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ABSTRACT

Background: Proteomics and genomics studies have contributed to understanding the 
pathogenesis of chronic obstructive pulmonary disease (COPD), but previous studies have 
limitations. Here, using a machine learning (ML) algorithm, we attempted to identify 
pathways in cultured bronchial epithelial cells of COPD patients that were significantly 
affected when the cells were exposed to a cigarette smoke extract (CSE).
Methods: Small airway epithelial cells were collected from patients with COPD and those 
without COPD who underwent bronchoscopy. After expansion through primary cell culture, 
the cells were treated with or without CSEs, and the proteomics of the cells were analyzed by 
mass spectrometry. ML-based feature selection was used to determine the most distinctive 
patterns in the proteomes of COPD and non-COPD cells after exposure to smoke extract. 
Publicly available single-cell RNA sequencing data from patients with COPD (GSE136831) 
were used to analyze and validate our findings.
Results: Five patients with COPD and five without COPD were enrolled, and 7,953 proteins 
were detected. Ferroptosis was enriched in both COPD and non-COPD epithelial cells after 
their exposure to smoke extract. However, the ML-based analysis identified ferroptosis as the 
most dramatically different response between COPD and non-COPD epithelial cells, adjusted 
P value = 4.172 × 10−6, showing that epithelial cells from COPD patients are particularly 
vulnerable to the effects of smoke. Single-cell RNA sequencing data showed that in cells from 
COPD patients, ferroptosis is enriched in basal, goblet, and club cells in COPD but not in 
other cell types.
Conclusion: Our ML-based feature selection from proteomic data reveals ferroptosis to 
be the most distinctive feature of cultured COPD epithelial cells compared to non-COPD 
epithelial cells upon exposure to smoke extract.
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INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is a respiratory disease with 10.3% global 
prevalence among people aged 30–79 years in 2019.1,2 It was the third most common cause 
of death in 2019 worldwide, and as one of the leading causes of global disease burden, it is a 
major public health concern.3,4 COPD is characterized by persistent respiratory symptoms 
and airflow obstruction caused by significant exposure to noxious gases or particles, 
including smoking.5 Smoking generates aberrant inflammation that injures the airways and 
alveoli, contributing to the occurrence of COPD, and is regarded as the most critical risk 
factor for COPD.6 However, the detailed molecular mechanisms in the pathogenesis of COPD 
have not been fully elucidated,7 leading to setbacks in development of better therapies for 
COPD patients.

Recent advances in genomics and proteomics have enabled screens for the components that 
play essential roles in COPD pathogenesis.8-10 However, previous studies have limitations. 
Firstly, most studies have shown the functional roles of cytokines and immune cells in 
COPD, and few studies have explored the direct changes in epithelial cells.10 Considering 
that inhaled cigarette smoke has primary contact with the airway epithelial cells and that key 
histological findings in COPD, such as squamous cell metaplasia, and goblet cell hyperplasia, 
occur in epithelial cells, it is important to understand the pathological changes of epithelial 
cells in COPD. Secondly, smoking is one of the strongest factors causing COPD; however, 
most studies have focused on naïve COPD tissues and have yet to explore the differential 
response between COPD and non-COPD lungs to smoking exposure. To understand the 
link between smoking and COPD epithelial cells, we must understand the responses of the 
disease model to smoking exposure. Finally, high-throughput omics studies are vulnerable 
to false positive results since they produce numerous signals, especially in comparison to 
the number of samples. Therefore, feature selection algorithms need to be more resistant to 
noisy data in order to identify the key components in the pathogenesis of COPD.

In this study, we performed mass spectrometry (MS) with machine learning (ML)-based 
pathway analysis to identify the most distinctive pathways in COPD epithelial cells exposed to 
cigarette smoke extract (CSE), compared to cells from patients without non-COPD that were 
also exposed. The pathways were also explored using publicly available COPD single-cell RNA 
sequencing data relating to cells from patients with COPD and healthy controls.

METHODS

Sample collection and preparation
COPD patients and non-COPD participants who underwent bronchoscopy evaluation for 
their clinical needs were enrolled with informed consent. During the examination, bronchial 
epithelial cells were collected by bronchoscopic brushing using the protected sheath on the 
distal small airways. The COPD group was defined as smokers with emphysema on lung 
computed tomography (CT) with post-bronchodilator (BD) forced expiratory volume in 1 
second (FEV1) over post-BD forced vital capacity (FVC) < 70%. The non-COPD group was 
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defined as non-smokers with no emphysema on CT, whose post-BD FEV1/FVC was > 80%. 
Specimens were obtained from the lobe with emphysema in patients with COPD, and from 
the right middle lobe in patients without COPD. The brushed cells were cultured in defined 
keratinocyte-SFM (GIBCO, Life Technologies, Grand Island, NY, USA) with 1% penicillin/
streptomycin. Cells were grown at 37°C with 5% CO2, and the media were changed every 
other day. CSE was prepared from 20 commercial cigarettes (THIS; KT&G Corp., Daejeon, 
Korea) continuously bubbled in 60 mL of phosphate buffered saline using a bottle system 
connected to a vacuum machine (Gast Manufacturing Inc., Benton Harbor, MI, USA). To 
determine the optimal concentration of CSE, cultured bronchial epithelial cells were treated 
with 0, 0.5, 1, 2, or 4% CSE for 24 hours and then the cell viability was measured with an 
MTT assay. Based on these results, cells exposed to 2% CSE-containing culture medium were 
compared to those treated with control medium for 24 hours before harvest were used.

Mass spectrometry
Cultured primary cells, either treated or untreated with 2% CSE, were detached with TrypLE 
(Thermo Fisher Scientific, Waltham, MA, USA) and centrifuged at 300 g for 5 minutes. From 
each sample, cells were lysed using 100 µL of buffer (4% sodium dodecyl sulfate [SDS], 
2 mM tris (2-carboxyethyl) phosphine in 100 mM Tris; pH 8.5) and incubated at 95°C for 
20 minutes. Protein concentrations were measured using a reducing agent-compatible 
BCA assay (Thermo Fisher Scientific). After acetone precipitation of 100 µg of proteins, 
precipitated protein samples were digested using the filter-aided sample preparation 
procedure as previously described.11 Briefly, samples were dissolved with 2% SDS and 2 mM 
tris (2-carboxyethyl) phosphine in 100 mM Tris/HCl, pH 7.5, mixed with 0.3 mL of 8 M urea in 
0.1 M Tris/HCl, pH 8.5, and loaded onto a 30 K Amicon filter (EMD Millipore, Billerica, MA, 
USA). The buffer was exchanged with urea solution by centrifugation. The reduced cysteines 
in the proteins were alkylated with iodoacetamide solution in the dark at room temperature 
for 30 minutes. An additional 40 mM of ammonium bicarbonate was added to exchange the 
urea solution. Finally, proteins were digested at 37°C overnight with trypsin at an enzyme-to-
protein ratio of 1:100. After overnight incubation, the filtration unit was transferred to new 
collection tubes and centrifuged for 20 minutes. Peptides that were retained in the filtration 
units were eluted with 50 μL of 0.5 M NaCl to enhance the yield of digested protein. The 
resulting supernatants were acidified with 1% trifluoroacetic acid. Peptides were desalted 
and fractionated on homemade styrene divinylbenzene reversed-phase sulfonate-StageTips12 
by basic reverse-phase using a stepwise gradient of acetonitrile (40%, 60%, and 80%) in 1% 
ammonium hydroxide.

Liquid chromatography-MS/MS analysis was performed using a Q Exactive HF-X Hybrid 
Quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific) coupled to an Ultimate 
3000 RSLC system (Dionex, Sunnyvale, CA, USA) via a nano-electrospray source as 
previously described with modifications.12,13 Peptide samples were separated on a two-
column system, consisting of a trap column and an analytic column (75 μm × 50 cm) with a 
90 minutes gradient from 7% to 32% acetonitrile at 300 nL/min and analyzed via MS. The 
column temperature was maintained at 60°C using a column heater. Survey scans (300–1,650 
m/z) were acquired with a resolution of 70,000 at m/z 200. The top-15 method was used to 
select precursor ions with an isolation window of 1.2 m/z. MS/MS spectra were acquired at an 
higher-energy collisional dissociation-normalized collision energy of 30 with a resolution of 
17,500 at m/z 200. The maximum ion injection times for the full scan and MS/MS scans were 
20 ms and 100 ms, respectively.
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Mass spectra were processed using MaxQuant version 1.6.1.10.14 MS/MS spectra were 
searched against the Human Uniprot protein sequence database (December 2014, 88,657 
entries) using the Andromeda search engine.15 Primary searches were performed using a 
6-ppm precursor ion tolerance for total protein level analysis. MS/MS ion tolerance was set 
to 20 ppm. Cysteine carbamidomethylation was used as a fixed modification. N-acetylation 
of proteins and oxidation of methionine were set as the variable modifications. Enzyme 
specificity was set to full tryptic digestion. Peptides with a minimum length of six amino 
acids and up to two missed cleavages were considered. The required false discovery rate 
was set to 1% at the peptide, protein, and modification levels. We also enabled the “Match 
between Runs” option on the MaxQuant platform to maximize the number of quantification 
events across samples. For label-free quantification (LFQ), the intensity-based MaxLFQ 
algorithms16 were used as a part of the MaxQuant platform.

Differentially expressed peptide (DEP) analysis
MaxQuant data were processed and analyzed via the R package ‘DEP’ version 1.12.0, using 
default parameters. Briefly, LFQ intensities were normalized using variance-stabilizing 
transformation and missing data were imputed using random draws from a Gaussian 
distribution centered around a minimal value with a q-value of 0.05. Differential enrichment 
analysis was performed using linear and empirical Bayesian statistics. Significant proteins 
were denoted based on the following criteria: P value < 0.05 and log fold change > 1.5.

Feature selection by machine learning method
Next, we used an ML-based approach to select features from the raw LFQ intensity data to 
investigate the effects of various environmental factors on cells from COPD patients. To 
differentiate proteins that are enriched when exposed to CSE, we used Extra Trees Classifier, 
a variation of the random forest.

First, we trained Extra Trees Classifiers with raw LFQ data to distinguish the features of 
CSE-treated samples in the non-COPD group from the matched non-COPD samples. We 
interpreted the feature importance of the trained model, denoted as set A (Fig. 1), as the 
featured proteomic response to CSE. Next, the proteomic response of the COPD group was 
computed using Extra Trees Classifier trained on CSE-treated and non-CSE treated samples 
in the COPD group, denoted as set B (Fig. 1). Then, we subtracted the proteomic response 
of the non-COPD group from the COPD group and selected the top 100 proteins with the 
highest differential response. Pathway analysis was performed using Enrichr17 with the Gene 
Ontology gene set. All pathways were sorted on the adjusted P value. Z-score and combined 
score, log(p)·z, are adopted from Enrichr.

Validation with single cell RNA sequencing data
Data from the Gene Expression Omnibus accession number GSE136831 representing single-
cell RNA sequencing data, including data obtained from 18 lungs from patients with COPD 
and from 28 control donor lungs, were re-analyzed.18 Only cells annotated in metadata were 
included, and cell types with at least 100 cells in both COPD and control groups were used for 
further analysis.

Differentially expressed genes (DEGs) between COPD and non-COPD samples were analyzed 
for each cell type using the Wilcoxon rank sum test. Gene set enrichment analysis was 
performed using the Gene Ontology Biological Process and Kyoto Encyclopedia of Gene 
and Genomes human databases under the following criteria: adjusted P value < 0.05, log 
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fold-change > 1.5. An adjusted P value is a Bonferroni-corrected P value to avoid multiple 
comparison problem.

Ethics statement
The collection and use of human specimens was reviewed and approved by the Institutional 
Review Board (IRB) of Seoul National University Hospital, IRB number: H-2105-032-1216. 
Informed consent was submitted by all subjects when they were enrolled.

RESULTS

Five patients with COPD and five without COPD were included in the analysis. All COPD 
patients were men and had lower pulmonary function than the non-COPD participants 
(Table 1). Epithelial cells were successfully cultured from bronchoscopic brushing specimens 
obtained from all participants without complications. The MTT assay showed that 2% or less 
CSE did not affect cell viability but 4% induced cell death (Supplementary Fig. 1). Cultured 
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COPD (n = 5)
Non-COPD (n = 5)

Bronchoschopic
brushing

Primary cell culture
 with/without CSE

Mass spectrometry Cross-validation
with scRNAseq dataset

ML-based 
feature selection

Control
(n = 5)

CSE
(n = 5)

Top 100 proteins with highest differential responses from |B−A|

Control
(n = 5)

CSE
(n = 5)

Feature selection with Extra Tree Classifier Feature selection with Extra Tree Classifier

Non-COPD
epithelial cells

COPD
epithelial cells

x = Gene x = ∂y/∂x x = Gene x = ∂y/∂x

Fig. 1. Schematic of the study protocol with detailed ML-based feature selection. 
CSE = cigarette smoking extract, ML = machine learning, COPD = chronic obstructive pulmonary disease.

Table 1. Basic characteristics of participants
Characteristics COPD patients (n = 5) Non-COPD participants (n = 5)
Demographic

Age, yr 65 (57–84) 65 (48–71)
Male 5 (100) 1 (20)

Smoking, pack-years 60 (1.5–80) 0 (0–0)
Post-bronchodilator spirometry

FVC, % 78 (74–115) 90 (105–111)
FEV1, % 56 (33–109) 113 (99–124)
FEV1/FVC, 46.5 (29–68) 78 (74–83)

Continuous variables are expressed as medians (ranges), and categorical variables are expressed as number (%).
COPD = chronic obstructive pulmonary disease, FVC = forced vital capacity, FEV1 = forced expiratory volume in 
one second.



cells were treated as either the control (medium only) or with 2% CSE for 24 hours and 
employed for proteomic analysis (Fig. 1).

A total of 125,724 peptides, including 98,831 unique peptides, were characterized using MS, 
and subsequently, 7,953 proteins were identified. Initially, conventional analysis of DEPs was 
performed. A total of 156 DEPs were identified between CSE treated vs. non-CSE treated 
from non-COPD samples, and 213 DEPs from the corresponding samples derived from 
patients with COPD (Fig. 2, Supplementary Table 1). Only 70 DEPs were shared between 
these two DEPs above. Ferroptosis-related proteins, including ferritin heavy chain 1 (FTH1) 
and ferritin light chain (FTL), were identified in this set of overlapping DEPs, however, there 
were no significantly enriched pathways from these 70 DEPs. In addition, 106 DEPs were 
found between non-CSE treated COPD and non-COPD samples whereas 82 DEPs were found 
between CSE-treated COPD and non-COPD samples. There were no ferroptosis-related 
proteins identified from these DEPs (Fig. 2).

To find the proteins that are most affected upon CSE exposure and to compare them between 
COPD and non-COPD directly, first we used an Extra Trees Classifier with the raw LFQ 
intensity data from COPD and non-COPD, separately. This ML-based algorithm calculated 
the importance of each protein in the process of classification between CSE-treated vs. non-
CSE treated group. Set A was the feature importance of each protein from the non-COPD 
group, and set B was from COPD group (Fig. 1). Next, the top 100 proteins showing the 
highest differences between the COPD and non-COPD groups were selected (Supplementary 
Table 2), and a pathway analysis was performed. Interestingly, ferroptosis-related proteins, 
including FTH1, FTL, SLC7A11, and TP53, were shown to be the proteins that changed most 
in expression in response to CSE (adjusted P value = 4.172 × 10−6; Table 2); additionally, 
glutathione (GSH) metabolism was selected as a featured pathway in response to CSE 
(adjusted P value = 4.527 × 10−3).
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Non-COPD
Non-CSE vs. CSE

(n = 156)

COPD
Non-CSE vs. CSE

(n = 213)

Non-CSE
COPD vs. non-COPD

(n = 106)
CSE

COPD vs. non-COPD
(n = 82)

69

1

0

0

16

2
64

11

11
0

12

113

5

71

59

Fig. 2. Venn diagram and numbers of DEPs. 
DEP = differentially expressed protein, CSE = cigarette smoking extract, COPD = chronic obstructive pulmonary 
disease.



As an external validation of the featured pathways identified in this study, we reanalyzed 
publicly available single-cell RNA sequencing data from lung parenchyma cells from healthy 
controls and patients with COPD. Based on DEGs for each cell type, ferroptosis was selected 
as a featured pathway in basal cells, club cells, and goblet cells but not in ciliated cells 
(Table 3). We hypothesized that the ferroptosis-related signals from these epithelial cells 
were diluted in the bulk sequencing or proteomics data. Congruently, when we performed 
the same analysis of single-cell RNA sequencing data with broader cell categories, such as 
epithelial, myeloid, lymphoid, endothelial, and stromal cells, ferroptosis was not a distinct 
pathway in any of the other cell types (Supplementary Table 3).
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Table 2. Featured pathways responsive to smoking exposure in the COPD group compared to the non-COPD group
Pathway Adjusted P value Combined score
Ferroptosis 8.906 × 10−6 607

FTH1, FTL, GCLC, GCLM, HMOX1, SLC7A11
Protein processing in endoplasmic reticulum 7.466 × 10−3 64

DNAJA1, HSP90AA1, HSPH1, HSP90AB1, SAR1B, HSPA1A
Fluid shear stress and atherosclerosis 5.870 × 10−3 91

HMOX1, IL1A, HSP90AA1, HSP90AB1, SUMO1, ARHGEF2
Adjusted P value was from Bonferroni-correction method, combined score, log(p)·z, was adopted from Enrichr.
COPD = chronic obstructive pulmonary disease.

Table 3. Featured pathways of chronic obstructive pulmonary disease single cell transcriptomics of epithelial cells
Pathways Adjusted P value Combined score
Basal cell

Ferroptosisa 1.017 × 10−2 1,309
Cholesterol metabolism 1.017 × 10−2 996
Mineral absorption 1.017 × 10−2 973
Necroptosis 2.410 × 10−2 229

Club cell
Ferroptosisa 7.903 × 10−2 223

Ciliated cell
Ribosome 2.486 × 10−2 31

Goblet cell
Prion diseases 2.633 × 10−2 1,541
Ferroptosisa 2.633 × 10−2 1,310
Cholesterol metabolism 2.633 × 10−2 996
Mineral absorption 2.633 × 10−2 973
Legionellosis 2.633 × 10−2 886
Antigen processing and presentation 2.907 × 10−2 585
Longevity regulating pathway 2.907 × 10−2 412
Toxoplasmosis 2.907 × 10−2 362
Spliceosome 2.907 × 10−2 292
Estrogen signaling pathway 2.907 × 10−2 284
Measles 2.907 × 10−2 281
Necroptosis 2.907 × 10−2 229
Protein processing in endoplasmic reticuluma 2.907 × 10−2 224
Influenza A 2.907 × 10−2 214
Endocytosis 3.857 × 10−2 135
MAPK signaling pathway 4.360 × 10−2 105

Alveolar type I cell n.s. n.s.
Alveolar type II cell n.s. n.s.
Adjusted P value was from Bonferroni-correction method, combined score, log(p)·z, was adopted from Enrichr.
n.s. = not significantly enriched pathways.
aPathways were also enriched in this study.



DISCUSSION

Airway epithelial cells play vital roles in the maintenance of respiratory homeostasis, 
including host defense, inflammation control, and tissue repair, all of which are important 
in the pathogenesis of COPD.19 COPD is associated with different types of regulatory cell 
death, including apoptosis20 and necroptosis21 in airway epithelial cells. Recent studies have 
reported that ferroptosis, a newly discovered form of regulated cell death, is also linked to 
COPD.22,23 Ferroptosis has been identified in cancer cells and is widely observed in other 
diseases, including COPD.

In this study, we identified ferroptosis as a distinct signature of smoking exposure in cultured 
epithelial cells from COPD patients compared to those from non-COPD patients. The 
ferroptosis-related proteins, including FTH1, FTL, and SLC7A11, were also present in the 
results of conventional analysis; the DEP lists of CSE vs. non-CSE of COPD and those of non-
COPD (Supplementary Table 1), which are consistent with the previous report.24 However, 
when we compared the effects of CSE treatment between the COPD group and the non-
COPD group directly, the ferroptosis-related genes were not shown in the DEP list derived by 
conventional analysis (Supplementary Table 1). However, ML-based analysis provided the 
feature importance scores during the training process of Extra Trees Classifier, enabling us 
to directly compare the response to CSE. With our ML-based analysis, we revealed that the 
ferroptosis-related proteins responded more dramatically in COPD than in non-COPD.

The genes and proteins identified in this study have been reported to be significant signals 
of COPD in previous studies. A gene expression profile study using microarray analysis 
showed that FTL is one of 48 genes associated with COPD progression.25 A MS proteomic 
study of lung tissues also showed that FTL and FTH1 were two of the 25 proteins significantly 
associated with COPD.26 However, since only a few of the ferroptosis markers were present 
amongst dozens of markers detected in the previous studies, they were understandably 
dismissed.25,26 This is mainly because lung tissue has many corresponding immune cells,18,27 
and ciliated cells, another dominant cell type in the airway,28 are not involved in ferroptosis, 
according to our analysis. In contrast to other studies, only epithelial cells were enriched in 
our study; therefore, ferroptosis could be selected as the most important featured pathway 
of COPD epithelial cells. Indeed, the single-cell RNA sequencing data of COPD and healthy 
controls showed that only basal cells, club cells, and goblet cells were enriched in ferroptosis, 
supporting our hypothesis.

In addition, the activity of post-translational modifications that regulate the degradation rate 
of proteins cannot be detected at the transcriptional level, and this might be another reason 
why ferroptosis was not distinguished in previous studies. For example, SLC7A11 was detected 
in this analysis and sustained the production of GSH,29 a key compound in the ferroptosis 
pathway. SLC7A11 is known to be regulated by ubiquitination in ferroptosis,29 however, 
previous studies did not establish SLC7A11 as a gene differentially expressed in COPD.

Ferroptosis has an iron-dependent mechanism and biological characteristics that are distinct 
from other regulated cell death processes, such as apoptosis and autophagy. Intracellular 
GSH depletion and iron accumulation led to an increased level of lipid peroxides through 
the Fenton reaction, resulting in a large increase in the number of radical oxygen species 
(ROS), which in turn promotes cell death.30 An in vitro and in vivo study showed a correlation 
between ferroptosis in airway epithelial cells and COPD pathogenesis. Cigarette smoke 
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exposure initiates ferritin-selective autophagy (ferritinophagy), which leads to labile iron 
deposits, enhanced lipid peroxidation, and concomitant regulated cell death (ferroptosis) 
that are associated with the COPD phenotype, including emphysema. This CSE-induced 
ferroptosis-related emphysema was augmented in glutathione peroxidase 4 (Gpx4)+/− mice.24 
GSH and Gpx4 depletion results in ferroptosis, suggesting that ferroptosis is linked to 
oxidative stress.31 GSH is depleted in acute smoking, leading to the prevalence of ROS and 
lung injury.32 Necrotic cell death via ferroptosis also provides danger-associated molecular 
patterns that induce and enhance the proinflammatory state.33 Hence, ferroptosis may 
contribute to COPD pathogenesis through cell death, increased oxidative stress, and 
proinflammatory responses.

Our study has limitations; 1) All COPD patients were male whereas there was only one 
male in the non-COPD participants in this study. This sex difference may cause sex-specific 
biomarkers to be mis-classified as COPD-specific biomarkers. The prevalence of COPD 
is higher in males and one of the challenging problems in mining biomarkers in COPD.34 
Although ferroptosis is not thought to be a sex-specific biologic process, the confounding 
effects on ferroptosis from sex difference cannot be excluded in this study and further study 
is required. 2) The single cell data are based on tissue from patients with COPD and healthy 
controls but lacks information on smoking exposure prior to donation of the tissues. A better 
validation would be possible with larger set of single cell transcriptomics data with a detailed 
smoking history. However, we consider it is still valid for supporting the importance of 
ferroptosis in the airway epithelial cells, but not other cell types.

In conclusion, ML-based feature selection revealed that ferroptosis is the most distinctive 
difference between epithelial cells from patients with COPD vs. non-COPD patients that were 
exposed to CSE. Our study contributes to the understanding of the pathogenesis of COPD 
and the development of improved therapeutic strategies for COPD.
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