
딥러닝을 활용한 상실치아 수 예측의 가능성: 파일럿 스터디
김선집1, 임도형2, 허정욱3, 조현재1

1서울대학교 치의학대학원 예방치학교실, 2연세대학교 인지과학 협동과정, 3하단 굿윌치과 병원

Possibility of predicting missing teeth using deep learning:  
a pilot study

Seon-Jip Kim1, Dohyoung Rim2, Jeong Uk Heo3, Hyun-Jae Cho1

1Department of Preventive Dentistry and Public Oral Health, School of Dentistry, Seoul National University,  
2Department of Cognitive Science, Yonsei University, Seoul, 3Goodwill Dental Hospital at Hadan, Busan, Korea

Copyright © 2019 by Journal of Korean Academy of Oral Health

 This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted  
non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objectives: The primary objective of this study was to determine if the number of missing teeth 
could be predicted by oral disease pathogens, and the secondary objective was to assess whether 
deep learning is a better way of predicting the number of missing teeth than multivariable linear 
regression (MLR).
Methods: Data were collected through review of patient’s initial medical records. A total of 960 par-
ticipants were cross-sectionally surveyed. MLR analysis was performed to assess the relationship 
between the number of missing teeth and the results of real-time PCR assay (done for quantifica-
tion of 11 oral disease pathogens). A convolutional neural network (CNN) was used as the deep 
learning model and compared with MLR models. Each model was performed five times to generate 
an average accuracy rate and mean square error (MSE). The accuracy of predicting the number of 
missing teeth was evaluated and compared between the CNN and MLR methods. 
Results: Model 1 had the demographic information necessary for the prediction of periodontal dis-
eases in addition to the red and the orange complex bacteria that are highly predominant in oral 
diseases. The accuracy of the convolutional neural network in this model was 65.0%. However, 
applying Model 4, which added yellow complex bacteria to the total bacterial load, increased the 
expected extractions of dental caries to 70.2%.
On the other hand, the accuracy of the MLR was about 50.0% in all models. The mean square error 
of the CNN was considerably smaller than that of the MLR, resulting in better predictability.
Conclusions: Oral disease pathogens can be used as a predictor of missing teeth and deep learn-
ing can be a more accurate analysis method to predict the number of missing teeth as compared to 
MLR.
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Introduction

Periodontal disease is a major oral disease, which threatens 

the oral health of humans1). This disease can result in missing 

teeth, including the destruction of the connective tissue and 

supporting bone2,3). Dental biofilm is an important etiologic 

factor of periodontitis4). Dental biofilm contains various types of 

microorganisms, which Socransky et al. classified by potential 

pathogenicity5,6). Generally, the proportion of anaerobic Gram-

negative bacteria is important regarding the development of 

periodontitis7,8). 

Generally, missing teeth can be a useful marker of past and 
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current periodontal disease9). There is no prior study regard-

ing the relationship between the number of missing teeth and 

periodontal pathogen as a covariate. Although some research-

ers used the number of missing teeth as a covariate or outcome 

variable, these studies did not consider periodontal patho-

gens10-12).

The convolutional neural network (CNN) is a form of 

deep learning, and can be used as an image classification tool 

through learning of characteristic features13). Recently, the 

CNN model was also used in a cross-sectional study, which 

should use logistic regression or multivariable linear regression 

(MLR)14,15). 

A recent article in the 2017 world workshop on the classifi-

cation of periodontal and peri-Implant diseases and conditions, 

which redefines the stages of periodontal disease, suggests that 

tooth loss is a major component of periodontal disease16). Us-

ing this information, the tooth loss was considered as a power-

ful risk factor, a research has been published to predict future 

tooth loss by stages of periodontal disease17). Long-term follow-

up over 10 years of this study resulted in a significant increase 

in the risk of tooth loss at higher stages of periodontal disease. 

In addition, many studies have investigated tooth loss as a risk 

factor for cardiovascular disease, metabolic syndrome, and cog-

nitive impairment18-20). In many respects, tooth loss affects not 

only oral health, but also systemic disease, and is a risk factor to 

watch out for.

The first aim of this study is to determine if the number of 

tooth loss can be predicted by periodontal disease pathogen. 

The second aim is to assess whether deep learning is a better 

way of predicting the number of teeth lost than MLR.

Materials and Methods

1. Subjects
This study was approved by the institutional review board of 

the School of Dentistry, Seoul National University, Seoul, Korea 

(IRB number S-D20170023), and was carried out at the Hadan 

Goodwill Dental Hospital, Busan. 

We collected the data by searching the patient’s initial med-

ical record. A total of 1,017 subjects were selected, who visited 

as new patients from August 1 to December 30, 2017. All pa-

tients were asked of demographic information and systemic dis-

eases such as age, sex, smoking, number of cigarettes per a day, 

hypertension, diabetes mellitus, heart disease, and lung disease. 

A treatment plan was established for all patients when patients 

visited, and the number of planned tooth extractions was re-

corded without considering wisdom teeth. The number of miss-

ing teeth was counted using oral examination of medical chart 

without wisdom teeth. Microbiologic analyses were performed 

to measure the risk of periodontitis using real-time PCR. Finally, 

a total of 960 participants (456 men and 504 women) were in-

cluded, excluding patients who refused microbiologic analyses.

2. Measurements
Participants’ saliva specimens were collected after 30 sec-

onds rinsing with mouthwash 10 ml (Garglin Dental Solution 

Regular, Dong-A Pharm Inc., Seoul, Korea) and processed 

for real-time PCR. Bacterial chromosomal DNA in saliva was 

extracted using a DNA extraction Kit (Exgene Clinic SV mini, 

GeneAll Inc., Seoul, Korea). The samples were analyzed using 

easyperio (BIOYD, Seongnam, Korea). 

Socransky et al. classified the plaque bacteria into five 

groups according to the degree of influencing periodontal dis-

ease and the various periods of plaque formation21), among 

them, 11 oral disease pathogens were selected from red and 

orange complexes, which are highly pathogenic, causing peri-

odontal disease. 11 oral disease pathogens are as follows: Ag-

gregatibacter actinomycetemcomitans (Aa), Porphyromonas 

gingivalis (Pg), Tannerella forsythus (Tf), Treponema denticola 

(Td), Fusobacterium nucleatum (Fn), Prevotella intermedia (Pi), 

Prevotella nigrescens (Pn), Streptococcus mitis (Sm), Strepto-

coccus mutans (Smu), Streptococcus sobrinus (Ss), Lactobacil-

lus casei (Lc), and total bacterial load. Each bacteria DNA was 

amplified by a specific primer using functional genes (rgpB, 

waaA, gtf). Total bacteria 16s rDNA control was used to detect 

DNA from total bacteria load species. The samples in the DNA 

polymerase (AmpONE Hot-start Taq DNA polymerase 250u, 

GeneAll Inc., Seoul, Korea) assay were analyzed in a 20 ml reac-

tion mixture containing genomic DNA 2 ml, specific primer, 

probe set, and PCR reaction buffer. The thermal program cho-

sen was 45 cycles of 95℃ for 15 seconds, 55℃ for 15 seconds, 

and 72℃ for 20 seconds, with an initial denaturation at 95℃ for 

15 minutes. All data were analyzed using sequenced-detection 

system software (ABI 7500 Fast Real-Time PCR System, Applied 

Biosystems, Life Technologies Inc., Carlsbad, CA, USA). Standard 

curves were used to convert cycle threshold (Ct) scores into the 

number of bacterial cells using samples with known amounts 

of bacterial-specific DNA. DNA was 10-fold serially diluted 

from 100 to 105 copies and subjected to real-time PCR to create 

a standard curve by plotting threshold cycles against the copy 

number of the plasmid DNA as previously described.

3. Statistical analysis
Data was divided into training set and test set categories. 
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The training set is the data for training a model and the test set 

is data to verify the performance of the model. A randomiza-

tion sequence was generated using the RAND function in Excel 

(Microsoft Corporation, Redmond, WA, USA), and used to divide 

the full dataset (N=960) into a training set (N=658) and a test set 

(N=302). Data analysis was performed by SPSS software version 

23.0 (IBM Co., Armonk, NY, USA). Significance was determined 

at a=0.05 for all tests. Each variable between the test set and 

training set was analyzed by a Chi-square test for non-continu-

ous variables and an independent samples t-test. After adjusting 

for demographic factors, systemic diseases, and the number of 

bacteria by species, MLR was used for estimating the number of 

missing teeth in the training set. Four multi-variable regression 

models were designed to analyze influences of each group of 

covariates as follows: model 1 has covariates that are essential 

for periodontitis prediction, such as age, sex, smoking, diabe-

tes, hypertension, and red and orange complex; model 2 adds 

yellow complexes to caries-related bacteria and total bacterial 

load; model 3 adds smoking parameters that ignore multiple 

collinearity that should not be used in linear regression analysis, 

and adds less reliable heart and lung disease questionnaires; 

model 4 adds up to the tooth that was planned for extraction. 

Using constants and intercept calculated by MLR, the accuracy 

rate was calculated within a margin of error (―1<x<1) in the 

training set.

A CNN was used in the deep learning model. This study 

Table 1. Demographic information of the study population

 Total (N=960) Training set (N=658) Test set (N=302)

Age* 36.42±15.94 36.46±15.94 36.34±15.96
Sex, N, (%)    
    Male 456 (47.5) 318 (48.3) 138 (45.7)
    Female 504 (52.5) 340 (51.7) 164 (54.3)
Smoking, N, (%)    
    None 773 (80.5) 527 (80.1) 246 (81.5)
    Past 25 (2.6) 20 (3) 5 (1.7)
    Current 162 (16.9) 111 (16.9) 51 (16.9)
Hypertension, N, (%)    
    No 879 (91.6) 596 (90.6) 283 (93.7)
    Yes 81 (8.4) 62 (9.4) 19 (6.3)
Diabetes mellitus, N, (%)    
    No 935 (97.4) 642 (97.6) 293 (97.0)
    Yes 25 (2.6) 16 (2.4) 9 (3.0)
Heart diseases, N, (%)    
    No 959 (99.9) 657 (99.8) 302 (100.0)
    Yes 1 (0.1) 1 (0.2) 0 (0.0)
Lung disease, N, (%)    
    No 900 (93.8) 621 (94.4) 279 (92.4)
    Yes 60 (6.3) 37 (5.6) 23 (7.6)
Number of cigarettes per day* 2.32±5.87 2.37±5.99 2.21±5.61
Number of missing teeth* 1.22±2.88 1.20±2.91 1.25±2.82
Number of planned tooth extractions* 0.23±1.25 0.18±1.00 0.34±1.68
Periodontal pathogens*    
    Aggregatibacter actinomycetemcomitans 2.15*104±1.74*105 1.98*104±1.35105 2.54*104±2.38*105

    Porphyromonas gingivalis 1.81*106±4.14*106 1.78*106±4.12*106 1.88*106±4.19*106

    Tannerella forsythus 2.09*106±3.65*106 2.14*106±3.88*106 1.98*106±3.08*106

    Treponema denticola 6.80*104±3.10*105 5.90*104±2.98*105 8.76*104±3.36*105

    Fusobacterium nucleatum 2.90*106±6.76*106 2.91*106±5.46*106 2.88*106±8.97*106

    Prevotella intermedia 8.26*105±2.77*106 8.96*105±2.96*106 6.74*105±2.30*106

    Prevotella nigrescens 8.64*104±3.46*105 8.69*104±3.74*105 8.55*104±2.75*105

    Streptococcus mitis 7.95*106±9.16*106 7.79*106±8.87*106 8.29*106±9.76*106

    Streptococcus mutans 2.80*106±5.80*106 2.65*106±5.48*106 3.13*106±6.44*106

    Streptococcus sobrinus 1.01*104±1.59*105 9.86*104±1.76*105 1.07*104±1.14*105

    Lactobacillus casei 1.21*105±1.00*106 9.87*104±8.61*105 1.70*105±1.27*106

    Total bacterial load 1.74*108±1.52*108 1.74*108±1.59*108 1.73*108±1.38*108

*SD, Standard deviation.
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used three convolutional layers and ten hidden nodes. Each 

convolutional layer has 25, 50, 25 filters of kernel size 1×3. A 

total of 200 epochs was used to reduce overfitting. Training 

network weights were learned using the Adam algorithm (learn-

ing rate=0.0001), a stochastic gradient descent method. Four 

CNN models, which had different input nodes, were designed 

to compare with MLR models. Each model was performed five 

times to generate average accuracy rate and mean square error 

(MSE). All CNN analysis was performed by Python 3.6.1 (Python 

Software Foundation, Wilmington, DE, USA) with a TensorFlow 

(Google, Mountain View, CA, USA) framework.

Results

The demographic information of the study population is 

shown in Table 1. A total of 960 participants, 456 males (47.5%) 

and 504 females (52.5%), were included in this study. The mean 

number of missing teeth was 1.22±2.88 and mean number of 

planned tooth extraction was 0.23±1.25. The number of non-

smoker was 773 (80.5%), and those who had diabetes mellitus 

numbered 25 (2.6%). There was no significant difference be-

tween the training set (N=658) and test set (N=302) for any vari-

able.

In the multi-variable linear regression, the number of miss-

ing teeth was significantly associated with age and hypertension. 

Porphyromonas gingivalis also showed significant association 

with the number of missing teeth, except for Model 4 (Table 2).

The accuracy of predicting the number of missing teeth was 

evaluated and compared between the CNN and MLR approach-

es. The accuracy of the CNN method was 65.0% in Model 1, 

which increased to 70.2% in Model 4 (Table 3). The accuracy of 

the MLR was about 50.0% in all models. The MSE of the CNN 

method was significantly smaller than the MLR. 

Discussion 

This cross-sectional study assessed the relationship between 

the number of missing teeth and periodontal pathogens in sali-

va using deep learning compared to MLR. The study was unique 

in that CNN was used in the analysis of a cross-sectional study, 

not in the analysis of the image. Generally, CNN was investi-

gated as a diagnostic accuracy tool using a medical image such 

as a radiograph15,22,23). The results showed that the CNN model 

had higher accuracy for the prediction of missing teeth than the 

MLR model. 

Model 1 variables were clinically reliable and acceptable in 

the traditional statistical model. Several studies about periodon-

tal pathogens have dealt with red complex and orange complex 

similar to the periodontal pathogen of Model 16,9,24-26). Compar-

ing Model 1, Model 2 used additionally S. mitis, S. mutans, S. 

sobrinus, L. casei, and total bacterial load, which were seldom 

used in the periodontal pathogen. In the CNN model, the ac-

curacy rate was increased by 4.5%. This may be due to adjusting 

the number of bacteria related to dental caries in that the cause 

of tooth extraction is not only periodontal disease but also den-

tal caries.

Model 3 used heart disease, lung disease, and the number 

of cigarettes per a day additionally. Heart disease and lung 

disease were measured using a simple questionnaire about his-

tory, not accurate medical examination. Moreover, adding the 

number of cigarettes per day could adjust collinearity, because 

the smoking variable already was adjusted. Model 4 used the 

number of planned tooth extraction which was calculated from 

the treatment plan of dental chart. However, this variable could 

be unreliable, because there was no consideration about pros-

thetic extraction or residual root. Therefore, Models 2, 3, and 

4 could be considered as poor statistical models. However, all 

Table 3. Comparison of accuracy between convolutional neural network and multiple linear regression for each model

Model 1 Model 2 Model 3 Model 4

Accuracy rate MSE Accuracy rate MSE Accuracy rate MSE Accuracy rate MSE

CNN 65.0 4.90 69.5 3.07 68.3 3.33 70.2 3.54
MLR 50.9 95.21 50.0 69.90 50.0 59.68 51.2 60.15

Model 1 was adjusted for age, sex, smoking, hypertension, diabetes mellitus, A. actinomycetemcomitans, P. gingivalis, T. forsythus, F. nucleatum, 
P. intermedia, and P. nigrescens. Model 2 was adjusted for age, sex, smoking, hypertension, diabetes mellitus, A. actinomycetemcomitans, P. gin-
givalis, T. forsythus, F. nucleatum, P. intermedia, and P. nigrescens, S. mitis, S. mutans, S. sobrinus, L. casei, and total bacterial load. Model 3 was 
adjusted for age, sex, smoking, number of cigarettes per a day, hypertension, diabetes mellitus, heart diseases, lung diseases, A. actinomycetem-
comitans, P. gingivalis, T. forsythus, F. nucleatum, P. intermedia, and P. nigrescens, S. mitis, S. mutans, S. sobrinus, L. casei, and total bacterial 
load. Model 4 was adjusted for age, sex, number of planned tooth extractions, smoking, number of cigarettes per a day, hypertension, diabetes 
mellitus, heart diseases, lung diseases, A. actinomycetemcomitans, P. gingivalis, T. forsythus, P. intermedia, P. intermedia, and P. nigrescens, S. 
mitis, S. mutans, S. sobrinus, L. casei, and total bacterial load.
CNN, Convolutional neural network; MLR, Multi-variable linear regression; MSE, Mean squared error.
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CNN models showed higher accuracy and lower MSE than MLR. 

Interestingly, an increasing trend of accuracy was shown adding 

covariates. While the MLR model showed similar accuracy and 

MSE adding covariates. 

Generally, the deep CNN model used several convolutional 

layers and fully connected layers, because object detection 

and image classification are complex problems. However, we 

used only a convolutional layer and hidden layer, because our 

data was not image, but cross-sectional data, which had only 

22 variables. The data was not as large as other image stud-

ies. Hence, the only three convolutional layers used to facilitate 

deep learning performance.

This study had several limitations. First, this study was a ret-

rospective cross-sectional design. Hence, the available variables 

were limited. Probing depth in dental chart information could 

be a clinically important variable. However, probing depth 

without calibration training could not be reliable. Moreover, 

there were many individuals without a probing depth record. 

Participants were all new patients, and the number of planned 

tooth extractions was skewed to zero or one. If the number of 

planned tooth extractions was distributed normally, then the 

number of planned tooth extractions could be an outcome 

variable.

The second limitation of this study was the number of par-

ticipants. The number of participants in this study was 960. For 

the deep learning analysis, all data require labelling. Especially 

in this research area, dental professionals should label data by 

themselves. Therefore, it was difficult to increase the number of 

participants in this study. Considering these limitations, further 

prospective well-designed studies, which have more than 5,000 

participants, are required.

Recently, the human microbiome has attracted attention as 

an emerging theme, because using only human genomic infor-

mation can not solve the mechanism of disease progression5,27). 

Knowledge of the oral microbiome with deep learning will en-

able more accurate prediction of oral diseases. 

Conclusions

This study shows that oral disease-related bacteria can in-

fluence the prediction of tooth loss, and the deep learning anal-

ysis method can be used more effectively than the conventional 

MLR method. Although the association between oral disease 

bacteria and lost teeth has been well documented, few studies 

have been conducted on predictive models using deep learning. 

In future studies, prospective study design and the collection of 

clinical and epidemiological evidence will be needed, using a 

greater number of samples. This study can demonstrate the use 

of deep learning in research to develop predictive models of 

oral health.
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