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ABSTRACT

In recent years, significant translational research advances have been made in the upper 
gastrointestinal (GI) research field. Endoscopic evaluation is a reasonable option for 
acquiring upper GI tissue for research purposes because it has minimal risk and can be 
applied to unresectable gastric cancer. The optimal number of biopsy samples and sample 
storage is crucial and might influence results. Furthermore, the methods for sample 
acquisition can be applied differently according to the research purpose; however, there 
have been few reports on methods for sample collection from endoscopic biopsies. In this 
review, we suggested a protocol for collecting study samples for upper GI research, including 
microbiome, DNA, RNA, protein, single-cell RNA sequencing, and organoid culture, through 
a comprehensive literature review. For microbiome analysis, one or two pieces of biopsied 
material obtained using standard endoscopic forceps may be sufficient. Additionally, 5 mL 
of gastric fluid and 3–4 mL of saliva is recommended for microbiome analyses. At least one 
gastric biopsy tissue is necessary for most DNA or RNA analyses, while proteomics analysis 
may require at least 2–3 biopsy tissues. Single cell-RNA sequencing requires at least 3–5 
tissues and additional 1–2 tissues, if possible. For successful organoid culture, multiple 
sampling is necessary to improve the quality of specimens.
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INTRODUCTION

In the past few years, vast progress in basic science and technology has dramatically changed 
scientific perspectives by opening a new era of translational research.1 Translational research 
refers to the “bench-to-bedside” enterprise of harnessing knowledge from basic sciences to 
produce new drugs, devices, and treatment options for patients.2,3 In the last two decades, 
gastroenterology has become an area of dynamic translational research.1 Basic research 
requires an adequate number of clinical samples to verify the scientific hypothesis. To date, 
most tissue samples used for translational research are obtained from surgically resected 
specimens. However, most patients are not candidates for surgery in clinical practice; therefore, 
tissue samples from endoscopic biopsies can be applied more widely for gastrointestinal 
diseases. The quality, amount, and storage of the study sample are crucial for basic research 
and can differ according to the research purpose. Endoscopic biopsy is necessary to confirm 
a histopathologic diagnosis, and the optimal number of endoscopic biopsies is crucial for the 
diagnosis of gastrointestinal diseases, including gastric cancer.4 Previous reports have also 
shown that the number of biopsy fragments is significantly correlated with disease-specific 
biomarker status owing to intratumoral heterogeneity.5,6 However, there have been few 
reports on the optimal number of endoscopic biopsies or methods for sample storage in upper 
gastrointestinal research. In this review, we suggest protocols for collecting study samples for 
upper gastrointestinal research, including microbiome, DNA, RNA, protein, single-cell RNA 
sequencing (scRNA-seq), and organoid culture.

PROTOCOLS FOR COLLECTING STUDY SAMPLES

Upper gastrointestinal microbiome analysis
Fluid aspiration and mucosal biopsy

1. Fluid aspiration by endoscope7

• Clean and disinfect the upper gastrointestinal endoscope.
- Follow the standard sterilization protocol.

• Keep the participants fasting overnight.
• Ask the participants to rinse their mouths with bottled water to remove food debris.
• Simethicone prior to gastrointestinal endoscopy is not recommended.
• Insert the upper gastrointestinal endoscopy.

- Do not aspirate any fluid by endoscope prior to sample collection to avoid 
contaminating the endoscope channel with gastric or oropharyngeal secretion.

- Insert a disposable catheter through the working channel of the endoscope.
- Aspirate gastric or duodenal fluid through the catheter using a disposable syringe.
- Remove the syringe from the catheter and collect the fluid into a disposable sample 

container.
→ No buffer fluid is required in a sample container.

- Transfer and store samples at −80°C freezer until use.
→ Freeze samples as soon as possible.

- If unavoidable, exposure at room temperature for 1 hour or in a refrigerator for 4 
hours may be allowed.
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To collect microbiome samples from the upper gastrointestinal tract through the endoscope, it 
is important to collect samples as cleanly as possible, because the upper gastrointestinal tract 
has a relatively low biomass environment compared to the colorectum (see Chapter 2. Low 
biomass environment and 3. Contamination issues in the low biomass environment).8 Upper 
gastrointestinal endoscopes were disinfected according to standard sterilization protocols. 
The participants were instructed to fast overnight before an endoscopic examination. Before 
initiating the endoscopic examination, the participants were instructed to rinse their mouths 
with bottled water to remove food debris. In clinical practice, simethicone may be used 
before an endoscopic examination to improve gastric cleanliness at the clinician’s discretion. 
However, simethicone administration is not recommended when collecting gastric or 
duodenal fluid because it may dilute or even contaminate the gastric or duodenal fluid.

When all preparations were complete, an endoscope was inserted into the participant’s upper 
gastrointestinal tract according to the standard endoscopic examination method. However, 
no dirty fluid, including oral secretions and sputum, was aspirated before gastric or duodenal 
fluid aspiration to avoid contamination of the endoscope channel. After the endoscope was 
placed near the sample, a disposable catheter was inserted through the working channel. The 
gastric or duodenal fluid was then aspirated through the catheter using a disposable syringe 
under negative pressure. The syringe was then removed from the catheter, and the fluid was 
collected in a disposable sample container. Finally, samples were stored at −80°C as soon as 
possible until use.

2. Endoscopic mucosal biopsy7

• Clean and disinfect the upper gastrointestinal endoscope.
- Follow the standard sterilization protocol.

• Keep the participants fasting overnight.
• Ask the participants to rinse their mouths with bottled water to remove food debris.
• Simethicone prior to gastrointestinal endoscopy is not recommended.
• Insert the upper gastrointestinal endoscopy.
• Do not aspirate any fluid by endoscope prior to sample collection to avoid 

contaminating the endoscope channel with gastric or oropharyngeal secretion.
- Prepare blunt 18 Gauge syringe needle to prepare for procurement and a tissue 

container.
- Insert a disposable biopsy forceps into the working channel of the endoscope.

→ Aseptic biopsy device (encased biopsy forceps) may be used.
- Take a biopsy of mucosa using a forceps.
- Use a blunt 18 Gauge syringe needle to extract biopsy sample from the forceps.
- Place the biopsy sample into a disposable sample container.

→ No buffer fluid is required in a sample container.
- Transfer and store samples at −80°C freezer until use.

→ Freeze samples as soon as possible.
→ If unavoidable, exposure at room temperature for 1 hour or in a refrigerator for 4 

hours may be allowed.

The protocol for collecting mucosal samples via biopsy was similar to that used for fluid 
collection. First, an upper gastrointestinal endoscope was prepared and disinfected 
according to a standard sterilization protocol. The participants were instructed to fast 
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overnight before the endoscopic examination. To remove food debris from the oral cavity, 
participants were instructed to rinse their mouths with bottled water.

When inserting an endoscope into a participant’s upper gastrointestinal tract, aspiration 
of dirty fluid, including oral secretions and sputum, was avoided before the endoscopic 
biopsy. To collect the biopsied sample, the assistant prepared a needle (such as a blunt 18 
Gauge syringe needle) before the biopsy. After placing the endoscope near the sample, the 
disposable biopsy forceps were inserted into the working channel. To reduce contamination, 
aseptic biopsy devices, such as encased biopsy forceps, may be used if available.9 After taking 
a biopsy of the mucosa, a sample was extracted from the forceps using the prepared needle. 
The biopsy samples were placed in disposable sample containers. Finally, samples were 
stored at −80°C as soon as possible until use.

Researchers may wash the gastric mucosa with water before mucosal biopsy to remove 
contaminants or colonizing microorganisms. However, the effect of washing before a biopsy 
has not been fully elucidated. A previous study on washed biopsies demonstrated that the 
number of cultured non-Helicobacter bacteria decreased in washed biopsies; however, there 
was no significant difference in bacterial diversity between unwashed and washed biopsies.3

3. Saliva10,11

• Keep the participants fasting at least an hour prior to sample collection
• Ask the participants to rinse their mouths with bottled water to remove food debris 

(30–60 minutes before the sample collection)
• Collect saliva (spit twice, 3–4 mL) into a disposable sample container.

- A stabilization kit (e.g., OMNIgene collection kit) may be used.
• Transfer and store samples at −80°C freezer until use.
• After swabbing the mucosa, break the head of the swab off into a disposable sample 

container
- No buffer fluid is required in a sample container.

• Transfer and store samples at −80°C freezer until use.
- Freeze samples as soon as possible.
- If unavoidable, exposure at room temperature for 1 hour or in a refrigerator for 4 

hours may be allowed.

The collection of saliva samples is relatively easy. First, participants were recommended to fast 
for at least 1 hour before sample collection to minimize contamination from food or beverages. 
Half an hour before sample collection, we recommended that participants rinse their mouths 
with bottled water to remove food debris. The sample was collected by making the participants 
spit twice into a sample container. Researchers may use a stabilization kit (e.g., OMNIgene 
collection kit) if available. 12 Then, samples were stored at −80°C as soon as possible until use.

4. Oropharyngeal swab13

• Keep the participants fasting at least an hour prior to sample collection
• Ask the participants to rinse their mouths with bottled water to remove food debris 

(30–60 minutes before the sample collection)
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• Swab the mucosa at the posterior pharyngeal wall using a swab kit
• After swabbing the mucosa, break the head of the swab off into a disposable sample 

container
- No buffer fluid is required in a sample container.

• Transfer and store samples at −80°C freezer until use.
- Freeze samples as soon as possible.
- If unavoidable, exposure at room temperature for 1 hour or in a refrigerator for 4 

hours may be allowed.

The swab method can also be used to collect oropharyngeal microbiome samples. Similar 
to saliva sample collection, participants were recommended to fast for at least 1 hour before 
sample collection. Additionally, the participants were advised to rinse their mouths with 
bottled water to remove food debris 30–60 minutes before sample collection. The mucosa 
was swabbed up to the posterior pharyngeal wall using a swab kit. After collecting the 
mucosal swab, the head was broken off into a disposable sample container. Then, samples 
were stored at −80°C as soon as possible until use.

Required number of samples for microbiome analysis

• Esophageal mucosal biopsy: at least 1–2 tissues
• Gastric mucosal biopsy: at least 1–2 tissues
• Duodenal mucosal biopsy: at least 1–2 tissues
• Gastric fluid: 5 mL
• Saliva: spit twice, 3–4 mL

For microbiome analysis, only a minimal amount of DNA is required, because amplification 
of the 16S (or 18S) rRNA gene through polymerase chain reaction (PCR) is performed before 
sequencing. In our experience, 100 ng of genomic DNA is sufficient for analyzing the upper 
gastrointestinal microbiome. Only one piece of biopsied material obtained using standard 
endoscopic forceps can satisfy the required amount of DNA. In case further experiments are 
needed, an additional piece can be collected if possible. Additionally, 5 mL of gastric fluid 
and 3–4 mL of saliva is recommended for microbiome analyses.

Other considerations
1. Performing experiments following sample collection
To maintain the sample quality, dissolving the frozen sample and freezing it again is not 
recommended. If many study samples and several experiments are needed, the same DNA 
extraction and amplification techniques across the experiments should be used to minimize 
the batch effect. In addition, it is necessary to perform 16S (or 18S) rRNA gene sequencing in 
a single run, if possible. If there were too many samples to run sequencing simultaneously, a 
positive control sample was used.

2. Low biomass environment
A low biomass environment indicates an environment in which a mass of living organisms 
is present. The low biomass environments include the blood,14,15 placenta,16 meconium,17 
airways,18 and milk.19 Although the stomach and duodenum have relatively higher biomass 
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than the environments mentioned above, their biomass is significantly lower than that in 
the colon. The bacterial density is 101–103 colony-forming units (CFU)/mL in the stomach or 
duodenum, 104–107 CFU/mL in the jejunum or ileum, and 1011–1012 CFU/mL in the colon.8 The 
stomach and duodenum may be regarded as relatively low biomass environments.

3. Contamination issues in the low biomass environment
During microbiome analysis, contamination may occur from many sources, including 
participants’ or researchers’ bodies,20,21 laboratory surfaces and air,22-24 sample collection 
instruments, DNA extraction kits, and PCR reagents.14,25,26 Such contamination is inevitable 
and more significant in samples from low-biomass environments. Various methods for 
eliminating microbial DNA contamination, including ultraviolet irradiation,27 restriction 
endonuclease digestion,27-29 DNase treatment,27,30 ultrafiltration to remove high-molecular-
weight DNA,31 and treatment with DNA-intercalating products,14,32 have been attempted. 
However, there is no practical way to physically remove contaminants in microbiome analysis.

Therefore, it is important to prepare negative controls. The preparation of at least one no-
template control (NTC) for each batch (e.g., DNA extraction and amplification) is required. 
This NTC can be used for in silico removal of contaminants. Currently, the following in silico 
contaminant removal methods are available: 1) filtration based on the relative abundance 
in study samples,23,33-35 2) filtration based on the blacklist method, and 3) filtration based 
on the relative abundance of NTCs.23,36 However, there is a risk of cross-contamination 
from study samples to NTCs (i.e., well-to-well effects).25,37-39 Therefore, the removal of 
taxa appearing in NTCs should be avoided. In addition, randomization of the study samples 
and NTCs across the plate was required during the experiments, including DNA extraction, 
amplification, and sequencing. Computational algorithms (e.g., the decontam package in R) 
may also be used to adjust for contamination.40,41

DNA, RNA, and protein analyses
Required number of endoscopy biopsy samples

1. DNA sample requirement

• PCR and quantitative PCR analysis: at least one biopsy tissue
• Whole genome sequencing analysis: at least one biopsy tissue

One gastric biopsy tissue is usually sufficient for PCR and quantitative PCR analysis.42 
In previous studies, 0.5–1 µg genomic DNA was converted into 40 µL bisulfite modified 
DNA, and 1–2 µL was used for one reaction of methylation-specific PCR or quantitative 
methylation-specific PCR.43-45 This means that 1 µg genomic DNA is sufficient for 20–40 
methylation-specific PCR reactions. In other studies with quantitative methylation-specific 
PCR, the starting amount of genomic DNA was 1 µg.42,46-50 From one gastric biopsy tissue, 
approximately 20–30 µg of DNA is usually extracted. Therefore, if four reactions were 
required in duplicate wells for each unknown sample of methylated and unmethylated 
sequences, one gastric biopsy tissue sample would ideally be sufficient to measure more than 
25 target genes.

For whole genome sequencing analysis, genomic DNA of > 1.0–1.5 µg with a concentration of 
> 20 ng/µL is usually recommended and a minimum of > 100–500 ng of DNA is required. In a 
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previous study of whole genome sequencing analysis, 0.2 µg of blood DNA and 1 µg of saliva 
DNA showed little difference compared with 3 µg of blood DNA on the quality of sequencing 
and variant calling.51 Therefore, at least one gastric biopsy tissue is required for whole 
genome sequencing analysis. While one biopsy tissue can often fulfill the requirements for 
most DNA analyses, the collection of additional tissues becomes valuable in situations where 
the size or quality of the initial tissue is inadequate or when supplementary experiments need 
to be conducted.

2. RNA sample requirement

• Reverse transcriptase (RT)-PCR and quantitative RT-PCR analysis: at least one biopsy tissue
• RNA sequencing analysis: at least one biopsy tissue

One gastric biopsy tissue is also usually sufficient for RT-PCR and quantitative RT-
PCR analysis when RNA is extracted from samples collected in the RNA-stabilizing 
reagent using the TRIzol method. The median amount of RNA extracted from one 
esophageal, gastroduodenal, and colonic biopsy tissue was 3.1 µg, 4.5 µg, and 4.0–9.5 µg, 
respectively.52-55 Total RNA of 1 µg is used for the synthesis of 50 µL of cDNA. Because 2 µL of 
cDNA (0.04 µg total RNA) per well is required for quantitative PCR, a total of 8 µL of cDNA 
(2 × 2 µL for the target gene and 2 × 2 µL for the housekeeping gene as an internal control) is 
required to measure in duplicate wells for each unknown sample. Thus, one gastric biopsy 
tissue sample was sufficient for the quantification of up to 25 templates.

For RNA sequencing analysis, the input amounts of total RNA recommended by the 
manufacturers range from 100 ng–1 µg.56 However, in a previous study, the tested protocols 
performed well for low-quantity inputs down to 5 ng.57 Therefore, at least one gastric biopsy 
tissue is required for RNA sequencing analysis. Collecting multiple biopsy tissue samples can 
be beneficial in many RNA analyses, similar to DNA analyses. In particular, RNA sequencing 
can be influenced by the quality of RNA. Hence, it is advisable to monitor the yield and 
quality of extracted RNA during the collection process to ensure an adequate number of 
samples are obtained.

3. Protein sample requirement

• Proteomics analysis: at least 2–3 biopsy tissues may be needed

At least 2–3 gastric biopsy tissue samples may be required for proteomic analysis. In a 
previous study, 30–50 µg of protein was extracted from an average of two colonic tissues 
obtained from colonoscopic or sigmoidoscopic biopsy, which was sufficient for proteomics 
analysis.58 In another study, an average of 70 µg of protein was extracted from two or more 
(average of three) colonic tissue biopsies for proteomic analysis.59 One study reported that 
at least 100 µg of protein could be obtained from one gastric biopsy tissue. A comprehensive 
phosphoproteomic analysis could be conducted from a minimum of 320 µg protein (three 
endoscopic biopsy tissues) by identifying more than 10,000 class 1 phosphosites.60 
Therefore, further validation is required to determine the required number of endoscopic 
biopsy samples for proteomics analysis.
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Tissue collection and storage (especially for RNA)

1. Tissue collection and RNA stabilization53,61

• One of the following methods are recommended
- Process immediately after harvest
- Snap freeze in liquid nitrogen
- Stabilize in RNA stabilizing reagents (e.g., RNAlater) to inhibit RNase activity

It is practically impossible to extract RNA immediately after sample collection using an 
endoscopic biopsy. Immediate processing is typically performed for RNA extraction from 
cultured cells. In many studies, endoscopic biopsy samples are snap-frozen in liquid nitrogen 
until storage in the vapor phase of liquid nitrogen (VPLN) or a mechanical freezer. In 
situations where snap-freezing is not possible immediately after endoscopic biopsy, tissue 
samples can be stabilized by immersion in RNA-stabilizing reagents (e.g., RNAlater) to 
inhibit RNase activity. Sample storage in RNAlater has a minimal impact on the quality of 
protein quantification compared with fresh frozen tissue.62

2. Long-term storage

• One of the following storage options can be chosen
- VPLN, −150°C
- Mechanical freezer at −80°C

• Storage duration: Storage at −80°C or in VPLN may not affect RNA and DNA quality up 
to 10 years

Storage of samples in VPLN is an ideal option. The theoretical background for storage in 
VPLN (at −150°C) is that aqueous-based chemical reactions are thought to cease at the glass 
transition temperature (−108°C to −137°C).63 At −80°C, enzymatic reactions may continue 
though cells do not remain viable. In previous studies, there was no time-dependent decrease 
in the RNA quality in the fresh-frozen tissue samples stored in VPLN for 2–11 years64 or in the 
fresh-frozen gastric cancer tissue samples stored at −80°C for 2–12 years.65 In a comparative 
study of 49 specimens stored for 5–12 years, there was no decrease in the RNA quality stored 
at −80°C compared with those stored in VPLN.63 However, in another study of 16 pairs 
of parallel samples stored for more than 10 years (10.0–12.2 years), the RNA quality was 
significantly lower in the samples stored at −80°C than those stored in VPLN although there 
was no difference in the DNA quality.66 Therefore, the long-term storage of endoscopic 
biopsy tissues at −80°C or in VPLN may not affect RNA and DNA quality for up to 10 years. 
However, further validation studies are required to evaluate the RNA quality in samples 
stored for more than 10 years at −80°C because of conflicting study results.

scRNA-seq
Required number of endoscopy biopsy samples

• scRNA-seq analysis: at least 3–5 biopsy tissues
• It is safe to secure an additional 1–2 tissues
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Sample requirement
Preparing high-quality single-cell suspensions is essential for successful single-cell 
studies. All specimens were obtained from one or two sites using conventional upper 
gastrointestinal endoscopy with routine forceps. In most published studies,67-70 freshly 
biopsied tumor samples and adjacent normal tissue samples were obtained. To preserve 
single-cell transcriptomes before scRNA-seq, it is recommended to proceed immediately 
from single-cell isolation to cell lysis and mRNA capture. 71-73 Although the required number 
of cells increases with the complexity of the sample under investigation, scRNA-seq generally 
requires at least 50,000 cells. There is no standard number of biopsy tissues for scRNA-
seq method. Since the sample requirements of esophagus and stomach are different, and 
it is affected by the dissociation method or process of the laboratory or analysis room, it is 
recommended to collect at least 3-5 biopsy tissues. During the evaluation of tissue quality, 
such as tumor content, necrosis, fat, and hemorrhage, some tissues may be unsuitable for 
examination; therefore, it is safe to secure an additional 1–2 pieces. Because scRNA-seq 
requires the use of fresh live cells, special care is required. Therefore, it is desirable to start 
with sufficient tissues, especially when unfamiliar with scRNA-seq, because the final number 
of cells obtained may be reduced depending on the number of endoscopic biopsies and the 
tissue processing. Considering various limitations, although it is recommended to collect 
a total of 5-7 or more tissues at one time, it is advisable to monitor the yield and quality of 
extracted scRNA during the collection process to ensure an appropriate number of samples.

Tissue collection and preparation

• One of the following methods is recommended:
- Fresh viable single cells
- Preserved samples
- Nuclear RNA from frozen tissue

All common scRNA-seq methods were designed to use fresh viable cells, and this method 
has been established. Collection of fresh tumor tissue should be performed to reduce the 
time elapsed between the removal of fresh tissue from the body, placement of the specimen 
in media, and processing for scRNA-seq. However, immediate sample processing can be 
difficult in real research and clinical practice because of the lack of essential infrastructure 
or specialized equipment, such as fluorescence-activated cell sorting devices. Although 
most methods use fresh viable cells, preserved samples,74-76 and nuclear RNA from frozen 
tissue77-80 can be used as an alternative. Among the preserved samples, cryopreservation is 
relatively well-established for scRNA-seq.

1. Fresh samples67-70

1) Fresh tissues are collected in plain Roswell Park Memorial Institute (RPMI) medium on ice 
immediately after resection.

2) Tissues are dissected with iris scissors into small pieces. Approximately 0.5–1.5 cm3 of 
tissue from each resection is used.

3) Tissues are digested for 30 minutes at 37°C with a digestion solution containing 
phosphate-buffered saline (PBS) and collagenase II and IV.

4) The cell suspension is further filtered using a 45 µm or 70 µm filter to remove cell 
aggregates and resuspended in PBS with 10% fetal bovine serum (FBS).
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2. Preserved samples (cryopreservation)74-76

1) The sample is minced on ice, placed into a freezing solution (10% dimethyl sulfoxide 
[DMSO], 90% non-inactivated FBS), and frozen by gradually decreasing the temperature 
(1°C/min) to −80°C (cryopreserved).

2) After storage for one week at −80°C, the sample is rapidly thawed in a water bath in 
continuous agitation and placed into 25 mL of cold 1× HBSS.

3) For single-cell separation the fresh and conserved samples are minced on ice and enzymatically 
digested in 5 mL 1× HBSS and 83 µL collagenase IV (10,000 U/mL) for 10 minutes at 37°C.

3. Nuclear RNA from frozen tissue77-80

1) Whole cells are dissociated.
2) The sample is excised and immediately placed into a nuclei isolation medium.
3) Tissue is Dounce homogenized, allowing for the mechanical separation of nuclei from cells.
4) Samples are washed, resuspended in nuclei storage buffer, and filtered. Solutions and 

samples are kept cold.

Gastric organoid culture
Required number of endoscopy biopsy samples

• Required number of biopsy samples: at least 3–5 tissues
• Multipoint deep biopsy in different parts of the tumor
• Avoid the contamination of normal mucosal tissue

To date, almost all gastric cancer organoid studies have been conducted using surgical 
specimens. There are few studies on gastric cancer organoids with endoscopic biopsy 
specimens.81-83 Compared with surgical specimens, the size of the tumor tissue obtained 
by endoscopic biopsy is small, and the inflammatory reaction may affect the tissue; thus, 
it determines successful organoid culture. There is no standard number of biopsies for 
organoid culture in patients with suspected gastric cancer undergoing endoscopy. Multiple 
sampling and larger-diameter biopsy forceps are more conducive to improving the quality 
of specimens. Additionally, it should be combined with high-definition or magnifying 
endoscopy for an intensive examination to improve the accuracy of tumor detection. Tumor 
biopsy should avoid normal mucosal tissue, preferring the center of the tumor and increasing 
the number of biopsies. For successful organoid culture, tissue samples require high activity, 
stem cells, sufficient tissue, and proper tumor cell quality. Organoid construction faces great 
challenges if the number of biopsy samples, living cells, or positive cells is low.

Primary organoid culture and maintenance84-88

1. Primary organoid culture
1) Biopsied tissues were washed three times with advanced Dulbecco’s Modified Eagle 

Medium (DMEM)/F12 supplemented with antibiotics/antifungal (Primocin®; InvivoGen, 
San Diego, CA, USA) and chopped with sterile blades.

2) The specimen is chopped and minced and incubated in digestion buffer (PBS containing 
2.0 mg/mL collagenase type I, 1× penicillin/streptomycin, and 100 ug/mL Primocin®) at 
37°C for 1 hour. The digestion time can be extended overnight, depending on the tissue 
stiffness and amount.

3) The digestion is stopped with advanced DMEM/F12. The suspension was strained over a 
100 µm filter to remove any debris.

10/16

Sample Collection Method

https://doi.org/10.3346/jkms.2023.38.e255https://jkms.org



4) After centrifugation at 500 relative centrifugal force (rcf ), the supernatants are discarded. 
Isolated cells are resuspended in ice-cold 500 µL matrigel and 20 µL of matrigel-cell 
mixture are sowed in a pre-warmed 48-well culture plate.

5) The matrigel is solidified for 10 minutes at 37°C and overlaid with 250 µL organoid culture 
medium. Y-27632 (10 µM) is added for the first 2 days to prevent cell death (anoikis). The 
culture is kept at 37°C, 5% CO2 in a humidified incubator.

2. Organoid subculture
1) Culture medium is exchanged every 2–3 days, and organoids were passaged every 1–2 

weeks at a ratio of 1:4–1:8 according to the growth rate and density of the organoids.
2) For passaging, organoids in matrigel were harvested with culture medium and then 

transferred to a new 1.7 mL tube.
3) Organoids are mechanically dissociated by vigorous pipetting or 1 mL syringe flushing.
4) The dissociated organoids are centrifuged at 500 rcf for 5 minutes.
5) The supernatant is discarded, the pellet resuspended in ice-cold Matrigel, and re-seeded 

as described above.

CONCLUSION

In summary, we reviewed the methods for collecting study samples for upper GI research, 
including microbiome, DNA, RNA, protein, scRNA-seq, and organoid culture. For microbiome 
analysis, one or two pieces of biopsied material obtained using standard endoscopic forceps 
may be sufficient. Additionally, 5 mL of gastric fluid and 3–4 mL of saliva is recommended for 
microbiome analyses. The low-biomass environment in the stomach and duodenum is another 
consideration for microbiome analysis. At least one gastric biopsy tissue is necessary for most 
DNA or RNA analyses, while proteomics analysis may require at least 2–3 biopsy tissues. Tissue 
storage is crucial for RNA stabilization. In the scRNA-seq, it is recommended to collect at least 
3–5 biopsy tissues, and safe to secure additional 1–2 tissues. For successful organoid culture, 
tissue samples require high activity, stem cells, sufficient tissue, and proper tumor cell quality. 
Further validated studies on sample acquisition may be required in the future.
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