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ABSTRACT

Background: Risk of fragility fractures increases in patients with diabetes mellitus, 
independent of bone mineral density. In the present study, the effects of advanced glycation 
end products (AGEs) on differentiation and function of osteoblasts and osteoclasts were 
investigated.
Methods: AGEs and 25 mM glucose were administered to marrow-derived macrophages 
and MCT3T3-E1 cells. The effects of AGEs on osteoclast differentiation was investigated 
using tartrate-resistant acid phosphatase (TRAP) assay. The effects of AGEs on osteoblast 
differentiation was investigated using alkaline phosphatase (ALP) activity and bone nodule 
formation assays. Expression of osteoclast-specific and osteoblast-specific genes and effects 
on cell signaling pathways associated with cell differentiation were analyzed using reverse 
transcription polymerase chain reaction and western blotting.
Results: AGEs significantly decreased TRAP-positive multinucleated cell formation in 
receptor activator of nuclear factor-κB ligand-induced marrow-derived macrophages in a 
dose-dependent manner. AGEs suppressed the expression of osteoclast-specific genes, JNK, 
p38, AKT, intercellular adhesion molecule 1, and lymphocyte function-associated antigen 
1 in marrow-derived macrophages. AGEs decreased ALP activity and showed a tendency 
to decrease bone nodule formation in MC3T3-E1 cells. AGEs suppressed the expression of 
osteoblast-specific genes, lysyl hydroxylase and lysyl oxidase in MC3T3-E1 cells.
Conclusion: AGEs suppressed differentiation and function of osteoclasts and osteoblasts, 
and collagen cross-linking activity. It suggests that AGE may induce bone fragility through 
low bone turnover and deterioration of bone quality.

Keywords: Advanced Glycation End Products; Osteoclasts; Osteoblasts; Diabetes mellitus; 
Osteoporosis

INTRODUCTION

In several meta-analyses and cohort studies, fracture risk was shown to increase in patients 
with diabetes mellitus (DM) compared with controls without DM.1,2 Type 1 DM (T1DM) 
is associated with insulin deficiency and develops at a young age. Because insulin acts 
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as an anabolic agent in bone, expected peak bone mass may not be achieved in patients 
with T1DM, resulting in low bone mineral density (BMD), which can increase the risk 
of fracture.3 Type 2 DM (T2DM) is associated with relative insulin deficiency and insulin 
resistance. Because patients with T2DM reportedly have higher BMD than controls without 
DM,1 increased fracture risk might be explained by decreased bone quality and increased 
risk of falls. Diabetic retinopathy, diabetic polyneuropathy,4 and hypoglycemic events5 are 
associated with increased risk of falls. Sarcopenia, which is low muscle mass and low muscle 
function, has been more frequently observed in patients with T2DM than in controls without 
DM.6 Sarcopenia is an important risk factor for falls7 and increases fracture risk.8

Bone formation and bone resorption markers are significantly decreased in patients 
with T1DM or T2DM compared with controls without DM.9 In a bone histologic study, 
bone formation was suppressed in patients with DM.10 In a Framingham high-resolution 
peripheral quantitative computed tomography study, higher cortical porosity and smaller 
cross-sectional area at the tibia were observed in patients with T2DM.11 Furthermore, the 
trabecular bone score in patients with T2DM was significantly lower than in subjects without 
DM.12 These low bone formation and bone remodeling rates, as well as abnormal bone 
microstructure in DM, are associated with bone quality deterioration, resulting in increased 
fracture risk. Advanced glycation end products (AGEs) are considered a mechanism of 
chronic diabetic complications and bone quality deterioration.13

AGEs are non-enzymatic glycation products of proteins, lipids, and nucleic acids with 
glucose through the Maillard reaction and the polyol pathway,14 and AGEs production 
increases in hyperglycemia and diabetes.15 AGEs accumulate in various tissues, such as bone, 
kidney, brain, and blood vessels. In patients with DM, accumulation of AGEs is associated 
with microvascular and macrovascular diabetic complications.16 The accumulation of AGEs 
in bone matrix, including abundant type 1 collagens, reduces the flexibility of collagen and 
bone strength.17 Although the effects of AGEs on bone cell dysfunction have been studied, 
evidence of their direct effects on bone cells is insufficient.

Therefore, in the present study, the direct effects of AGEs on differentiation and function of 
osteoblasts and osteoclasts were investigated using molecular analysis.

METHODS

Cell cultures and differentiation of osteoblasts and osteoclasts
MC3T3-E1 cells were not isolated osteoblasts but were used to evaluate the role of osteoblasts. 
The osteoblastic MC3T3-E1 cell line was obtained from American Type Culture Collection 
(ATCC, Manassas, VA, USA). The MC3T3-E1 cells were cultured in an α-modified minimal 
essential medium (α-MEM; Welgene, Daegu, Seoul, Korea) supplemented with 10% 
fetal bovine serum (FBS; Gibco, Grand Island, NY, USA) and 1% penicillin/streptomycin 
(Gibco). The cells were maintained in osteogenic differentiation medium containing 10 mM 
β-glycerophosphate (β-GP; Sigma, St. Louis, MO, USA) and 50 μg/mL ascorbic acid (Sigma). 
Mouse bone marrow cells were obtained from femurs and tibias of four- to six-week-old 
male ICR mice (KOATECH, Pyeongtaek, Korea) and incubated in α-MEM complete media 
containing 10% FBS, 100 units/mL penicillin, and 100 μg/mL streptomycin on 100 mm 
culture dishes in the presence of 10 ng/mL macrophage colony-stimulating factor (M-CSF; 
PeproTech, Rocky Hill, NJ, USA) overnight. To obtain the bone marrow mononuclear (BMM) 
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cells, which are cells of osteoclastic origin, bone marrow cells were cultured with 30 ng/mL 
M-CSF for two days without receptor activator of nuclear factor (NF)-κB ligand (RANKL; 
PeproTech). For osteoclast differentiation, bone marrow cells were cultured with 30 ng/mL 
M-CSF and RANKL 70 ng/mL for two days for polymerase chain reaction (PCR) and for three 
days for tartrate-resistant acid phosphatase (TRAP) staining.

AGEs treatment
Cultured cells were treated with 25 mM glucose and 25 mM mannitol was used as the osmotic 
pressure control. AGE-BSA was obtained from BioVision (Milpitas, CA, USA) and added to 
cultures simultaneously with cell differentiation factors, such as RANKL, ascorbic acid, or 
β-GP. AGEs were administrated at a concentration of 1, 10, or 100 ug/mL.

TRAP activity assay
To investigate osteoclast differentiation, cells were stained for TRAP activity. The cultured 
cells were washed with phosphate-buffered saline and fixed with citrate, acetone, and 3.7% 
formaldehyde for 1 minute. Leukocyte acid phosphatase kits (Sigma) were used according to 
the manufacturer's instructions. Cells were washed with distilled water, and TRAP-positive 
multinucleated cells (MNCs) containing three or more nuclei and an actin ring were counted 
under a light microscope. A TRAP-positive MNC was considered a cell that could be an 
authentic osteoclast.

Alkaline phosphatase (ALP) and bone nodule formation assays
ALP and bone nodule formation assays were used to assess osteoblast differentiation. The 
early phase of osteoblast differentiation in MC3T3-E1 cells was assessed using ALP activity 
with ALP staining, and the late phase was assessed using bone nodule formation with 
Alizarin Red S staining. ALP activity was assayed by hydrolysis of p-nitrophenyl phosphate 
to p-nitrophenol using leukocyte ALP staining kits (86R-1 KT, Sigma). The measured 
absorbance was determined at 405 nm and compared with a p-nitrophenol standard titration 
curve. Enzyme activity was expressed as nM per dish and nM per microgram protein.

Matrix mineralization was assessed using Alizarin Red S staining in MC3T3-E1 cells. 
Cultures were fixed with 75% ethanol for 1 hour at 4°C, covered with Alizarin Red sodium 
monosulfonate (Sigma) for 30 minutes, and rinsed with water. Calcium deposits were 
destained with 10 mM sodium phosphate and 10% cetylpyridinium chloride buffer at pH 7.0, 
and absorbance was determined at 570 nm.

RNA extraction and gene expression analysis
Total RNA was isolated from cells using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). 
Cells were lysed directly in plate wells using 0.5 mL TRIzol per well. After chloroform 
extraction, total RNA was recovered from the aqueous phase and precipitated with equal 
volumes of isopropanol and diethylpyrocarbonate-treated water after a brief wash with 75% 
ethanol. Reverse transcription polymerase chain reaction (RT-PCR) was used to detect gene 
expression. RT-PCR was performed with 1 μg total RNA, oligodT (Bioneer, Daejeon, Korea), 
and reaction mixtures in AccuPower RT-PCR PreMix (Bioneer) at 42°C for 60 minutes. PCR 
primers were designed by Bioneer. Primer sequences and PCR conditions used in this study 
are listed in Table 1. The expression of osteoclast-specific genes such as RANK, TRAP, matrix 
metalloproteinases (MMP-9), cathepsin K, and nuclear factor of activated T-cells cytoplasmic 
1 (NFATc1) was measured. Intercellular adhesion molecule 1 (ICAM-1) and lymphocyte 
function-associated antigen 1 (LFA-1)-α, β, which are necessary for osteoclast development, 
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were measured. The expression of osteoblast-specific genes such as RUNX2, β-catenin, 
osterix, lysyl hydroxylase (LH), and lysyl oxidase (LOX) was measured.

Western blot analysis
For isolation of total cell extracts, cells were lysed in RIPA lysis buffer (#9806, Cell Signaling 
Technology, Danvers, MA, USA) protein extract solution. Samples were centrifuged at 14,000 
rpm × 10 minutes at 4°C. Protein concentration was determined using the BCA method 
(#23225, Thermo, Rockford, IL, USA). PVDF membranes (Millipore Co., Billerica, MA, USA) 
were incubated overnight at 4°C with primary antibodies at 1:1,000 in TBST. Antibodies 
against p-JNK, p-p38, p-ERK, p-AKT (Cell Signaling Technology), and β-actin (Santa Cruz 
Biotechnology, Santa Cruz, CA, USA) were used for western blots.

Statistical analysis
Each experiment was performed in triplicate and results expressed as mean ± standard error 
of the mean. Statistical analysis was performed with IBM SPSS Statistics Software Version 
18.0 (IBM, Armonk, New York, NY, USA). Analysis of variance was performed. Kolomogorov-
Smirnov test was performed for the normality test. Significant differences (P < 0.05) between 
means were determined using Bonferroni test.
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Table 1. Primer sequences and conditions for reverse transcription polymerase chain reaction
Target genes (accession number) Primers (forward, reverse) Annealing, tm (°C) Size, bp
RAGE (L33412) 5′-tagaatggaaactgaacacaggaag-3′ 62 598

5′-actattccaccttcaggctcaac-3′
RANK (NM 009399) 5′-agatgtggtctgcagctcttccat-3′ 52 350

5′-acacacttgttgctgactggaggt-3′
NFATc1 (NM 198429) 5′-caacgccctgaccaccgatag-3′ 58 393

5′-ggctgccttccgtctcatagt-3′
MMP-9 (NM 013599) 5′-cgtcgtgatccccacttact-3′ 52 433

5′-agagtactgcttgcccagga-3′
Cathepsin K (NM 007802) 5′-aggcggctatatgaccactg-3′ 52 403

5′-ccgagccaagagagcatatc-3′
TRAP (NM 007388) 5′-ctgctgggcctacaaatcat-3′ 52 400

5′-ggtagtaagggctggggaag-3′
Runx2 (NM 009820) 5′-ccgcacgacaaccgcaccat-3′ 62 289

5′-cgctccggcccacaaatctc-3′
Osterix (AF 184902) 5′-gtcaagagtcttagccaaactc-3′ 58 123

5′-aaatgatgtgaggccagatgg-3′
β-catenin (NM 001904) 5′-gatttcaaggtggacgagga-3′ 62 222

5′-cactgtgcttggcaagttgt-3′
ICAM-1 (NM 010493) 5′-tagtgtacccagctcccaaa-3′ 52 199

5′-ctccgagctaacaagtcgac-3′
LFA-1α (GI 198785) 5′-cttcgggaggtcttctgtga-3′ 52 182

5′-ctatgtgccaccgtacactg-3′
LFA-1β (GI 50342) 5′-cacgacggttcctaggtttt-3′ 52 191

5′-cccggtggaaatgactctga-3′
LH (NM 011122) 5′-tggcagttgtatcgggactt-3′ 52 191

5′-cctagctgctttctgtgtcg-3′
LOX (GI 500623) 5′-tggcgacactggaatgcatt-3′ 52 187

5′-tgtgcaagatggtgtcctcc-3′
Cyclophilin (NM 153573) 5′-catttgccatggacaagatg-3′ 52 300

5′-accccaccgtgttcttcgac-3′
GAPDH (GI 193423) 5′-ctgcgacttcaacagcaact-3′ 58 220

5′-gagttgggatagggcctctc-3′
RAGE = receptor for advanced glycated end products, RANK = receptor activator of nuclear factor-κB, NFATc1 = 
nuclear factor of activated T-cells cytoplasmic 1, MMP-9 = matrix metalloproteinases-9, TRAP = tartrate-resistant 
acid phosphatase, ICAM-1 = intercellular adhesion molecule 1, LFA-1 = lymphocyte function-associated antigen 1, 
LH = lysyl hydroxylase, LOX = lysyl oxidase.



Ethics statement
All procedures used and the care of animals in this study were approved by the Animal Research 
Ethics Committee of Kyung Hee University Hospital at Gangdong (KHNMC AP 2016-004).

RESULTS

Receptor for AGEs (RAGE) expression on cells
RAGE expression on MC3T3-E1, BMM cells, and marrow-derived MNCs was measured using 
RT-PCR. RAGE was expressed on all cells (Fig. 1).

Inhibitory effects of AGEs on osteoclast and osteoblast differentiation
BMMs were incubated in 96-well plates (10,000 cells/well) for three days with 30 ng/mL 
M-CSF, 70 ng/mL RANKL, 25 mM glucose, 25 mM mannitol, and 1, 10, or 100 ug/mL of 
AGEs. Treatment with 25 mM glucose reduced the formation of TRAP-positive MNCs 
compared with the positive control. When 100 ug/mL AGEs were added under glucose 
treatment, formation of TRAP-positive MNCs further decreased significantly (Fig. 2A). To 
investigate ALP activity, MC3TC-E1 cells were incubated in 24-well plates (10,000 cells/
well) for eight days with 50 ug/mL ascorbic acid, 10 mM β-GP, 25 mM glucose, 25 mM 
mannitol, and 1, 10, or 100 ug/mL of AGEs. Treatment with 25 mM glucose reduced ALP 
activity compared with positive control but without statistical significance. When 10 and 
100 ug/mL AGEs were added under glucose treatment, ALP activity was further decreased 
significantly (Fig. 2B). To investigate bone nodule formation, MC3TC-E1 cells were incubated 
in 24-well plates (5,000 cells/well) for 14 days with 50 ug/mL ascorbic acid, 10 mM β-GP, 
25 mM glucose, 25 mM mannitol, and 1, 10, or 100 ug/mL of AGEs. Treatment with 25 mM 
glucose and 10 or 100 ug/mL AGEs decreased bone nodule formation but without statistically 
significant difference (Fig. 2C).

Effects of AGEs on expression of osteoclast-specific genes and mitogen-
activated protein kinase (MAPK) signaling pathways in RANKL-induced 
marrow cells
The effects of AGEs on the expression of several genes associated with osteoclast 
differentiation and the MAPK signaling pathways in response to RANKL were investigated. 
Expression of RANK, TRAP, MMP 9, cathepsin K, and NFATc1 decreased with increased AGEs 
(Fig. 3A). JNK and p38 as differentiation-related kinases and ERK and AKT as survival-related 
kinases in the MAPK pathway were measured in RANKL-induced marrow macrophages. JNK, 
p38, and AKT were suppressed after AGEs treatment (Fig. 3B); however, ERK expression was 
not different (Fig. 3B).
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RAGE (595 bp)

 
Cyclophilin (300 bp)

MC3T3-E1 BMM Marrow MNC

Fig. 1. RAGE expression in MC3T3-E1 cells, BMM cells, and marrow-derived MNCs using reverse transcription 
polymerase chain reaction. RAGE was expressed on all cells. The grouping of gels/blots cropped from different 
parts of the same gel. 
RAGE = receptor for advanced glycated end products, BMM = bone marrow mononuclear, MNC = multinucleated cell.



Effects of AGEs on ICAM-1 and LFA-1 expression
Expression of ICAM-1, LFA-1α, and LFA-1β were measured in RANKL-induced marrow 
macrophages. Expression of ICAM-1, LFA-1α, and LFA-1β decreased after AGEs treatment in a 
dose-dependent manner (Fig. 4).

Effects of AGEs on expression of osteoblast-specific genes, LH, and LOX genes 
in MC3T3-E1 cells
AGE suppressed the expression of RUNX2, β-catenin, and osterix in a dose-dependent 
manner (Fig. 5A). AGE treatment decreased expression of LH and LOX genes (Fig. 5B).
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Fig. 2. Effects of AGEs on osteoclast and osteoblast differentiation. (A) TRAP-positive MNCs in RANKL-induced marrow macrophage cell cultures. Bone marrow 
mononuclear cells were incubated for three days with 30 ng/mL M-CSF, 70 ng/mL RANKL, 25 mM glucose, 25 mM mannitol, and 1, 10, or 100 ug/mL of AGEs (*P < 0.05). 
(B) ALP activities in MC3T3-E1 cell cultures. MC3TC-E1 cells were incubated for eight days with 50 ug/mL ascorbic acid, 10 mM β-GP, 25 mM glucose, 25 mM mannitol, 
and 1, 10, or 100 ug/mL of AGEs (*P < 0.05, **P < 0.01, ***P < 0.001). (C) Bone nodule formations in MC3T3-E1 cell cultures. MC3TC-E1 cells were incubated in 24-well 
plates (5,000 cells/well) for 14 days with 50 ug/mL ascorbic acid, 10 mM β-GP, 25 mM glucose, 25 mM mannitol, and 1, 10, or 100 ug/mL of AGEs (*P < 0.05, **P < 0.01). 
TRAP = tartrate-resistant acid phosphatase, MNC = multinucleated cell, M-CSF = macrophage colony-stimulating factor, RANKL = receptor activator of nuclear 
factor-κB ligand, AGE = advanced glycation end product, ALP = alkaline phosphatase.



DISCUSSION

The direct effects of AGEs on osteoblasts, osteoclast precursor cells, and osteoclasts were 
verified by confirming that all cells have receptors for AGEs. In the present study, AGEs 
suppressed differentiation and function of osteoblasts and osteoclasts in a dose-dependent 
manner. This finding indicates that longer duration of DM or more poorly controlled DM 
induces bone fragility. The ALP activity was observed higher in mannitol treatment than 
glucose treatment. It might have been seen prominently because MC3TC-E1 cell line used 
in this study had high differentiation activity through preparation with different medium 
composition.18
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Fig. 3. Effects of AGEs on osteoclast-specific genes (A) and activation of the mitogen activated protein kinase signaling pathway (B) in RANKL-induced marrow 
macrophages. The osteoclast-specific genes such as RANK, TRAP, MMP-9, cathepsin K, and NFATc1 were measured by reverse transcription polymerase chain 
reaction. JNK, p38, ERK, AKT and β-actin were measured by western blots. The grouping of gels/blots cropped from different parts of the same gel. 
NC = negative control, PC = positive control, G = 25 mM glucose, M = 25 mM mannitol, AGE = advanced glycated end product, RANKL = receptor activator of nuclear 
factor-κB ligand, TRAP = tartrate-resistant acid phosphatase, MMP-9 = matrix metalloproteinases-9, NFATc1 = nuclear factor of activated T-cells cytoplasmic 1.
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Fig. 4. Effects of AGEs on ICAM-1 and LFA-1 expression in marrow macrophages. Expressions of ICAM-1, LFA-1α, 
and LFA-1β genes were measured by reverse transcription polymerase chain reaction. The grouping of gels/blots 
cropped from different parts of the same gel. 
NC=negative control, PC=positive control, G=25mM glucose, M=25mM mannitol, AGE = advanced glycated end 
product, ICAM-1 = intercellular adhesion molecule 1, LFA-1 = lymphocyte function-associated antigen 1.



In the present study, the expression of NFATc1 and RANK was significantly decreased in 
high-glucose plus AGEs treatment compared with positive control, indicating that AGEs 
suppress osteoclast differentiation by inhibiting RANKL-RANK signaling via RANK 
expression reduction.

Reduced expression of JNK, p38, Akt, and NFATc1 indicates inhibition of three downstream 
pathways by RANKL/RANK signaling. The expression of TRAP, cathepsin K, and MMP9 
was suppressed in this study. They are associated with the enzymes secreted from mature 
osteoclasts. Cathepsin K is a protease that catabolizes elastin, collagen, and gelatin. MMP9 
is a type IV collagenase that degrades the extracellular matrix. This result indicates that AGEs 
inhibit not only differentiation but also the function of osteoclasts.

In this study, expression of ICAM-1 and LFA-1 in marrow macrophages was decreased after 
treatment with AGEs and consequently inhibited osteoclast formation. Cell-to-cell contact 
is necessary for osteoclast formation because osteoclasts form by cell fusion rather than 
endomitosis.19 ICAM-1 is expressed on osteoblasts, osteoclast precursors, and osteoclasts,20 
and ICAM-1 expression can be regulated by intracellular signaling through NF-κB and JNK.21 
ICAM-1 is a ligand for LFA-1,20 and ICAM-1 and LFA-1interactions are reportedly involved in 
cell-to-cell contact between osteoclast precursors and osteoblastic/stromal cells and between 
osteoclast precursors.21 The ICAM/LFA-1 interaction upregulates the expression of osteoclast-
stimulating cytokines and stimulates RANK/RANKL signaling.22 Thus, AGEs inhibited 
osteoclast differentiation by inhibiting RANKL signaling and ICAM expression.

Expression of RUNX2, β-catenin, and osterix was decreased in MC3T3-E1 cells but 
essential for osteoblast formation. Decreased β-catenin expression also could change the 
osteoprotegerin (OPG)/RANKL ratio, but up-regulated RANKL expression would not mean 
enhanced bone resorption. Because RANK expression in osteoclast precursor cells was 
reduced after AGEs administration in this study, the change of OPG/RANKL ratio would not 
stimulate bone resorption. Because of other possible mechanisms related to AGEs, it should 
be considered as a whole. Osteoblasts synthesize type I collagen, which consists of 90% 
organic components of bone and determines bone strength. Enzyme-dependent collagen 
cross-linking depends on a combination of intracellular modifications of procollagen alpha 
chains by LH and on extracellular modifications by LOX.23 Decreased LH and LOX are 
associated with decreased bone quality.24 In the present study, AGEs induced bone fragility 
caused by low bone turnover and reduced bone quality.
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Fig. 5. Effects of AGEs on osteoblast-specific genes (A) and expression of LH and LOX genes (B) in MC3T3-E1 cells. The grouping of gels/blots cropped from 
different parts of the same gel. The osteoblast-specific genes, LH and LOX genes were measured by reverse transcription polymerase chain reaction. 
NC = negative control, PC = positive control, G = 25 mM glucose, M = 25 mM mannitol, AGE = advanced glycated end product, LH = lysyl hydroxylase, LOX = 
lysyl oxidase.



In several previous studies, AGEs inhibited osteoblast differentiation and function. AGEs 
induced osteoblast apoptosis via TNF-α production, oxidative stress,25 endoplasmic reticulum 
stress,26 MAP kinase, and cytosolic apoptotic pathways.27 In addition, AGEs inhibited 
osteoblast differentiation by suppressing osterix expression.28 Conversely, results regarding 
the effects of AGEs on osteoclast differentiation are lacking. Tanaka et al.29 reported that AGEs 
inhibited human osteoclast differentiation through induction of IL-10 expression via NF-κB. 

In previous studies, AGEs suppressed osteoclast differentiation by increasing inflammatory 
cytokine levels. In contrast to other studies, AGEs inhibited osteoclast differentiation by 
reducing RANK, ICAM-1, and LFA-1 expression in this study. However, in other studies, AGEs 
enhanced osteoclastogenesis by RANKL mRNA upregulation and osteoclast-induced bone 
resorption.30 The results that AGEs suppressed LOX, causing structural abnormalities of bone 
and mineralization disorder, support our findings.31

The present study had several limitations. First, only a few genes associated with 
differentiation of osteoblasts and osteoclasts were analyzed, although several molecules are 
involved in multi-step differentiation. Second, differentiation of osteoclasts was measured, 
but activity was not directly measured. Third, AGEs could affect various organs and there are 
many confounding factors affecting bone. Therefore, results of this study on effects of AGEs 
on osteoblasts, osteoclasts, and type 1 collagen might be incomplete. How AGEs affect bone 
health should be investigated in future in vivo studies. However, this study is meaningful 
because the direct effects of AGE on osteoblasts and osteoclasts were analyzed. And this 
study is different from previous studies in that in analyzed the effect of AGE on not only 
osteoclast specific gene expression, but also the cell-to-cell contact, which is important for 
osteoclast differentiation, and analyzed bone quality related indicators such as LH and LOX.

In conclusion, AGEs inhibited differentiation and function of osteoblasts and osteoclasts, 
ICAM-1/LFA-1 interaction, and type 1 collagen cross-linking. AGE may induce bone fragility in 
patients with DM, through low bone turnover and decreased bone quality.
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