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Decoding Saccadic Directions Using Epidural ECoG in  
Non-Human Primates

A brain-computer interface (BCI) can be used to restore some communication as an 
alternative interface for patients suffering from locked-in syndrome. However, most BCI 
systems are based on SSVEP, P300, or motor imagery, and a diversity of BCI protocols 
would be needed for various types of patients. In this paper, we trained the choice saccade 
(CS) task in 2 non-human primate monkeys and recorded the brain signal using an epidural 
electrocorticogram (eECoG) to predict eye movement direction. We successfully predicted 
the direction of the upcoming eye movement using a support vector machine (SVM) with 
the brain signals after the directional cue onset and before the saccade execution. The 
mean accuracies were 80% for 2 directions and 43% for 4 directions. We also quantified 
the spatial-spectro-temporal contribution ratio using SVM recursive feature elimination 
(RFE). The channels over the frontal eye field (FEF), supplementary eye field (SEF), and 
superior parietal lobule (SPL) area were dominantly used for classification. The α-band in 
the spectral domain and the time bins just after the directional cue onset and just before 
the saccadic execution were mainly useful for prediction. A saccade based BCI paradigm 
can be projected in the 2D space, and will hopefully provide an intuitive and convenient 
communication platform for users.
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INTRODUCTION

Brainstem stroke, traumatic brain injury, and neurodegenera-
tive disorders can result in locked-in syndrome, characterized 
by near-total paralysis despite intact cognitive function. A brain-
computer interface (BCI) can be used as an alternative inter-
face for such patients to restore some communication with the 
outside world because this system does not depend on periph-
eral nerves and muscles but directly uses brain signals to assist 
or repair sensory-motor functions (1-3). Unlike the traditional 
input machines (keyboard, mouse, stylus pen, etc.), the BCI 
reads the brain signals, translates these signals into actions, and 
commands that can control the computer. BCI system appears 
as a promising communication platform for persons suffering 
from severe paralysis (i.e., persons suffering from amyotrophic 
lateral sclerosis).
  BCI has been intensively studied during the last decades by 
numerous researchers, and scientific and technological advanc-
es have accelerated the development of BCI. There are different 
techniques to record brain activity by BCIs, and different appro

aches have been utilized to translate brain signals into the out-
put actions of an external effector (1-3). Non-invasive BCI, es-
pecially that based on electroencephalogram (EEG) signals, has 
been developed to implement control over external devices. 
For instance, the analysis of modulations from the P300 has led 
to highly accurate decoding of the letters on the screen to which 
a subject has attended (4). However, the main shortcoming of 
this technique is the classification accuracy of BCI because of 
the low spatial resolution and low signal-to-noise ratio (SNR). 
On the other hand, invasive methods can perform the decod-
ing much more accurately since there is both an increase in spa-
tial resolution and the SNR. The BCIs using spiking signals from 
multiple neurons recorded with intracortical electrode implants 
showed the best performance (5-7); however, recording from 
intracortical implants can be unstable due to the response of 
brain tissue to the implant (8) and changes of the neuronal ac-
tivity-behavior relationship across time (9). Thus, intracortical 
recording based BCI currently seems to have significant limita-
tions for long-term application. A useful alternative to intracor-
tical neural signals, is the electrocorticogram (ECoG). A num-
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ber of studies have shown that various movement parameters 
can be decoded using ECoG (10,11). However, most of these 
BCI studies have focused on arm movement or motor imagery, 
and so, to increase the usefulness and applicability of the ECoG 
BCI, it is necessary to diversify the types of control signals that 
can be used to discriminate between multiple classes. 
  In this study, we adopted a simple eye movement task to use 
in attempting to predict a monkey’s saccadic eye movement di-
rection using epidural ECoG (eECoG). Since eye movements 
can be directly mapped to 2-dimensional space, the prediction 
and decoding of eye movements may be useful as control sig-
nals for BCI, allowing for interaction with the environment. Sev-
eral studies reported the BCI system based on the eye move-
ments, however, most of them decoded the ocular muscle’s ac-
tivity not a brain signal or used the eye tracker to tract the gaze 
movement (12,13). Here, we used a support vector machine 
(SVM) as a classifier and successfully decoded the four possible 
saccadic directions. We also quantified the feature’s contribu-
tion ratio to quantify which feature is more dominantly used for 
prediction.

MATERIALS AND METHODS

Subject and surgical procedures
Two adult male rhesus monkeys (Macaca mulatta, M14 and 
M5) were recruited for the experiments. The monkeys were hous
ed by paired way and the cage size was followed the Guide for 
the Care and Use of Laboratory Animals. The temperature was 
maintained at 24°C ± 4°C and humidity was maintained at 50% 
± 10%. The light was controlled as 12 hours for day and 12 hours 
for night. For the surgery, the monkeys were prepared with ster-
ile, anesthetic surgical procedures. A licensed veterinarian was 
present throughout surgery to induce anesthesia and to moni-
tor and record all measured physiological variables. One hour 
before the surgery, the animal was intramuscularly (IM) inject-
ed with atropine sulfate (0.08 mg/kg) to prevent excessive sali-
vation during surgery. One-half hour later, it was sedated with 
tiletamine-zolazepam (Zoletil®, 10 mg/kg, IM; Virbac Corpora-
tion, Carros, France), intubated, and placed under isoflurane 
anesthesia. A saline drip was maintained through an intrave-
nous catheter placed into a leg vein. Throughout the surgery, 
body temperature, heart rate, blood pressure, oxygen satura-
tion, and respiratory rate were continuously monitored. The 
primates were then placed in a stereotaxic frame, the scalp was 
incised, and a craniotomy of 2.5 cm radius was performed, but 
the dura was left intact. 
  Two monkeys were implanted with 2 customized multichan-
nel ECoG electrode arrays containing 32 gold electrodes (300 
μm in diameter) with an inter-electrode distance of 3 mm in the 
epidural space chronically (Fig. 1A). The rectangular type (4 by 
8) of the electrode patch was implanted in the left hemisphere 

for monkey 14, covering the superior parietal cortex including 
the intraparietal sulcus (IPS) and a portion of the frontal cortex, 
including the frontal eye field (FEF) and supplementary eye 
field (SEF). For monkey 5, the circular type of electrode patch 
(14) was inserted along the central line. The electrodes covered 
the bilateral FEF, SEF, and superior part of the parietal cortex. A 
head restraint device was also implanted for each monkey. Fi-
nally, the bone flap was replaced on top of the implant and sealed 
with dental cement, maintaining the implant in position. 

Behavioral task
The monkey was trained to perform a choice saccade (CS) task 
(15). Fig. 1B shows the pre-trained location and color associa-
tion; for example, a red colored dot in the upper part of the fig-
ure is associated with the direction in which the monkey should 
move its eyes when the white dot in the center of the panel is 
changed to red. The trial began when the animal fixed its eyes 
at the central white dot shown in Fig. 1C. Subsequently, 4 white 
target dots appeared in 4 peripheral visual fields. The target dots 
were present 7 degrees away from the central fixation points. 
After 400 or 600 ms, the central disc changed to 1 of the 4 colors 
associated with a particular target location. After an additional 
700 or 500 ms (i.e., 1,100 ms after the alternative spot onset), the 
central disc disappeared, providing the cue for the animal to 
make a saccade response. The mapping between color and lo-
cation was held constant throughout the training and experi-
ments. We collected ECoG data during 3 experimental sessions 
from each monkey. Each session included 200 trials per direc-
tion (800 trials total), on average. The minimum number of tri-
als was 189.

Data analysis
In the experiment, the monkey was seated in a custom-made 
primate chair facing the visual screen with head movement re-
stricted and a water reward system. The saccadic behavioral re-
sponse was monitored by an eye tracker with a sampling rate of 
500 Hz (Eyelink2; SR Research Ltd., Kanata, Canada). Saccade 
behavior was measured off-line using programs written in MAT
LAB (The Mathworks, Natick, MA, USA). The onset and offset of 
the saccades were determined by the velocity criteria (30°/s ra-
dial velocity for onset and 10°/s for offset).
  Electrical recordings were started one week after surgery. ECoG 
signals were digitized at a sampling rate of 512 Hz (Brainbox EEG-
1164 amplifier; Braintronics B. V., Almere, the Netherlands). As 
visual inspection, we rejected the trials that contain the severe 
motion artifact caused by monkey’s fiery movement. The mon-
key’s movement induced the trembling of the data cable, thus 
the noise was contaminated. The rejected trials were about 3–4 
in 200 total trials. Additionally, channels that did not clearly con-
tain ECoG signals (e.g., such as channels that contained flat sig-
nals or noise due to broken connections) were removed prior 
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to analysis. Overall, these procedures reduced the total number 
of channels to 57 in monkey 14 and 56 in monkey 5 (Fig. 1A). 
Signals were band-pass filtered from 1 Hz to 200 Hz and re-ref-
erenced using the common average reference (CAR). The filter 
was 2-way least-squares finite impulse response (FIR) filter pro-
vided by EEGLAB (16). The length of the filter was 3,000 sample 
point (i.e., 3*[sampling rate/low-cut frequency]). Then, the in-
dependent component (IC) analysis decomposition was con-
ducted to remove artifacts. We rejected the component which 
has a short, high-amplitude and single-electrode offset and we 
also tested a kurtosis value of the ICs which measures the peak-
edness of data (17). The analysis epoch was extracted as 2 con-
ditions, target on (TG) and saccade start (SS). In the TG condi-
tion, we aligned the signal to the color cue changing time and 
extracted the epoch −600 ms to 750 ms. In the SS condition, the 
epoch was extracted as −1,100 ms to 450 ms relative to the sac-

cade execution time.
  Time-frequency representation of the ECoG signals for each 
electrode was generated by the Morlet wavelet transformation 
(8–100 Hz). The length of the wavelets was 5 cycles of the lowest 
frequency (i.e., 625 ms). For each channel and each 100 ms time 
period, the normalized average power spectral densities were 
computed in 4 different frequency bands; the α-band (8–13 Hz), 
β-band (18–26 Hz), low γ-band (30–50 Hz), and high γ-band (70–
100 Hz) (18-20). Then, we selected the data in four time bins af-
ter the TG in the TG condition and 5 time bins before the SS time 
in the SS condition. The power values of each frequency bin (4), 
time window (4 for TG and 5 for SS) and channel (57 for M14 
and 56 for M5) were used as input features (a feature vector) for 
classification analysis. The feature vector obtained from each 
trial was labeled by the target direction.
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Fig. 1. Electrode position and CS task. Two types of electrode patches were implanted into the monkey’s 
cerebral cortex. (A) The rectangular type (4 by 8) of the electrode patches were implanted in the left hemi-
sphere for monkey 14, and the circular type (32 channels) of electrode patches were inserted along the 
central line for monkey 5. Normal channels are shown as yellow circles, and bad channels are shown as 
gray circles. (B) The associations between color and spatial location shown were pre-trained before the in-
activation experiments. (C) The visual events in the trial are schematically depicted along the time line: the 
appearance of the fixation target at the center, display of four alternative gray targets in the periphery, the 
onset of a color cue at the center, the color-cue turning-off signaling when to make the saccade, and the 
saccade to the color-matched target.
CS = choice saccade.
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Classification
We decoded the brain signal with 3 different comparison types: 
4 for each direction (4d), left vs. right (LR, left: 135°+225°, right: 
45°+315°) and top vs. bottom (TB, top: 45°+135°, bottom: 225°+ 
315°). For classification, we used a SVM (21) implemented in 
the LibSVM toolbox (National Science Council of Taiwan, Taic-
hung, Taiwan) (22) with a linear kernel. The dimensionality of 
the feature vectors was reduced by adopting SVM-based recur-
sive feature elimination (SVM-RFE) (23,24). We ranked the fea-
tures by the weights value and selected the top features above a 
+2-standard deviation. To estimate accuracies, we used a 10-fold 
cross-validation in which the data was permuted and partitioned 
into 10 blocks of equal size. In each of the 10 folds, 9 blocks were 
used for training the classifier and tested on the 1 remaining 
block. Each block was used for testing once.
  Based on Kübler et al. (25), we set the threshold for correct 
responses at 70% for the 2 classes because verbal communica-
tion with a language support program is possible at that level.

Spatio-spectro-temporal contributions
To calculate the directional information that could be extracted 

from each cortical area, each sub-band and each time bin in 
the eECoG signal, we quantified the spatio-spectro-temporal 
contribution of brain activity for predicting each target direc-
tion. We calculated the weight value’s ratio from the features’ 
weight magnitude which was derived from adopting the SVM-
RFE algorithm (26). Three different contents were calculated 
from wch, wfreq, and wtime, which is the weight derived from the 
SVM-RFE at electrode ‘ch,’ frequency ‘freq,’ and time bin ‘time’ 
in each decoding model. 
 

  The spatial contribution Ws(ch) of each recording electrode 
‘ch’ was quantified based on the ratio of the value of the weight 
for the frequency bin and the time lag in the recording electrode 
to the total weight of all the frequency bins and time lags (Equa-
tion 1). The spectral contribution Wf(freq) of each frequency 

To estimate accuracies, we used a 10-fold cross-validation in which the data was permuted and 

partitioned into 10 blocks of equal size. In each of the 10 folds, 9 blocks were used for training the 

classifier and tested on the 1 remaining block. Each block was used for testing once. 

Based on Kübler et al. (25), we set the threshold for correct responses at 70% for the 2 classes 

because verbal communication with a language support program is possible at that level. 

Spatio-spectro-temporal contributions 

To calculate the directional information that could be extracted from each cortical area, each sub-band 

and each time bin in the eECoG signal, we quantified the spatio-spectro-temporal contribution of 

brain activity for predicting each target direction. We calculated the weight value's ratio from the 

features' weight magnitude which was derived from adopting the SVM-RFE algorithm (26). Three 

different contents were calculated from wch, wfreq, and wtime, which is the weight derived from the 

SVM-RFE at electrode ‘ch,’ frequency ‘freq,’ and time bin ‘time’ in each decoding model.  

The spatial contribution Ws(ch) of each recording electrode ‘ch’ was quantified based on the ratio 

of the value of the weight for the frequency bin and the time lag in the recording electrode to the total 

weight of all the frequency bins and time lags (Equation 1). The spectral contribution Wf(freq) of 

each frequency band ‘freq’ and the temporal contribution Wt(time) of each time bin ‘time’ (Equations 

2 and 3) were also calculated in the same way as the spatial contribution. Equation 1 quantifies the 

contribution ratio of each channel for predicting the directions across all the frequency and time bins 

and Equations 2 and 3 quantify the contribution ratio of each frequency band and time bin, 

respectively. These values can be interpreted as how each feature contributes to the decoding 

performance.  
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Fig. 2. Decoding accuracy. The decoding accuracy was calculated in three conditions (left vs. right, top vs. bottom, and 4 directions), 3 sessions, and 2 epoch types (TG and 
SS). The decoding performance was significantly higher than the chance level (50% for 2 classes and 25% for 4 classes) for M14 (A, B, C) and M5 (D, E, F), respectively. The 
horizontal line means the chance level.
TG = target on, SS = saccade start.
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band ‘freq’ and the temporal contribution Wt(time) of each time 
bin ‘time’ (Equations 2 and 3) were also calculated in the same 
way as the spatial contribution. Equation 1 quantifies the con-
tribution ratio of each channel for predicting the directions across 
all the frequency and time bins and Equations 2 and 3 quantify 
the contribution ratio of each frequency band and time bin, re-
spectively. These values can be interpreted as how each feature 
contributes to the decoding performance. 

Ethics statement
The study was performed after receiving approval of the Institu-
tional Animal Care and Use Committee (IACUC) in Seoul Na-
tional University Hospital (IACUC approval No. 13-0314).

RESULTS

We trained the monkeys to make a saccade movement accord-
ing to the color of the cue. The monkeys responded correctly to 
the target directions in 89% and 91% of trials on average across 
three sessions, for M14 and M5, respectively.

Decoding accuracy
The decoding performances were significantly higher than chance 
level for both monkeys (Fig. 2). For M14, the average prediction 
accuracies over the total sessions were 77.0%, 82.7%, and 41.6% 
for the LR, TB, and 4d classification conditions, respectively (Fig. 

2A-C). For M5 (Fig. 2D-F), the accuracies were 78.9%, 86.5%, and 
45.7% for the LR, TB, and 4d, respectively (Table 1). These val-
ues were significantly higher than chance level, 50% for 2 class-
es and 25% for 4 classes. There was no difference between the 
LR and TB condition and between sessions. 
  We also calculated the confusion matrix to see the decoding 
tendency. As you can see in Fig. 3, prediction of 45° was more 
accurate than other degrees for both monkeys. In contrast, the 
opposite direction, at 225°, had the lowest accuracy.

Weight contribution ratio
In the spatial contribution ratio, the electrodes over the FEF, SEF, 
and superior parietal lobule (SPL) areas, which are known as 
the oculomotor area, showed a higher contribution ratio than 
the other electrodes for both monkeys. There is the left domi-
nancy of the contribution for M5, which means that the elec-
trodes in the left hemisphere play a more important role in dis-
crimination. In the spectral contribution, the α-band was used 
as the dominant feature for decoding the saccadic direction for 
both monkeys in both time epochs. In the TG period, the signal 
from the time bin (100 to 200 ms) was mainly used to determine 
the saccadic direction and gradually decreased as time passed. 
In contrast, in the SS condition, the temporal contribution ratio 
gradually increased with proximity to the saccadic onset time, 
that is, the data just before the saccade onset is the most infor-
mative for decoding. 

Fig. 3. Confusion matrix on the condition of the “TG” and “SS.” The confusion matrix of the actual 4 directions (45°, 135°, 225°, 315°) and the predicted directions was calcu-
lated for 2 epoch types for Monkey 14 (A, B) and Monkey 5 (C, D), respectively.
TG = target on, SS = saccade start.
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Table 1. Decoding accuracy

Subject Condition
Target on Saccade start

Session 1 Session 2 Session 3 Average (SD) Session 1 Session 2 Session 3 Average (SD)

M14 Left vs right 81 74 72 76 (4.73) 76 78 77 77 (1.00)
Top vs bottom 78 78 79 78 (0.58) 86 82 80 83 (3.06)
4 directions 45 39 38 41 (3.79) 44 42 39 42 (2.52)

M5 Left vs right 78 84 73 78 (5.51) 75 84 77 79 (4.73)
Top vs bottom 82 87 81 83 (3.21) 86 86 87 86 (0.58)
4 directions 42 43 43 43 (0.58) 43 49 45 46 (3.06)
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DISCUSSION

In the present study, we developed a BCI paradigm using eECoG 
signals related to eye movement and successfully decoded sac-
cadic directions before saccade execution time. Across three 
sessions, the decoding accuracies were maintained above the 
chance level for both monkeys. 
  As shown in Fig. 4, the electrodes over the FEF, SEF, and SPL 
showed a higher significant contribution for decoding saccadic 
directions. These results were consistent with previous neuro-
scientific findings that neurons in the brain area known as the 
oculomotor area are mainly related to saccadic movement plan-
ning, preparation and execution (15,27). Especially for M5, left 

hemispheric bias was shown in the spatial contribution ratio, in 
other words, the contribution magnitude of the electrodes in 
the left hemisphere was higher than in the right hemisphere. 
This seems to indicate that left hemispheric activity is more cru-
cial for decoding eye movement directions, while activities in 
the right hemisphere are less important for classification. How-
ever, these inter-hemispheric imbalances resulted in no differ-
ence of decoding accuracy between M14 and M5. Therefore, 
more evidence is required to provide for a more concrete expla-
nation.
  In the spectral domain, the α-band was dominantly used for 
classification. This may be related to the oscillatory multiplex-
ing according to functions. Several studies reported that the α 

Fig. 4. Spatial-spectro-temporal contribution ratio. (A-D) The channel contribution weight is presented as a spatial map. (E-H) The frequency contribution was presented as the 
weight ratio of each frequency band: α, β, low γ, and high γ. (I-L) The time contribution weight ratio graph. Error bars indicates SEM.
SEM = standard error of the mean.
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frequency band is hypothesized source of variability in saccadic 
response latency and control oscillations (28,29). Cortical and 
thalamocortical α oscillations is known to reflect cyclic fluctua-
tion between low and high excitability neuronal states (30,31). 
Schizophrenia patients are generally characterized to depart 
from the healthy persons on the proportion of fast reaction time 
saccades (32,33) and anti-saccade error rate (33,34). Interest-
ingly, EEG α oscillation dynamics during resting state and stim-
ulus evoked are abnormal in schizophrenia patients (35). Kelly 
et al. (36) also reported that when using the α-band power of 
the parieto-occipital area as the feature, they classified the spa-
tial attention direction. Similarly, van Gerven and Jensen (37) 
used the α-band power over the parietal area to discriminate 
the cover spatial attentional direction. Consistent with previous 
studies, our results also showed that the oscillation of α frequen-
cy band is crucial for the discrimination of saccadic direction.
  In the temporal contributions, the activity after the target on-
set and before the saccade execution were the highest among 
the time bins and the contribution values were gradually de-
creased as the time bin is farther from the cueing time and the 
saccadic execution. This result suggests that the brain signal 
just after the target onset and just before the movement execu-
tion are most informative compared with other time bins, in 
other words, the brain signal after target on and before the exe-
cution contains a suitable information for differentiating eye 
direction and such information decreases as time passes. Al-
though it is a bit baffling to simply interpret the BCI result into 
neuroscientific view, the brain signal relates to a saccade plan-
ning or an allocation of covert spatial attention can be decoded 
during this interval (38).
  Because of less invasiveness from non-penetrating charac-
teristics of epidural grid electrodes, we selected epidural type of 
ECoG as the recording method. However, in macroelectrodes, 
neural firings are summated as a field potential and some in-
formation can be lost from lower spatial resolution than micro-
electrode recordings. In addition, eECoG instead of subdural 
positions, some signals may be lost by dura. Thus, the perfor-
mance of directional predictions was limited especially in the 
4d classification.
  The saccade based BCI paradigm has several potential ad-
vantages over conventional BCI systems which use the brain 
signal related to motor imagery or arm movement signal. First, 
there is direct mapping between the eye movement space and 
the 2D cursor system. Single eye movements can be projected 
in the 2D space, allowing it to be specialized for 2D cursor con-
trol or alternative target selection. To be practical, BCI systems 
need to provide users with a sufficient level of accuracy and con-
trol, but also need to be easy to use and stable over the long term. 
From this point of view, eye movement based BCI may provide 
an intuitive and convenient communication platform for users. 
Second, eye movement is tightly linked with top-down atten-

tional systems. Several previous studies have reported an asso-
ciation between saccadic eye movement and spatial attentional 
allocation (39,40). Therefore, since decoding eye movements 
can be interpreted as decoding where the subject places atten-
tion, a saccade based BCI supposedly provide several advan-
tages for various applications. Additionally, saccade BCI might 
be more advantageous than direct eye tracking method, because 
saccade BCI can predict the eye movement’s direction before 
actual movement execution. Therefore, suggested saccade BCI 
can exhibit faster performance than eye tracking system.
  As conclusion, in this paper, we developed a saccade based 
BCI paradigm in non-human primates using eECoG signals. 
We demonstrated that brain activity related to saccadic eye move-
ment can serve as a control signal for BCI that does not require 
much training time and is easy to use. Our future aim is to ad-
vance the paradigm in actual on-line BCI applications for real-
time uses.
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