
INTRODUCTION

The RNA interference (RNAi) pathway was originally re-
cognized in Caenorhabditis elegans as a response to double-
stranded RNA (dsRNA) leading to sequence-specific gene
silencing (1). It soon turned out that RNAi is not restricted
to nematode and can be induced in Drosophila (2), Trypanoso-
ma (3), and vertebrates (4). Similar phenomena had been ob-
served in plants and fungi, where introduction of exogenous
transgenes silenced expression of the endogenous loci (5). These
phenomena were called co-suppression (also termed post-tran-
scriptional gene silencing, PTGS) and quelling, respectively.
Co-suppression was shown later to be mediated by dsRNA
as a guide molecule, establishing a mechanistic link to RNAi.
This wide range of silencing pathways including RNAi, co-
suppression (PTGS), and quelling is now collectively called
RNA silencing and appears to be present in most, if not all,
eukaryotic organisms. The common key player in RNA silenc-
ing is small RNA of 21-28 nucleotides (nt) in length. Two
classes of small RNAs are involved in RNA silencing: small
interfering RNAs (siRNAs) and microRNAs (miRNAs).

Because of the exquisite specificity and efficiency, RNAi has
drawn much attention as a powerful gene knockdown tech-
nique. Previous knockdown techniques, such as antisense ol-
igonucleotides and ribozymes, usually show low efficiency in
vivo and require empirical screening of a number of candidates
before acquiring effective molecules (6). SiRNAs used for
RNAi can inhibit gene expression over 90% in most genes.
Although a guideline for constructing the best siRNA is not

established yet, testing 3-4 candidates are usually sufficient
to find effective molecules. Technical expertise accumulated
in the field of antisense oligonucleotide and ribozyme is now
being quickly applied to RNAi, rapidly improving RNAi
techniques.

In this review, the basic mechanism of small RNA-mediated
silencing will be discussed. I will also describe current RNAi
techniques and overview the current applications of RNAi in
functional genomics and gene therapy.

SiRNA AND RNAi

RNAi is mediated by small interfering RNAs (siRNAs)
that are generated from long dsRNAs of exogenous or endoge-
nous origin (7-10). Long dsRNAs are cleaved by a ribonu-
clease III (RNase III ) type protein Dicer. Dicer homologues
can be found in S. pombe, C. elegans, Drosophila, plants, and
mammals, suggesting that small RNA-mediated regulation
is evolutionarily ancient and may have critical biological roles.
SiRNA generated by Dicer is a short (~22-nt) RNA duplex
with 2-nt overhang at each 3 end (Fig. 1). Each strand con-
tains a 5 phosphate group and a 3 hydroxyl group. SiRNA
is incorporated into a nuclease complex called RISC (RNA-
induced silencing complex) that targets and cleaves mRNA
that is complementary to the siRNA. The initial RISC con-
taining a siRNA duplex is still inactive until it is transformed
into an active form (RISC*) (11), which involves loss of one
strand of the duplex by an RNA helicase activity. The iden-
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tity of the RNA helicase is currently unknown. Dicer has a
conserved helicase domain but it remains to be seen whether
Dicer actually catalyzes this reaction.

Biochemical studies using Drosophila S2 cell extracts and
human HeLa cell extracts revealed the presence of argonaute
family proteins in the RISC. Argonaute-2 (AGO2) was found
in Drosophila and two isoforms of eIF2C (eIF2C1 and eIF2C2)
in human. Argonaute family proteins are ~100-kDa highly
basic proteins that contain two common domains, PAZ and
PIWI domains (12). PAZ domain consisting of ~130 amino
acids is usually located at the center of the protein. The C-
terminal PIWI domain containing ~300 amino acids is high-
ly conserved. The functions of these domains are largely un-
known but the PIWI domain of human eIF2C was recently
shown to be essential for its interaction with Dicer (13). Deple-
tion experiment of the eIF2C proteins by RNAi showed that
they are required for RNAi (13). The biochemical functions
of argonaute family proteins are still unclear.

The identity of the nuclease that executes the cleavage of
mRNA remains elusive. Partially purified human RISC is
estimated to be between 90 and 160-kDa leaving little room
for an additional protein except for eIF2C (14). Genetic stud-
ies of C. elegans, Drosophila, Neurospora crassa and plants reve-
aled several other genes that may be involved in RNA silenc-
ing although their biochemical roles remain to be determined.

Persistent RNAi has been observed in C. elegans (15) and

N. crassa (16) but not in D. melanogaster (17) and mammals
(18). RNAi in C. elegans can be transmitted to the progeny
(F1) although the effect gradually diminishes. RNAi in human
cells is transient and ususally lasts less than five doubling times.
It was reported that SiRNAs are amplified by RNA-depen-
dent RNA polymerase in nematode and fungi, while flies and
mammals seem to lack this enzyme.

MicroRNA AND GENE SILENCING

Hundreds of small RNAs have been recently found in hu-
man as well as in C. elegans, D. melanogaster, and plants (19-
29). These RNAs, termed microRNAs (miRNAs), are indis-
tinguishable from active siRNAs in their biochemical proper-
ties. They are ~22-nt in length and contain 5 phosphate and
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Fig. 2. A model for miRNA biogenesis and function. miRNA genes
are transcribed by an unidentified polymerase to generate the pri-
mary transcripts, referred to as pri-miRNAs. Illustrated in the upper
left is the clustered miRNA such as miR-23~27~24-2 of which the
pri-miRNA is polycistronic. Illustrated in the upper right is the miRNA
such as miR-30a of which the pri-miRNA is monocistronic. The first-
step processing (STEP 1) releases pre-miRNAs of ~70-nt that is
recognized and exported to the cytoplasm. The processing enzyme
for the STEP 1 and the export factor are unidentified. Upon export,
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processing (STEP 2) to produce mature miRNAs. The final prod-
uct may function in a variety of regulatory pathways, such as trans-
lational control of certain mRNAs. The question marks indicate
unidentified factors.
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3 hydroxyl group. An interesting common feature of mi-
RNAs, which is not shared by siRNAs, is that miRNA se-
quences are found in the stem of a stem-loop structure (19-
22) (Fig. 2). The stem-loops are usually imperfect hairpins of
over 70-nt with some bulges and internal loops. Recent stud-
ies showed that miRNAs are transcribed as long primary tran-
scripts (pri-miRNAs) that are trimmed into the characteris-
tic ~70-nt stem-loop forms (pre-miRNAs) (30) (Fig. 2). This
initial processing occurs mainly in the nucleus (30). The
identities of RNA polymerase and the nuclear processing
enzyme have not been determined yet. Pre-miRNAs of
~70nt stem-loop get exported to the cytoplasm and sub-
jected to the second processing to generate the final product
of ~22-nt mature miRNAs. Dicer, the siRNA processing
enzyme, executes the processing of ~70-nt RNAs into mature
miRNAs (31-34).

The paradigm for the function of miRNAs has been orig-
inally provided by lin-4 and let-7 RNA, which were identi-
fied by genetic analysis of C. elegans developmental timing
(35, 36). They were initially called small temporal RNAs
(stRNAs) because of their temporal expression pattern and
their roles in temporal regulation. lin-4 and let-7 RNA act
as post-transcriptional repressors of their target genes when
bound to their specific sites in the 3 untranslated region of
the target mRNA (35, 37-40). The level of target mRNA does
not change, suggesting that the inhibition occurs at the level
of translation. Recently, bantem RNA from Drosophila has

been found to suppress apoptosis and stimulate cell prolifer-
ation by inhibiting translation of hid mRNA (41). bantem
RNA is expressed in a temporal and tissue-specific manner,
regulating tissue formation during development. Functions
of hundreds of other animal miRNAs are currently unknown.
However, given the diversity in sequences and expression pat-
terns, miRNAs are expected to play various roles in a wide
range of regulatory pathways (42).

Since animal miRNAs are only partially complementary to
their target mRNAs (43), it is difficult to search for the tar-
get mRNA. Plant miRNAs are different from animal miR-
NAs in their action mechanism. Some plant miRNAs show
high degree of complementarities to developmentally impor-
tant mRNAs (44). Plant MIR39 and MIR165/166 were
found to interact with specific mRNAs resulting in cleavage
of the mRNAs, indicating that these miRNAs act like siR-
NAs (45, 46). Thus siRNA-mediated RNAi and miRNA-
mediated translational inhibition appears to be determined
only by the degree of complementarity between the small
RNA and the target mRNA. Intriguingly, human let-7 RNA
was found to be a component of a RISC and can catalyze tar-
get cleavage if the mRNA has perfect complementarity to let-
7 RNA (47). Moreover, some components of miRNA-protein
complex (miRNP) such as eIF2C2 overlap with those of RISC
(14, 22, 47). It is an open question how RISC (RNAi machin-
ery) and miRNP (miRNA-protein complex) are different in
their compositions and functions.

PRACTICAL ASPECTS: TRANSFECTION OF
SYNTHETIC siRNAS

While the discovery of RNAi revolutionized genetic stud-
ies in C. elegans, development of RNAi techniques in mam-
malian cells was belated because long dsRNA nonspecifically
suppressed gene expression in mammalian cells. Long dsRNA
(over 50 bp) activates dsRNA-dependent protein kinase (PKR)
and 2 , 5 -oligoA synthetase leading to nonspecific translation-
al inhibition and RNA degradation, respectively (48, 49). This
pathway does not exist in embryonic stage, allowing specific
RNAi in mouse oocytes and embryos (4, 50). RNAi in somat-
ic cells was once thought to be not feasible but the limitation
was soon circumvented by Thomas Tuschl s group and oth-
ers by using synthetic siRNA duplexes (21-nt) that are too
short to induce non-specific inhibition (51-53) (Fig. 3). This
method involves transfection of synthetic siRNA into cultured
cells. A detailed user guide for siRNA is given at Tuschl lab s
homepage (www.rockefeller.edu/labheads/tuschl/sirna.html).
Because of its straightforward protocol, siRNA transfection is
the most widely used RNAi technique at present. Custom
synthesis service for siRNA is available from Dharmacon RNA
technologies, QIAGEN and Ambion. SiRNA can be deliv-
ered to living organisms as well, which opens the possibility
of applying RNAi in gene therapy. When siRNA was inject-

Fig. 3. Various strategies of RNAi in mammalian cells. (A) Long dsR-
NAs can induce specific RNAi in certain cell types such as oocytes
and embryos. Injected dsRNA is converted to siRNA in the cell. (B)
Chemically synthesized siRNA can be efficiently transfected into
a variety of cells using lipophilic reagents. (C) SiRNA can be pre-
pared in vitro from dsRNAs using recombinant Dicer protein. Diced
RNAs are purified based on their size (~21-nt) and transfected into
cells. (D) Short hairpin RNAs (shRNAs) are expressed in the nucle-
us from expression plasmids. The pol III-derived expression sys-
tem is shown here as an example. Upon export, shRNAs are pro-
cessed by Dicer releasing siRNAs. (E) ShRNA expression cassette
can be delivered by viral vectors such as retroviral vector, lentivi-
ral vector, and adenoviral vector. 
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ed to the tail vein of postnatal mice, it was delivered to a vari-
ety of organs including the liver, kidney, spleen, lung, and
pancreas (54, 55).

There are several factors that may influence the efficiency
of RNAi in mammalian system (56). First, the choice of the
target site is important. Originally, it was suggested that the
best target site is around the first 100-nt downstream of the
translation start site. However it is not clear yet which region
on mRNA is most vulnerable to RNAi. Secondary structures
and mRNA-binding proteins may influence the accessibili-
ty to siRNA, although no systematic study has been carried
out to compare the entire region of a given gene. In practical
terms, about four different siRNAs should be randomly cho-
sen throughout the entire mRNA and experimentally tested to
find the best working one. When designing siRNA, BLAST
sequence analysis is needed to avoid a chance that the designed
siRNA is complementary to other unrelated mRNA. Pro-
grams to design siRNA are now available at the Whitehead
Institute s biocomputing home (jura.wi.mit.edu/bio) and the
siRNA manufacturers sites (www.dharmacon.com and www.
qiagen.com).

Second, the transfection method makes a difference in the
outcome. SiRNAs can be efficiently transfected into cells when
lipophilic agents such as OligofectamineTM and TransIt-TKOTM

are used. OligofectamineTM is most frequently used because
of its low toxicity. Virtually 100% of HeLa and HEK293 cells
can be transfected using this method. Primary cells and T cell
lines that are usually difficult to transfect have also been trans-
fected with siRNAs at relatively high efficiencies. Transfec-
tion conditions such as transfection reagent, cell density, and
duration of incubation should be optimized for the given cell
type and the targeted gene. Apart from transfection using
lipophilic agents, electroporation have been successfully used
for some cell types such as T cells (57) and human hepatoma
cell line, Huh-7 (58). Massive cell death during electropora-
tion (over 50%) should be taken into consideration depend-
ing on the particular application.

Third, the turnover rate of the protein should be taken into
account because RNAi only aims at the mRNA not the pro-
tein itself. Generally, siRNA causes rapid reduction in mRNA
levels in 18 hr or less but stable proteins require a longer peri-
od for depletion. SiRNA-mediated RNAi lasts only for 3-5
cell doubling times, probably due to gradual dilution of
siRNA through cell division. Therefore multiple transfection
is necessary in cases that the protein is unusually stable or the
cells need to be grown for long time to observe the phenotype.

Fourth, it is possible that two or more highly expressed
genes are knocked down simultaneously but two siRNAs
seem to compete with each other, suggesting that the RNAi
machinery (protein factors such as argonaute family proteins)
may be limiting in human cells. Thus careful control of
siRNA concentration is required for simultaneous knock-
down of multiple genes.

Recently, an alternative method for siRNA preparation has

been developed. Long dsRNAs that are transcribed in vitro
using T7 RNA polymerase (or other RNA polymerases) are
incubated with recombinant Dicer to generate siRNAs (59,
60). The resulting diced products contain a mixture of siRNAs
binding to multiple sites on a target mRNA, eliminating the
need to design and test multiple individual siRNAs. Although
this method requires longer hand-on time than synthetic siR-
NA method does, it is easer to design and less costly. SiRNA
generation kits are available from several companies including
Gene Therapy Systems, Inc.

PRACTICAL ASPECTS: DNA-BASED EXPRES-
SION OF SMALL HAIRPIN RNA (shRNA)

Despite of the potent knockdown capabilities, the siRNA
transfection method has its weak points such as transient effect
and difficulties in transfection depending on cell types. Sta-
ble gene silencing was achieved by developing a new method
based on the expression of siRNAs from DNA templates (Fig.
3). The first type makes use of RNA polymerase III (pol III)
promoter such as U6 promoter (61-66), H1 promoter (67-
71) and tRNAVal promoter (72). An advantage of using the
pol III system is that transcription terminates at a stretch of
4 thymidines, making it possible to produce short RNA with
1-4 uridines at the 3 end. When short hairpin RNA (sh-
RNA) similar to miRNA is transcribed from pol III promoter,
shRNA gets processed by Dicer to generate siRNAs. To con-
struct an shRNA expression cassette, the gene-specific targeting
sequence (19~29-nt sequences from the target transcript sep-
arated by a short spacer from the reverse complement seq-
uences) is inserted between pol III promoter and terminator.
The loop (spacer) sequences appear to affect silencing effect.
For instance, it was suggested that two uridines placed at the
base of the loop were important for efficient silencing (67).
Kawasaki and Taira reported that the loop sequences from
miRNA (miR-23) helped the nuclear export and processing
of short hairpin, enhancing RNAi effect (72). Some argue
that longer stem (up to 29nt) is more efficient than shorter
ones (61, 73). However, there is no clear guideline to make
the best hairpin at the moment. This is partly because we do
not have sufficient understanding of small RNA processing.
Therefore, studies on small RNA processing would be impor-
tant for development of RNAi technique.

A similar approach to the shRNA method is to transcribe
~21-nt sense and antisense RNA separately from pol III pro-
moters (64-66). Although this method appears to provide
equally strong RNAi effects, it requires construction of two
expression cassettes so it does not seem to be as practical as the
shRNA strategy in most cases.

ShRNAs can also be generated from pol II promoters such
as human cytomegalovirus (CMV) immediate early promot-
er (74). Using pol II promoter would be advantageous in terms
of regulated expression of siRNA. A variety of inducible/



RNA Interference in Functional Genomics and Medicine 313

repressible promoters are available for specific expression. This
type of shRNA expression system has not been widely used
yet and needs further experiments to prove its efficiency.

The first-generation RNAi vectors were plasmid-based. A
selectable marker was embedded in the same plasmid, allowing
selection of transfected cells. However, plasmid-based shRNA
expression has limitations in cases where transfection efficien-
cy is low.

To overcome this problem, viral vectors were employed to
deliver shRNA expression cassette. Retroviral vectors are most
widely used among viral vectors for in vitro gene transfer and
in vivo gene therapy. Murine retrovirus-based vectors were
shown to be efficient in delivery of shRNA (68, 75-78). Lenti-
virus-based vectors were also tested and appear to be promis-
ing vehicles for RNAi because they are effective in infecting
non-cycling cells, stem cells, zygotes and their differentiated
progeny (70, 79). Adenoviral vectors are highly effective but
allow only transient expression of siRNA (80, 81). This prop-
erty may be advantageous in some applications such as cancer
gene therapy, where persisted expression is not necessary (81).

FUNCTIONAL GENOMICS

In classical forward genetics, genes were first defined by the
description of their phenotype, which is then followed by the
search for each gene at the molecular level. With the whole
human genome sequenced and the predicted ~30,000-40,000
protein-coding genes, reverse genetics to probe the function
of the predicted genes seems more effective and reasonable
strategy. However, reverse genetics using knockout technique
by homologous recombination takes too much time and reso-
urces. Knockdown techniques such as antisense and ribozyme
proved to be far less efficient in inhibiting gene expression for
this purpose.

A breakthrough was made by discovery of RNAi in C. ele-
gans in 1998 when Fire et al. reported that dsRNA can induce
strong and specific silencing of homologous genes (1). RNAi
can be induced in this nematode worm by injection of dsRNA
into gonad, by soaking the worm in dsRNA or by simply
feeding the worm of bacteria engineered to express dsRNA.
RNAi is now being used for studies of individual genes as
well as for genome-wide genetic screening. A bacterial library
for inactivation of 16,757 of the worm s predicted 19,757
genes was developed and the corresponding phenotypes were
listed (82, 114). The bacterial clones are reusable and have
been used in screenings for genes with more specific functions
such as body fat regulation, longevity, and genome stability
(83-85).

Drosophila is another popular model organism where RNAi
has been successfully used to study functions of individual
genes (2, 86, 87). Unlike in C. elegans and plants, RNAi in
Drosophila is not systematic, meaning that RNAi does not
spread into other cells or tissues (17, 88). This property allows

cell-specific RNAi in Drosophila.
RNAi in cultured mammalian cells is quickly becoming

a standard laboratory technique to study functions of individ-
ual genes. Transfection of synthetic siRNA has been most fre-
quently used but other methods are quickly being developed
as discussed above. Screening of human genome in a wider
scale is also being considered. This would be much more pa-
instaking than screening in C. elegans because number of
human genes is about twice and RNAi technique in human
is more complicated. However, efforts are already underway
by developing libraries of siRNAs and automatic screening
systems. Once the screening system is established, the long-
standing goal of genome-wide functional genomics in human
may become feasible, although the screening based on a cell
line rather than the whole organism will have limitations.

RNAi may also be used to rapidly create transgenic mice.
It was shown recently that retroviral or lentiviral delivery of
shRNA-expression cassette can be passed through the mouse
germline (79, 89). Thus, RNAi may complement standard
knockout approaches and accelerate studies of gene function
in living mammals.

MEDICAL APPLICATIONS

The idea of using RNAi for therapeutic purpose has been
tested extensively for last two years (90) since Tuschl s pioneer-
ing work on siRNAs. Candidate diseases for such treatment
include viral infection (91), cancer (92), and dominantly inher-
ited genetic disorders.

Human immunodeficiency virus (HIV) was the first obvi-
ous target for such application. Viral genes including tat, rev,
nef, and gag have been silenced, resulting in successful inhi-
bition of viral replication in cultured cells (64, 93-99). Cel-
lular genes such as CD4, CCR5 and CXCR4 that are neces-
sary for viral infection were also targeted giving similar results
(99, 100). Hepatitis C virus (HCV), a major cause of chron-
ic liver disease, has a genome of a single-stranded RNA, mak-
ing it an attractive target for RNAi. Expression of RNAs from
HCV replicon was inhibited in cell culture, providing a hope
for a new therapy for this virus (58, 101-104). Human papil-
loma virus (HPV) is believed to contribute to tumorigenesis.
Silencing E6 and E7 genes of HPV type 16 by siRNA result-
ed in reduced cell growth and induced apoptosis in cervical
carcinoma cells (105). Reduction in hepatitis B virus (HBV)
RNAs and proteins has been induced by siRNA-producing
vectors in cell culture (106) and in mouse liver (107). Influen-
za virus was also challenged with siRNA specific for nucleo-
capsid (NP) or a component of the RNA transcriptase (PA),
which abolished the accumulation of viral mRNAs (108).
These successful results are encouraging but there would be
many hurdles to achieve viral eradication in vivo. Further ex-
periments are needed in animal models as well as in clinical
settings.
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Exquisite sequence specificity of RNAi enables specific
knockdown of mutated genes. Such possibility was first test-
ed on an oncogene, K-RAS (V12), whose loss of expression led
to loss of anchorage-independent growth and tumorigenici-
ty (76). Employing a retroviral version of the H1 promoter-
driven shRNA expression system (67), the authors showed
strong inhibition of the expression of mutated K-RAS (V12)
while leaving other ras isoforms unaffected. This approach
was particularly encouraging because it was successful not
only in tissue culture but also in an animal model (mouse).
Similar studies quickly followed using various forms of siRNA.
Oncogenes can be activated by chromosomal translocation
fusing two parts of unrelated genes. M-BCR/ABL fusion leads
to leukemic cells with such a rearrangement. Transfection of
dsRNA specific for the M-BCR/ABL mRNA has been shown
to downregulate the fusion protein in K562 cells (109). Over-
expression of oncogenes is another cause of tumorigenesis.
Overexpression of P-glycoprotein (P-gp), the MDR1 gene
product, confers multidrug resistance (MDR) to cancer cells.
RNAi successfully reduced P-gp expression and thereby drug
resistance (110). Expression of endogenous erbB1 can be sup-
pressed by RNAi in A431 human epidermoid carcinoma cells
(111). Combined RNAi to reduce expression of c-raf and bcl-2
genes may also represent a novel approach to leukemia (112).
Blocking angiogenesis is another important anti-cancer strat-
egy. Vascular endothelial growth factor (VEGF) exists as at
least five isoforms that are thought to perform different func-
tions in tumor angiogenesis. Specific knock-down is possi-
ble by using RNAi, providing a new tool to study isoform-
specific VEGF function as well as to treat cancer (71).

Dominantly inherited genetic disorders are usually caused
by mutations on one allele whose gene product acts transdom-
inantly. Specific abrogation of the mutated gene would leave
the unaffected allele to restore the normal cellular function.
Expansion of trinucleotide (CAG) repeats encoding an incr-
eased polyglutamine tract causes at least eight human neuro-
degenerative disorders, including Huntington s disease and
spinobulbar muscular atrophy (Kennedys disease). Although
the mechanism underlying neurodegeneration is unclear,
aggregation of mutant polyglutamine proteins is related to the
toxic gain-of-function phenotype. SiRNA targeting the 5 -
end or 3 -end of the CAG repeat rescued the polyglutamine
toxicity in cultured cells (80, 113), opening the possibility
for new approaches.

Other diseases considered for RNAi-based therapy include
Fas-induced fulminant hepatitis (55). Intravenous injection
of siRNA targeting Fas reduced Fas expression in mouse hep-
atocytes leading to resistance to apoptosis and protection of
mice from liver fibrosis.

There are several critical hurdles to be circumvented before
RNAi becomes a realistic tool in clinics. First, enough amount
of siRNA should be delivered into enough number of target
cells, efficiently and stably. This delivery problem may be
solved by chemically modifying siRNA to make it more sta-

ble, penetrable, and cost-effective. Alternatively, siRNAs can
be delivered by way of viral vectors. Viral vectors such as
lentiviral vectors would have unique advantages over synthet-
ic siRNAs in terms of persistency. Developing optimal vec-
tors will greatly accelerate siRNA-mediated gene therapy.
A related issue is targeted administration of siRNA. This is
hard to be achieved with synthetic siRNAs. For DNA-based
RNAi, however, inducible/repressible promoters can be used
to regulate siRNA expression in a tissue specific or develop-
mental stage specific manner. The second problem stems from
the technique s own merit; sequence specificity. Frequent mu-
tations of target genes may allow escape from specific inhi-
bition of disease genes, especially in viral infection. A combi-
nation strategy using several different siRNAs is likely to min-
imize the escape.

PERSPECTIVES

The recent discovery of small RNAs is fascinating. For dec-
ades we have been ignoring these tiny molecules as mere deg-
radation products of bigger transcripts. Mutations in inter-
geneic regions were often dismissed during genetic screening.
Genomics has focused on protein-coding genes leaving non-
coding RNA genes unnoticed. Now hundreds of small RNA
genes have been discovered. Understanding their biology is
likely to reveal novel aspects of cellular functions. Key press-
ing questions include what their functions are and how these
unusual RNA genes are expressed.

Technical aspects of small RNA biology are also important.
RNAi is already changing our way of studying gene functions.
However, not every promising technique is translated into
commercial or clinical success. RNAi, too, should go through
intensive elaboration and further innovation. Setting a guide-
line for selection of siRNA sequence would be an important
step. Efficient delivery and regulated expression of siRNA are
also critical issues for transgenic studies and gene therapy. In
addition, developing a simple and inexpensive RNAi proto-
col for high throughput screening will be essential for large-
scale genomics.
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