Ther 1997;13:473-7.
- 8) Kumar A, Sandramouli S, Verma L, et al. Ocular ethambutol toxicity: Is it reversible? J Clin Neuroophthalmol 1993;13:15-7.
- Menon V, Jain D, Saxena R, Sood R. Prospective evaluation of visual function for early detection of ethambutol toxicity. Br J Ophthalmol 2009;93:1251-4.
- 10) Kim YK, Hwang JM. Serial retinal nerve fiber layer changes in patients with toxic optic neuropathy associated with antituberculosis

- pharmacotherapy. J Ocul Pharmacol Ther 2009;25:531-5.
- Mantyjarvi M, Laitinen T. Normal values for the Pelli-Robson contrast sensitivity test. J Cataract Refract Surg 2001;27:261-6.
- 12) Choi SY, Hwang JM. Optic neuropathy associated with ethambutol in koreans. Korean J Ophthalmol 1997;11:106-10.
- Salmon JF, Carmichael TR, Welsh NH. Use of contrast sensitivity measurement in the detection of subclinical ethambutol toxic optic neuropathy. Br J Ophthalmol 1987;71:192-6.
- 14) Yiannikas C, Walsh JC, McLeod JG. Visual evoked potentials in the detection of subclinical optic toxic effects secondary to ethambutol. Arch Neurol 1983;40:645-8.
- Kardon RH, Morrisey MC, Lee AG. Abnormal multifocal electroretinogram (mfERG) in ethambutol toxicity. Semin Ophthalmol 2006;21:215-22.
- 16) Hennekes R. Clinical ERG findings in ethambutol intoxication. Graefes Arch Clin Exp Ophthalmol 1982;218:319-21.
- 17) Zoumalan CI, Sadun AA. Optical coherence tomography can monitor reversible nerve-fibre layer changes in a patient with ethambutol-induced optic neuropathy. Br J Ophthalmol 2007;91:839-40.
- 18) Kim BK, Ahn M. The use of optical coherence tomography in patients with ethambutol-induced optic neuropathy. J Korean Ophthalmol Soc 2010;51:1107-12.
- Sokol S. Pattern visual evoked potentials: Their use in pediatric ophthalmology. Int Ophthalmol Clin 1980;20:251-68.
- Oken BS, Chiappa KH, Gill E. Normal temporal variability of the P100. Electroencephalogr Clin Neurophysiol 1987;68:153-6.
- Matsuoka Y, Takayanagi T, Sobue I. Experimental ethambutol neuropathy in rats. morphometric and teased-fiber studies. J Neurol Sci 1981:51:89-99.
- Tateishi J, Kuroda S, Otsuki S. Experimental myelo-optico-neuropathy due to ethambutol. Folia Psychiatr Neurol Jpn 1974;28:233-42
- Talbert Estlin KA, Sadun AA. Risk factors for ethambutol optic toxicity. Int Ophthalmol 2010;30:63-72.

=ABSTRACT=

Visual Function Test for Early Detection of Ethambutol-Induced Ocular Toxicity

Jae Keun Chung, MD¹, Yong Beom Park, MD², Sung Pyo Park, MD, PhD¹

Departments of Ophthalmology¹, Pulmonary and Critical Care Medicine², Hallym University Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea

Purpose: The purpose of the present study was to investigate various visual function tests for early detection of ethambutol-induced ocular toxicity.

Methods: A prospective study of 20 eyes of 10 patients being treated with ethambutol was conducted. Visual acuity, visual field, color vision, fundus examination, contrast sensitivity, optical coherence tomography (OCT), and pattern-visual evoked potential (VEP) were assessed. Examinations were performed prior to therapy and every month for 5 months after treatment. VEP was performed every other month. The mean values of each parameter at each month were compared with the baseline examination and a p-value of <0.05 was considered significant. In addition, a greater than 2 standard deviation (SD) change in each parameter from the mean values at baseline was considered as an ocular toxicity induced change in each individual eye.

Results: On OCT, a significant increase of the average retinal nerve fiber layer thickness was detected after 4 months of therapy. VEP showed an increased mean latency of the P100 wave after 2 and 4 months of therapy. However, a greater than 2 SD change from the mean values of the baseline was not observed on OCT, while 30% (6/20) of the eyes showed more than a 2 SD increase in VEP latency. Visual acuity, color vision, fundus, contrast sensitivity, and visual field were not affected in any patients.

Conclusions: The authors of the present study consider VEP as a sensitive test to detect early toxicity of ethambutol. VEP can be helpful in identifying subclinical ocular toxicity, especially in the high-risk patients.

J Korean Ophthalmol Soc 2012;53(5):694-699

Key Words: Early detection, Ethambutol, Ocular toxicity, Visual evoked potential

Address reprint requests to **Sung Pyo Park, MD, PhD**Department of Ophthalmology, Hallym University Kangdong Sacred Heart Hospital #150 Seongan-ro, Gangdong-gu, Seoul 134-701, Korea
Tel: 82-2-2224-2274, Fax: 82-2-470-2088, E-mail: sungpyo@hananet.net