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ABSTRACT

Background: Sarcopenia is commonly found in the elderly due to a decline in muscle mass. 
Many researchers have performed genome-wide association studies (GWAS) to find genetic 
risk factors of sarcopenia. Although many studies have discovered sarcopenia associated 
single nucleotide polymorphisms (SNPs), most of them are studies targeting Caucasians. The 
purpose of this study was to evaluate genetic correlation according to muscle mass in middle 
aged Koreans using data of the Korean Genome and Epidemiology Study (KOGES), a large 
population-based genomic cohort study.
Methods: Baseline participants were 10,030 subjects aged 40 to 69 years who were from 
Ansan or Anseong in Gyeonggi-do, South Korea. Among them, 9,351 subjects with laboratory 
data available were included in this study. To identify sarcopenia associated variants, those 
in the top 30% and bottom 30% of muscle mass index (MMI) were compared. A total of 7,452 
people with an MMI of 30-70% were excluded. A total of 1,004 people were also excluded due 
to missing data. Finally, 895 people were selected for this study. The Korea Biobank Array 
generated 500,568 SNPs for this dataset.
Results: When subjects were divided into top 30% and bottom 30% of MMI, the top 30% had 
169 men and 308 women and the bottom 30% had 220 men and 198 women. In men, age, 
body mass index (BMI), waist and hip were significantly (P < 0.005) different between top 
30% and bottom 30% MMI groups. In women, age, BMI, waist, hip, and hypertension history 
were significantly different between the two MMI groups. There were 13 significant SNPs in 
men and 14 significant SNPs in women. Genes associated with variants in men based on the 
single-nucleotide polymorphism database (dbSNP) were LRP1B containing rs11679458 and 
RGS6 containing rs11848300. A gene associated with variants in women was Pi4K2A, which 
contained rs1189312 as a variant. In addition, rs11189312 was associated with expression 
quantitative trait loci (eQTL) of ZFYVE27 in skeletal muscles and other SNPs of ZFYVE27 
(rs10882883, rs17108378, rs35077384) known to be associated with spastic paraplegia. The 
eQTL analysis revealed that rs11189312 was a variant associated with SNPs of ZFYVE27.
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Conclusions: In the demographic study, significant results were found in BMI, waist, hip, 
history of hyperlipidemia, and sedentary life status in male group, and significant results 
were found in BMI, waist, hip, and hypertension history in female group. Variant rs11189312 
was found to be a novel variant affecting ZFYVE27 expressed in skeletal muscles, suggesting 
that rs11189312 might be related to sarcopenia as a novel discovery of this study. Further 
study is needed to determine the association between sarcopenia and ZFYVE27 known to be 
associated with spastic paraplegia.

Keywords: Skeletal Muscle; Korean Genome and Epidemiology Study;  
Single Nucleotide Polymorphisms; Genome-Wide Association Studies; ZFYVE27

INTRODUCTION

Sarcopenia, a generalized disorder of skeletal muscle, is commonly found in the elderly due 
to a decline in muscle mass.1 It is known that muscle mass shows decline every year after 
the age of 30. Such decline is associated with an increased risk of other disorders such as 
decreased activity, hormonal changes, and digestive disability.2-5 Previous research studies 
have revealed that sarcopenia has multiple contributing factors, including inflammatory 
pathway, adiposity, and chronic diseases.6-8 In addition, sarcopenia is heavily influenced by 
external variables such as diet, exercise, and lifestyle.9-11

Recently, scientists are interested in genetic factors that influence skeletal muscle traits for 
evaluating the heritability of sarcopenia. Several detailed gene-targeted linkage analyses 
have been performed for insulin like growth factor 1 (IGF-1),12 myostatin (MSTN),13 activin 
A receptor type 1B (ACVR1B),14 and so on. Variants contributing to the genetic influence on 
skeletal muscle traits have also been studied. For example, angiotensin-converting enzyme 
(ACE) has been investigated in many polymorphism studies,15-17 although several studies 
have reported that there are no significant on muscle traits.18-20 Alpha-actinin-3 (ACTN3)21,22 
and vitamin D receptor (VDR)23-25 are well known factors associated with muscle strength for 
possessing multiple polymorphisms.

Many researchers have performed genome-wide association studies (GWAS) to find genetic 
risk factors of a specific disease. Various single nucleotide polymorphisms (SNPs) have 
already been found in sarcopenia.26,27 SNP is a single base pair mutation in a DNA sequence 
that can affect gene function and regulation. Although many sarcopenia associated SNPs 
have been discovered in Caucasians,6,27 candidate SNPs and related genes in Asians have not 
been well established yet.

Therefore, the purpose of this study was to evaluate genetic correlation according to muscle 
mass in middle aged Koreans using data from the Korean Genome and Epidemiology Study 
(KOGES), a large population-based genomic cohort study.

METHODS

Study subjects
Epidemiological and genomic data sets in this study were from Ansan and Anseong cohorts 
of the KOGES conducted by National Research Institute of Health, Centers for Disease 
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Control and Prevention, Ministry for Health and Welfare, Republic of Korea. Baseline 
participants were 10,030 Koreas aged 40 to 69 years who were from Ansan or Anseong of 
Gyeonggi-do (province), South Korea. Among them, 9,351 subjects with laboratory data 
available were included in this study.

To identify sarcopenia associated variants, those in the top 30% and bottom 30% of muscle 
mass index (MMI) were compared. A total of 7,452 people with an MMI of 30–70% were 
excluded. A total of 1,004 people were also excluded due to missing data. Finally, 895 people 
were selected for the demographic study. Of these 895 people, 48 were not included in the 
SNP survey and 67 showed outlier in GWAS analysis. Finally, 780 subjects were included for 
the GWAS analysis.

Measurements of lifestyle and comorbidities
All participants attended a community clinic for clinical assessments at each follow-up visit. 
Body mass index (BMI) was calculated as weight in kg divided by the square of the height in 
meters. Weight was obtained for participants in light clothing and barefoot. Waist and hip 
circumference were also measured. The remaining survey items consisted of drinking & 
smoking status, the level of education, and monthly income. We also obtained their history of 
hypertension, diabetes, gastritis/stomach ulcer, allergy, myocardial infarction, thyroid disorder, 
congestive heart failure, coronary artery disease, hyperlipidemia, asthma, chronic lung 
disorder, peripheral vascular disease, kidney disease, various tumors, cerebrovascular disease, 
head trauma, urinary tract infection, gout, degenerative arthritis, and rheumatoid arthritis.

Study genotypes
Genotyping of the cohort population was performed using Affymetrix Genome-Wide Human 
SNP array 5.0 (Affymetix Inc., Santa Clara, CA, USA). The Korea Biobank Array generated 
500,568 SNPs for this dataset. We used P values for selecting significant SNPs between 
people in the top 30% and people in the bottom 30% of MMI. We additionally queried alleles, 
minor allele frequencies (MAF), and associated genes via Single-Nucleotide Polymorphism 
database (dbSNP) at the National Center for Biotechnology information (www.ncbi.nlm.nih.
gov/projects/SNP/). We used ALFA data for MAF containing data of subjects from 12 diverse 
populations, including Asian, African, European, and others.

We assessed whether candidate variants were related to specific gene expression in other 
various tissues by expression quantitative trait loci (eQTL) analyses using a database of the 
genotype-tissue expression (GTEx) project. Among them, genes associated with sarcopenia 
or muscle-related diseases by eQTL analysis were identified. Other variants known to be 
polymorphism or disease associated variants of identified genes were found through dbSNP. 
We then performed an interactive heatmap matrix of pairwise linkage disequilibrium (LD 
matrix) statistics to find out if variants we found were related to known variants using LD link 
(https://ldlink.nci.nih.gov/).

Statistical analysis
Continuous data are reported as mean ± standard deviation. Categorical data are presented 
as number (%). To find any significant differences in baseline characteristics and clinical 
factors between people in the top 30% and people in the bottom 30% of MMI, an unpaired 
t-test was performed for continuous variables showing normal distribution. Otherwise, 
Wilcoxon’s rank-sum test was performed. Difference in proportion between people in the top 
30% and people in the bottom 30% of MMI was tested using χ2 test for categorical variables. 
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If the assumption of χ2 test did not meet, Fisher’s exact test was performed. PLINK and R 
software 4.1.0 (R Core Team, R Foundation for Statistical Computing, Vienna, Austria, 2020) 
were used to conduct statistical analysis (version 1.9). The significance level was set at P < 
0.05. The PLINK software was used to filter out SNPs that were irrelevant. Genotyping call 
rate (0.05) was used as the SNP filtering parameter to exclude missing genotypes of SNPs. 
Significant SNPs between people in the top 30% and people in the bottom 30% of MMI are 
presented by a Manhattaplot using qqman package version 0.1.8 of R software.

Ethics statement
This study was approved by the Institutional Review Board (IRB) of Gyeongsang National 
University (approval number: GNUIRB-2019-04-010-013). All study subjects provided written 
informed consent.

RESULTS

General characteristics for demographic study
When subjects were divided into the top 30% and bottom 30% of MMI, top 30% people 
had 169 men and 308 women and bottom 30% people had 220 men and 198 women. In 
men, statistically significant differences in age, BMI, waist, hip, history of hyperlipidemia, 
and sedentary life status were observed between top 30% and bottom 30% of MMI groups. 
Particularly, age, BMI, waist and hip showed significant differences between the two groups 
with P value less than 0.005. In women, age, BMI, waist, hip, and hypertension history also 
showed significant differences between top 30% and bottom 30% of MMI groups (Table 1). 
Results for all demographics are presented in Supplementary Table 1.

GWAS study
GWAS results are presented with a Manhattan plot (Fig. 1). There were 13 significant SNPs 
in the male group and 14 significant SNPs in the female group. QQ plots also showed GWAS 
results against expected association results between people in the top 30% and people in 
the bottom 30% of MMI (Fig. 2). All results of significant SNPs containing related genes are 
shown in Table 2. All results of SNPs of the present study are represented in Supplementary 
Table 2. Genes associated with variants in the male group identified using the dbSNP 
were LRP1B containing rs11679458 and RGS6 containing rs11848300. Pi4K2A was a gene 
associated with variants in the female group. It also contained rs1189312 as a variant. 
Published studies about identified genes are presented in Table 3.

We also conducted eQTL analysis to assess whether candidate variants were related to 
specific gene expression in other various tissues. As a result, rs10027083 and rs10848321 
in men and rs790564, rs11189312, rs16977675, and rs1380834 in women were eQTL in each 
gene. Among them, only rs11189312 in women was eQTL of ZFYVE27 in skeletal muscles. 
It showed very significant results. Therefore, other variants associated with ZFYVE27 and 
skeletal muscle related disease were investigated using dbSNP. Finally, a total of three 
polymorphisms (rs10882883, rs17108378, and rs35077384) were identified, including one 
disease (spastic paraplegia) related polymorphism. We also conducted LD matrix statistics to 
determine whether rs11189312 was related to those variants (Fig. 3). The LD heatmap plot was 
prepared using reference population of East Asian. The result showed that rs11189312 had 
little relevance to other variants. Rs11189312 had R squared values of 0.001, 0.018, and 0 with 
D prime values of 0.247, 0.231, and 0.037 against rs17108378, rs10882993, and rs35077384, 
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Table 1. Demographic study containing significant results
Characteristics Men Women

Q70 over 
(n = 169)

Q30 under 
(n = 220)

Total 
(n = 389)

P value Sig. Q70 over 
(n = 308)

Q30 under 
(n = 198)

Total 
(n = 506)

P value Sig.

Age, yr 48.5 ± 7.5 55.5 ± 9.5 52.5 ± 9.3 0.000 *** 52.1 ± 8.8 52.5 ± 9.6 52.3 ± 9.2 0.957
BMI, kg/m2 27.9 ± 2.6 21.1 ± 2.3 24.0 ± 4.1 0.000 *** 28.7 ± 3.3 21.4 ± 2.5 25.8 ± 4.6 0.000 ***

Waist, cm 90.1 ± 6.5 77.1 ± 6.7 82.7 ± 9.2 0.000 *** 88.7 ± 9.6 74.1 ± 8.6 83.0 ± 11.6 0.000 ***

Hip, cm 98.6 ± 5.0 88.8 ± 5.0 93.1 ± 7.0 0.000 *** 99.0 ± 6.3 89.6 ± 4.8 95.3 ± 7.4 0.000 ***

History of hypertension 0.161 0.004 ***

No 146 (42.1) 201 (57.9) 347 (100.0) 234 (57.6) 172 (42.4) 406 (100.0)
Yes 23 (54.8) 19 (45.2) 42 (100.0) 74 (74.0) 26 (26.0) 100 (100.0)

History of diabetes 0.933 0.189
No 157 (43.3) 206 (56.7) 363 (100.0) 276 (59.9) 185 (40.1) 461 (100.0)
Yes 12 (46.2) 14 (53.8) 26 (100.0) 32 (71.1) 13 (28.9) 45 (100.0)

History of hyperlipidemia 0.011 ** 1.000
No 159 (42.2) 218 (57.8) 377 (100.0) 298 (60.9) 191 (39.1) 489 (100.0)
Yes 10 (83.3) 2 (16.7) 12 (100.0) 10 (58.8) 7 (41.2) 17 (100.0)

History of degenerative arthritis 0.777 0.029 **

No 161 (43.2) 212 (56.8) 373 (100.0) 239 (58.4) 170 (41.6) 409 (100.0)
Yes 8 (50.0) 8 (50.0) 16 (100.0) 69 (71.1) 28 (28.9) 97 (100.0)

Sedentary life 0.028 ** 0.287
Never 6 (23.1) 20 (76.9) 26 (100.0) 11 (42.3) 15 (57.7) 26 (100.0)
< 30′ 10 (43.5) 13 (56.5) 23 (100.0) 21 (70.0) 9 (30.0) 30 (100.0)
30′–60′ 6 (26.1) 17 (73.9) 23 (100.0) 34 (65.4) 18 (34.6) 52 (100.0)
60′–90′ 15 (44.1) 19 (55.9) 34 (100.0) 34 (61.8) 21 (38.2) 55 (100.0)
90′–120′ 10 (32.3) 21 (67.7) 31 (100.0) 20 (46.5) 23 (53.5) 43 (100.0)
120′–180′ 23 (39.7) 35 (60.3) 58 (100.0) 42 (61.8) 26 (38.2) 68 (100.0)
180′–240′ 19 (41.3) 27 (58.7) 46 (100.0) 50 (64.1) 28 (35.9) 78 (100.0)
240′–300′ 9 (42.9) 12 (57.1) 21 (100.0) 25 (59.5) 17 (40.5) 42 (100.0)
> 300′ 71 (55.9) 56 (44.1) 127 (100.0) 71 (63.4) 41 (36.6) 112 (100.0)

Continuous data are reported as mean ± standard deviation and categorical data are presented as number (%).
BMI = body mass index.
**P < 0.01, ***P < 0.001.
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Fig. 1. Manhattan plot of each group classified by gender. (A) Manhattan plot in the men group, (B) Manhattan plot in the women group.



respectively. All significant results of eQTL analysis in GTEx containing related genes are 
shown in Table 4. All eQTL analysis results are presented in Supplementary Table 3.
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Fig. 2. Q-Q plot of each group classified by gender. (A) Q-Q plot in the men group. (B) Q-Q plot in the women group. 
Q-Q = Quantile-Quantile.

Table 2. SNPs results of GWAS data containing related genes
Gender SNP CHR BP P Alleles MAF (ALFA) Associated gene Consequence
Man rs11679458 2 141599179 0.00001383 C>A C=0.486669/44281 LRP1B intron_variant

genic_upstream_transcript_variant
rs2726780 4 183419916 0.00003714 C>G,T C=0.171893/13067 TENM3 intron_variant,

genic_upstream_transcript_variant
rs10848321 12 130288474 0.00003748 C>T T=0.41889/133217 LOC105370082 non_coding_transcript_variant
rs11848300 14 71769263 0.000006039 A>G G=0.478108/120205 RGS6 intron_variant,

genic_upstream_transcript_variant
rs2139594 14 71793717 0.000001016 C>G,T C=0.458804/16828 RGS6 intron_variant

genic_upstream_transcript_variant
rs8007922 14 71796649 3.74E-07 G>A,C,T C=0.424672/3952 RGS6 intron_variant

genic_upstream_transcript_variant
rs740337 14 71801725 3.03E-07 C>A,G,T G=0.43238/3990 RGS6 intron_variant

genic_upstream_transcript_variant
rs1076317 14 71802071 0.000006105 C>G,T G=0.419996/7633 RGS6 intron_variant

genic_upstream_transcript_variant
rs1568404 14 71806722 0.0000294 C>G,T T=0.447908/93911 RGS6 intron_variant

genic_upstream_transcript_variant
Woman rs1258993 6 14972108 0.000008641 G>A,T G=0.11603/23984 LOC105374944 intron_variant

rs790564 8 64766772 0.000006923 A>C,G,T A=0.274539/7054 LOC105375876 intron_variant
rs11189312 10 99414232 0.00001602 T>C C=0.168092/6328 PI4K2A intron_variant
rs7907690 10 108852117 0.00004612 A>G A=0.43714/11523 SORCS1 intron_variant

genic_upstream_transcript_variant
rs472446 11 119290275 0.000001529 G>A G=0.452366/70342 LOC105369526 intron_variant
rs16977675 18 39650092 0.00004649 T>C,G T=0.387283/7985 LOC105372088 intron_variant
rs1380834 18 39651882 0.00002929 A>G A=0.391585/49400 LOC105372088 intron_variant

SNPs = single nucleotide polymorphisms, GWAS = genome-wide association studies, CHR = chromosome, MAF = minor allele frequencies.



DISCUSSION

In the present study, demographic analysis was conducted based on MMI adjusted by square 
of height. Age, BMI, waist and hip showed significant results in men. These are obesity-
related factors associated with muscle loss.28 In particular, significance was found in people 
who had a history of asthma disease. As people age, their respiratory muscle mass decreases, 
their respiratory muscle strength weakens, and their respiratory function deteriorates.29 
Several studies have consistently revealed the association between respiratory diseases (such 
as asthma) and sarcopenia or muscle loss.29,30 In addition, the MMI adjustment value tended 
to be low in people who had a sedentary life. In women, there were significant differences in 
BMI, waist and hip. However, there was no significant difference in age. In particular, there 
was a significant difference in people with a history of degenerative arthritis. Muscle wasting 
as a natural part of aging has recently been proven in individuals with OA.31,32 It has been 
suggested that muscle wasting has a direct impact on joint stability and that loss of mobility 
can lead to articular cartilage degeneration.33

GWAS was performed to determine the relationship between muscular study and each SNP 
associated genes. In men, rs11679458 was an intron variant of LRP1B. It has been suggested 
that proliferation-dependent expression of LRP1B may influence SMC migratory activity 
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Table 3. Summary of muscle atrophy related genes
Gender Associated SNP/gene Associated studies Summary of study
Men rs11679458/LRP1B Tanaga et al.34 The proliferation-dependent expression of LRP1B may influence SMC migratory activity via 

modifying PDGF and uPA signals.
rs11848300/RGS6 Ahlers-Dannen et al.35 RGS6 expression is observed in muscular and connective tissues around epithelial cells

Women rs11189312/PI4K2A Simons et al.36 Pi4k2 knockout mice with no detectable kinase activity have no evident phenotype when they 
are young. Later on, they developed tremors, spastic gait, muscle weakness, and feeding issues, 
which exacerbated as they grew older.

SNP = single nucleotide polymorphism, PDGF = platelet-derived growth factor, uPA = urokinase-type plasminogen activator.
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Fig. 3. Interactive heatmap matrix of pairwise linkage disequilibrium statistics in rs11189312 and ZFYVE27 associated SNPs. (A) All pairwise R square statistics. (B) 
All pairwise D prime statistics. (C) Interactive heat map of associated SNPs. 
SNP = single nucleotide polymorphism.
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by modifying platelet-derived growth factor (PDGF) and urokinase-type plasminogen 
activator (uPA) signals.34 Rs11848300 is an introgenic variant of RGS6 because its expression 
is observed in muscular tissues around epithelial cells.35 In women, rs11189312 was an 
intronic variant of PI4K2A. One study has shown that Pi4k2 is associated with aging-related 
muscle weakness.36 Pi4k2 knockout mice without detectable kinase activity had no evident 
phenotype when they were young. However, when they grew older, they developed tremors, 
spastic gait, muscle weakness, and feeding issues that exacerbated as time went by.36

Sarcopenia is a well-known aging-related disease. Recent studies have suggested that 
neuromuscular junction (NMJ) degeneration progresses with the onset of sarcopenia during 
aging.37,38 NMJ is a complicated synapse that connects muscle fibers to motor neurons. Its 
damage and morphological change gradually occur during aging, causing muscle paralysis or 
weakness.39 Spastin is an ATPase-containing domain that can interact with microtubules.40 
According to one study, knockdown of spastin localized at the NMJ of Drosophila results in 
synaptic undergrowth.41 In vitro studies have shown that spastin can regulate stabilization of 
microtubules to maintain activity.42,43 In addition, previous research studies have shown that 
mutation of spastin could result in hereditary spastic paraplegia, a neurological disorder with 
progressive spasticity and weakness of leg muscle.44-46 Therefore, patients with genetic factors 
that can induce mutation in spastin could be congenitally vulnerable to muscle loss and growth.

SNP rs11189312 has not been reported in association studies. However, our study revealed 
that rs11189312 could affect ZFYVE27 gene. ZFYVE27, also known as SPG33, belongs to the 
FYVE-finger family of proteins responsible for regulating endocytic membrane trafficking.47-49 
According to one study, ZFYVE27 can interact with endogenous spastin whose mutation 
is the most common cause for hereditary spastic paraplegia.47 In our study, eQTL analyses 
using GTEx showed rs11189312 in skeletal muscle for ZFYVE27 with a P value of 1.00E-15. As 
rs10882993, rs17108378, and rs35077384 were reported SNPs of ZFYVE27 in dbSNP database, 
we conducted LD matrix statistics to identify whether rs11189312 was associated with those 
reported SNPs. Our results only showed a slight correlation. Therefore, rs11189312 could be 
a novel variant affecting ZFYVE27 expressed mainly in skeletal muscles. This indicates that 
rs11189312 could lead to muscle disability or damage by affecting ZFYVE27 function. It might 
also be directly associated with sarcopenia because people in the bottom 30% of MMI showed 
more significant results than those in the top 30% of MMI in the present study.

In the present study, people in the bottom 30% of MMI group were vulnerable to muscle 
loss. Thus, nutrition and exercise should be paid attention to. Since GWAS analysis focuses 
on identification of SNPs as biomarkers for specific diseases, early screening of high-risk 
groups for sarcopenia and clinical treatment will be required.50 In addition, results of present 
study including SNPs and genes can be used in the development of new drugs. Therefore, 
genetic results from a GWAS study could lead to clinical significance through research and 
development of biomarkers.

In conclusion, the present nation-wide study in Korea had the largest size reported for 
identifying sarcopenia associated factors. Demographic study and GWAS were performed by 
dividing participants into a group with a high muscle mass and a group with a low muscle 
mass based on MMI adjusted by square of height. Particularly, rs11189312 might be associated 
with sarcopenia. It was a novel discovery in our study. Based on our variant results, further 
study is needed to determine the association between sarcopenia and ZFYVE27 which might 
play an important role in spastin.
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The present study has some limitations. First, there was no restriction on compositions of 
participants due to cohort research. Second, sarcopenia screening was not conducted using 
tests such as handgrip test. Third, a further study of newly identified variants is needed for 
evaluating their genetic influence on the onset of sarcopenia.
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