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Interaction between Intrathecal Gabapentin and Adenosine in the

Formalin Test of Rats

Spinal gabapentin and adenosine have been known to display an antinociceptive
effect. We evaluated the nature of the interaction between gabapentin and adeno-
sine in formalin-induced nociception at the spinal level. Male Sprague-Dawley rats
were prepared for intrathecal catheterization. Pain was evoked by injection of for-
malin solution (5%, 50 uL) into the hindpaw. After examination of the effects of
gabapentin and adenosine, the resulting interaction was investigated with isobolo-
graphic and fractional analyses. Neither gabapentin nor adenosine affected motor
function. Gabapentin or adenosine decreased the sum of the number of flinches
during phase 2, but not during phase 1 in the formalin test. Isobolographic analy-
sis, in phase 2, revealed an additive interaction between gabapentin and adeno-
sine. Taken together, intrathecal gabapentin and adenosine attenuated the facili-
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tated state and interacted additively with each other.
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INTRODUCTION

Gabapentin is an antiepileptic agent that attenuates hyper-
algesia in models of tissue injury pain without affecting acute
noxious stimuli threshold (1, 2). The antinociceptive effect
of gabapentin is more potent after intrathecal rather than
systemic delivery (3). These findings suggest that gabapentin
can alter the facilitated state which occurs secondary to the
persistent afferent input generated by a local tissue injury
and that the major site of action of gabapentin may be the
spinal cord. Several receptors, including N-methyl D-aspar-
tate (NMDA) receptors, have been suggested as the sites of
action of gabapentin (4).

Adenosine is an endogenous purine compound with a mod-
ulatory effect on nociceptive information at the spinal level
(5). Although intrathecal adenosine decreases the facilitated
state (6-8), the effect for acute nociception is different accord-
ing to tested stimuli (7-10). The antinociception of intrathe-
cal adenosine is mediated through adenosine receptors in the
dorsal horn of the spinal cord (11).

The above findings suggest that gabapentin and adeno-
sine may exert their actions mainly on the facilitated state
at the spinal level. However, the drug interaction between
gabapentin and adenosine has not yet been determined.

Thus, the aim of the current study was to observe the effects
of intrathecal gabapentin and adenosine on the formalin-
evoked pain behavior and to determine the characteristics of
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their interaction at the spinal level.

MATERIALS AND METHODS

The Institutional Animal Care Committee of the Research
Institute of Medical Science at Chonnam National Univer-
sity approved all experiments. Male Sprague-Dawley rats
weighing 250-300 g were used. Rats were housed in group
cages on a 12 hr night/day cycle with free access to food and
water at all times. An intrathecal catheter was implanted
during enflurane anesthesia previously described (12). Rats
showing neurological deficits postoperatively were not used
for subsequent experiments. Experiments started 4-5 days
after intrathecal catheter insertion.

Drugs used in this study were as follows: gabapentin (1-
[aminomethyl} cyclohexanacetic acid, Sigma Chemical Co.,
St., Louis, MO, U.S.A.), adenosine (Research Biochemical
Internationals, Natick, MA, U.S.A.). Gabapentin and adeno-
sine were dissolved in normal saline and dimethylsulfoxide
(DMSO), respectively. Intrathecal administration of drugs
was performed using a hand-driven, gear-operated syringe
pump. All the drugs were delivered in a volume of 10 uL
solution.

Pinna reflex, corneal reflex and motor function were exam-
ined after intrathecal administration of gabapentin (300 ug,
n=5) and adenosine (300 1g, n=5). Motor function was assess-
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ed by the placing-stepping reflex and the righting reflex.
The placing-stepping reflex was checked by drawing the
dorsum of either hind paw across the edge of the table. Nor-
mal rats try to put the paw in front of the other when they
walk. The righting reflex was evaluated by placing the rat
horizontally with its back on the table. Normal rats give rise
to an immediate and coordinated twisting of the body to an
upright position. These behaviors were measured at 5, 10,
20, 30, 40, 50 and 60 min after intrathecal administration
of gabapentin and adenosine, and judged as either present
or absent.

The formalin test was performed as a nociceptive model.
Subcutaneous injection of formalin solution (5%, 50 uL) into
the plantar surface of the hindpaw with a 30 gauge needle
produces the specific behavior of flinching/shaking of the
affected paw. This formalin-induced behavior was regarded
as a pain response and monitored for 60 min. The number
of flinching/shaking response was counted for 1 min periods
at 1-2 min and 5-6 min, and at 5 min intervals at 10-60 min.
Two different phases were observed after formalin injection:
phase 1, 0-9 min after formalin injection, and phase 2, 10-
60 min after formalin injection.

On the experiment day, rats were randomly assigned to
one of the drug treatment groups. The drug vehicles were
used as a control (saline, n=7; DMSO, n=5). Rats received
only one dose of drug or drug combination. The formalin
test was carried out only once in the same rat.

For evaluation of the time course and dose-response of the
antinociceptive action of gabapentin (10 ug, n=7; 30 ug,
n=6; 100 ug, n=7; 300 ug, n=7) and adenosine (10 yg, n=6;
30 ug, n=6; 100 ug, n=9; 300 ug, n=7), both agents were
intrathecally administered.

Intrathecal drugs were injected 10 min before formalin
injection. Each EDso value (effective dose producing a 50%
reduction of control formalin response) of two agents was
separately determined.

In order to determine the nature of the pharmacologic inter-
action between gabapentin and adenosine, an isobolographic
analysis was used (13). Because both gabapentin and adeno-
sine did not alter the phase 1 response, an isobolographic
analysis was performed only during phase 2 of the formalin
test. This method is based on comparisons of doses that are
determined to be equi-effective. The EDso values were cal-
culated for each drug from the dose-response curves of the
agents alone. Then, gabapentin and adenosine were admin-
istered concurrently at doses of the EDso values (n=7) and
fractions (1/2, n=6; 1/4, n=7; 1/8, n=8) of EDso of each drug.
The mixture was delivered 10 min before the formalin test.
The EDso values of the individual drugs given in combina-
tion were calculated from the dose-response curves of the
combined drugs, and then these values were used for plot-
ting the isobologram. The isobols were drawn by plotting
the experimentally determined EDso value of gabapentin on
the X axis and that of adenosine on the Y axis delivered

M.H. Yoon, J.I. Choi, H.C. Park, et al.

alone and in combination. The theoretical additive dose com-
bination was calculated. From the variance of the total dose,
individual variances for the agents in the combination were
obtained. Furthermore, to describe the magnitude of the inter-
action, a total fraction value was calculated as follows.

Total fraction value

=EDso of drug 1 combined with drug 2/EDso for drug 1

given alone
+EDso of drug 2 combined with drug 1/EDso for drug 2
given alone

The fractional values indicate what portion of the single
EDso value was accounted for by the corresponding EDso value
for the combination. Values near 1 indicate an additive inter-
action, values greater than 1 imply an antagonistic interac-
tion, and values less than 1 indicate a synergistic interaction.

Data are expressed as mean & SEM. The time response data
are presented as the number of flinches. The dose-response
data are presented as the sum of the number of flinches in
each phase. To calculate the EDso values of each drug, the
number of flinches was converted to “percentage of control”
as follows:

Sum of phase 1/2 count with drug

% of control= X 100
Sum of control phase 1/2 count

Dose-response data were analyzed by one-way analysis of
variance with Scheffe for post hoc. The dose-response lines
were fitted using least-squares linear regression, and EDso
and its 95% confidence intervals were calculated according
to the previous method (14).

The difference between theoretical EDso and experimental
EDso was examined by t-test. Differences were considered to
be significant if p<0.05.

RESULTS

The total number of rats used in this study was 102 with
5-9 rats per group. Neither gabapentin nor adenosine affect-
ed pinna reflex, corneal reflex or motor tone after intrathecal
administration.

Subcutaneous injection of formalin into the hindpaw result-
ed in a biphasic flinching response of the injected paw. Fig. 1
shows the time course of the effect of intrathecal gabapentin
and adenosine, administered 10 min before formalin injec-
tion, in the formalin test.

The sum of the number of flinches in the saline or DMSO
control group was not different from each other in phase 1
(22£2vs. 18%1) or phase 2 (168 =18 vs. 165+ 17). Intra-
thecal gabapentin and adenosine did not alter the flinching
response during phase 1. During phase 2, both drugs pro-
duced a dose-dependent suppression of the flinching response
(Fig. 2).

The phase 2 EDso values of gabapentin and adenosine were
54 and 92 g, respectively. Thus, the calculated dose ratio
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Fig. 1. Time-effect curve of intrathecal gabapentin (A) and adenosine (B) for flinching in the formalin test. Drugs were administered 10 min
before formalin injection. Formalin (F) was injected at time 0. Data are presented as the number of flinches. Each line represents mean =

SEM of 5-9 rats.
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Fig. 2. Dose-response curve of intrathecal gabapentin (A) and adenosine (B) for flinching during phase 1 and phase 2 in the formalin
test. Data are presented as the sum of the number of flinches. Gabapentin and adenosine dose-dependently decreased flinches during
phase 2, but not phase 1. Each line represents mean + SEM of 5-9 rats. Compared with vehicle, *p<0.01, 'p<0.001.

for gabapentin and adenosine was 0.59:1. Isobolographic
analysis conducted in phase 2 revealed an additive interac-
tion between gabapentin and adenosine. The experimental
EDso value did not differ from the theoretical EDso value
(Fig. 3). The EDso value of the gabapentin in the mixture of
gabapentin-adenosine was 60 g. The total fraction value
was 0.81, indicating an additive interaction (Table 1).

DISCUSSION

In the present study, intrathecal gabapentin and adenosine

had little effect on phase 1 response in the formalin test. In
contrast, these two drugs attenuated the phase 2 response.
These observations suggest that spinal gabapentin and adeno-
sine may alter the facilitated component of the response evoked
by persistent afferent input with no effect on acute nocicep-
tion.

The afferent input generated by formalin injection into
the paw is believed to release excitatory amino acids, such as
glutamate, which initiate a cascade through NMDA recep-
tors (15). The resulting cascade is thought to cause the exci-
tatory effect followed by a state of facilitation. Although the
antinociceptive mechanisms of action of spinal gabapentin
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Fig. 3. Isobologram for the interaction between intrathecal gaba-
pentin and adenosine during phase 2 in the formalin test. The
EDso values for each agent are plotted on the x- and y-axes, res-
pectively, with the thick lines representing the SEM of the EDso.
The straight line connecting each EDso value is the theoretical
additive line, where the point on this line is the theoretical additive
EDso (A). The experimental EDso point (B) was not significantly dif-
ferent from the theoretical EDso point (A), indicating an additive
interaction.

remain unclear, NMDA receptors seem to be relevant to the
antinociception of gabapentin. The NMDA receptors exist
in the substantia gelatinosa of the dorsal horn and are respon-
sible for the spinal nociceptive processing (16-18). Recent
studies have shown that gabapentin decreases glutamate con-
centrations and inhibits the release of glutamate and gluta-
matergic synaptic transmission presynatically (19-21). Fur-
thermore, although there is no direct evidence of gabapentin
binding to NMDA receptors, an agonist at the nonstrychnine
site of NMDA receptors reversed the antinociceptive effect
of gabapentin (4). These findings jointly suggest that spinal
gabapentin may act on the NMDA receptors, attenuating
the facilitated state. This antinociceptive effect of gabapentin
is consistent with previous data (22, 23).

It has been acknowledged that adenosine may play an im-
portant role in the modulation of nociceptive inputs (5).
Adenosine receptors have been identified in the substantia
gelatinosa on intrinsic neurons (10). Thus, the antinocicep-
tive action of adenosine may be mediated through spinal
adenosine receptors. In this study, particularly, the effect of
spinal adenosine for the facilitated state is in line with other
reports (6-8). However, the effect for acute pain is consistent-
ly or differently noted. It has been reported that the phase 1
flinching response of the formalin test was not inhibited by
an adenosine agonist in the spinal cord (6), but reversed by
the other agonist (8). It has been demonstrated that intrathe-
cal adenosine had little effect on the withdrawal latency to
thermal stimulation (9), but increased the tail immersion
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Table 1. EDso (ug), slope with 95% confidence intervals and
TFV of intrathecal drugs

EDso (95%Cl) Slope (95%Cl)

TRV
Phase 1 Phase2 Phase1 Phase?2
Gabapentin 31 - 535 - -48.3 -
(39.7-72.1) (-48.3~-30.2)
Adenosine 33 - 92.4 - -32.9 -
(52.4-162.8) (-47.1~-18.9)
Gabapentin® 28 - 59.6 - -314 0.81
+Adenosine (10.2-349.5) (-54.3~-8.6)

EDso, effective dose producing a 50% reduction of control formalin
response; TFV, total fraction value; n, number of rats.

*This value means the dose of gabapentin in the mixture of gabapentin
and adenosine

latency (10). Although such discrepancy of adenosine for acute
nociception has not been fully understood, it may be caused
by the different types of tested stimuli and difference in drugs
and dosages.

Isobolographic analysis of the current study showed an
additive interaction between gabapentin and adenosine in
the phase 2 response. These results indicate that gabapentin
cannot potentiate the antinociceptive action of adenosine itself
in the facilitated state evoked by formalin and, vice versa. If
fundamentally different mechanisms jointly contribute to the
observed actions of two drugs on a given endpoint, such as
antihyperalgesia, a synergistic interaction is considered like-
ly. However, if mechanisms of action of one drug may be in-
volved in those of another drug, a synergistic interaction may
not be expected. It has been reported that adenosine may
decrease excitatory amino acids release and inhibit the NMDA-
mediated synaptic transmission or NMDA current (24-26),
which suggest that the NMDA receptors may be affordable
to the antinociceptive action of adenosine. As above men-
tioned, gabapentin may act on the NMDA receptors. There-
fore, it could be assumed that the NMDA receptors may be
linked to the antinocicpetive action of gabapentin and adeno-
sine. Additionally, it has been reported that adenosine recep-
tors were involved in the antinociception of gabapentin (4).
These observations suggest that gabapentin and adenosine
may have common pharmacologic sites of action. Thus, gaba-
pentin may not interact with adenosine in a synergistic fash-
ion. Another possible factor determining the properties of
drug interactions may be the stimulus intensity of nocicep-
tion. Previous report has shown that morphine interacts syner-
gistically with pentobarbital at a low intensity stimulus, while
interacting additively at higher intensity stimulus (27). The
extent of antinociception produced was greater with the lower
stimulus intensity (28). Hence, injection of lower concen-
trations of formalin, which are believed to be a milder stim-
ulus, would reveal a synergy.

In conclusion, gabapentin and adenosine exhibit a paral-
lel profile of spinal antinociception in the facilitated state
without affecting motor function while interacting with each
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other in an additive manner.
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