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Biomaterial development for oral and maxillofacial bone regeneration 
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Many oral and maxillofacial bone defects are not self-healing. Guided bone regeneration (GBR), which uses a barrier membrane to prevent the soft 
tissues from invading the defect to enable slower-growing bone cells to penetrate the area, was developed as a therapy in the 1980s. Although there has 
been some success with GBR in some clinical situations, better treatments are needed. This review discusses the concept of GBR focusing on bioactive 
membranes that incorporate osteoconductive materials, growth factors and cells for improved oral and maxillofacial bone regeneration.  

Key words: Bone, Guided bone regeneration, Barrier membrane, Bone substitutes, Drug delivery, Stem cells
[paper submitted 2012. 8. 30 / accepted 2012. 9. 9]

alveolar	bone	that	periodontitis	has	on	natural	teeth.

As	discussed	by	Mikos	et	al.7,	there	are	some	unique	chall-

enging	aspects	of	tissue	regeneration	in	oral	and	maxillofacial	

tissues.	The	irregular	architecture	and	necessary	precision	of	

positioning	the	biomaterial	replacements	suggest	injectable	

or	moldable	substitutes.	Implants	need	sufficient	mechanical	

properties	and	appropriate	resorption	rates	 that	coordinate	

with	tissue	ingrowth.	Moreover,	the	environment	of	the	oral	

cavity	with	 its	flora	presents	additional	complications	for	

alveolar	bone	engineering.	

Despite	these	challenges,	guided	bone	regeneration	(GBR)	

was	developed	and	has	served	as	a	treatment	since	the	1980s	

for	restoring	osseous	maxillofacial	 tissues8,9.	An	excellent	

overview	on	this	subject	was	provided	by	Buser10.	Through	

the	use	of	a	barrier	membrane,	 this	 therapeutic	 strategy	

physically	excludes	 ineffective	soft	 tissue	cells	 to	allow	

osteoprogenitor	cells	 to	populate	the	area.	Since	its	 initial	

conception,	the	GBR	membranes	have	progressed	from	non-

resorbable	 to	resorbable	 to	bioactive	occlusive	materials.	

GBR	has	been	shown	to	reliably	close	critical	size	periodontal	

defects	and	can	even	support	neo-osteogenesis,	bone	growth	

extending	past	 the	original	boundaries11.	Although	 there	

has	been	success	with	GBR	in	various	clinical	situations,	

others,	particularly	alveolar	ridge	augmentation	combined	

with	implant	placement,	require	further	research	to	improve	

outcomes11.	Thus,	research	on	advanced	materials,	growth	

factor	incorporation,	and	the	inclusion	of	cells	is	ongoing	to	

improve	GBR	for	oral	and	maxillofacial	bone	regeneration.	

I. Introduction

Facial	 trauma,	bone	resection	due	to	cancer,	periodontal	

disease,	and	bone	atrophy	after	tooth	extraction	may	leave	

non-self-healing	oral	 and	maxillofacial	 bone	defects1.	

Although	there	 is	an	inherent	self-repair	potential,	a	non-

union	remains	for	bone	gaps	greater	than	25	mm	or	even	only	

500	μm,	depending	on	the	location,	vascularization,	and	the	

mechanics2.	The	presence	of	 infection	or	 inflammation	is	

another	determining	factor	for	bone	regeneration	capability	at	

a	given	site.	For	the	alveolar	bone	in	particular,	periodontitis,	

advanced	periodontal	disease	 that	affects	around	15%	of	

adult	humans,	induces	the	destruction	of	the	alveolar	bone	

around	teeth	and	can	cause	them	to	fall	out3,4.	Without	the	

mechanical	 stimulus	 from	 teeth,	alveolar	bone	naturally	

further	degrades4,5.	 Interventions	with	 tooth	 implants	are	

additionally	complicated	since	sufficient	quantity	and	quality	

of	the	alveolar	bone	must	be	present	to	stabilize	the	implant6.	

Peri-implantitis,	 infection	and	inflammation	around	tooth	

implants,	 can	have	 the	 same	detrimental	 effects	on	 the	
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can	decrease	bone	regeneration20,21.	Besides	avoiding	 the	

second	surgery,	resorbable	membranes	are	also	advantageous	

because	of	improved	soft	tissue	healing	and	lower	bacterial	

contamination	 risk	due	 to	decreased	exposure	 from	 the	

degrading	membrane19.	In	addition	to	the	requirements	stated	

previously,	there	are	also	further	properties	that	these	barrier	

membranes	must	fulfill:	biocompatible	degradation	products	

that	don’t	 interfere	with	bone	 regeneration,	appropriate	

degradation	profile	to	synchronize	with	new	tissue	growth,	

and	sufficient	persistent	mechanical	and	physical	properties	

to	perform	the	barrier	function	and	allow	in	vivo	use3.	
Amongst	 the	most	common	bioresorbable	membranes	

are	synthetic	polyesters	 (poly(lactic	acid),	poly(glycolic	

acid),	and	poly(caprolactone)	and	their	copolymers)22-25	and	

tissue-derived	collagen21,26-29.	Polyester	membranes	display	

biocompatibility	and	possess	a	high	degree	of	customization,	

with	degradation	rates	and	mechanical	properties	that	can	be	

adjusted	based	on	polymer	composition	and	concentration30,31.	

As	a	natural	component	of	the	extracellular	matrix,	collagen	

is	biocompatible	and	cell	adhesive.	Although	collagen	isn’

t	inherently	mechanically	stable,	it	can	be	modified	through	

various	means	 of	 crosslinking3.	 Poly(ethylene	glycol)	

(PEG)	is	also	known	as	a	biodegradable	and	biocompatible	

polymer.	Since	many	oral	and	maxillofacial	defects	require	

precise	shapes,	an	injectable	material	is	desirable,	such	as	a	

PEG-based	in	situ	forming	gel	for	GBR	that	demonstrated	
effectiveness	in	a	clinical	trial32-34.	

In	addition	to	the	type	of	material,	the	physical	form	also	

plays	a	role	in	determining	a	material’s	properties,	which	can	

affect	degradation	rates	and	tissue	integration.	Porosity	is	one	

of	the	most	important	characteristics.	With	some	materials,	

such	as	poly(lactide-co-glycolide),	 the	porosity	 can	be	

imposed	by	using	porogens	that	form	the	pores	and	then	are	

removed	in	a	subsequent	processing	step35.	Electrospinning	is	

a	manufacturing	technique	that	creates	elongated	fibers	with	

a	degree	of	control	over	properties	 including	fiber	 length,	

width,	and	orientation	and	overall	porosity3.	Researchers	have	

explored	these	techniques	for	improving	GBR	membranes.	

Although	 the	existing	bioresorbable	membranes	 fulfill	

many	requirements,	most	of	them	cannot	maintain	adequate	

space	to	act	as	a	barrier	membrane	over	an	extended	period	

of	time5,19.	However,	in	combination	with	a	bone	substitute	

material,	these	composite	membranes	have	shown	success24.	

III. Bioactive Membranes

In	addition	to	providing	mechanical	support	to	resorbable	

II. Guided Bone Regeneration 

1. Concept and requirements

GBR	gained	 traction	as	a	 therapy	 in	 the	1980s,	but	 in	

1957	there	was	already	an	initial	 report	of	space	creation	

with	plastic	cages	for	bone	regeneration	in	femoral	defects	

in	dogs12.	Other	studies	followed,	including	those	focusing	

on	the	craniofacial	area13,14,	but	the	mechanism	of	action	was	

initially	hypothesized	to	be	the	protection	of	the	blood	clot.	

In	the	early	1980s,	the	guided	tissue	regeneration	principle	was	

established,	explaining	that	a	specific	tissue	can	be	rege	ne	rated	

when	cells	with	the	restorative	ability	for	that	tissue	type	are	

able	to	occupy	the	wound	space9,15.	Through	space	maintenance	

and	the	preclusion	of	faster	growing	cells	from	the	gingival	

connective	tissue	and	oral	mucosal	epithelium,	osteogenic	

cells	are	allowed	to	infiltrate	and	form	bone8,9,15-17.	

By	enabling	new	bone	formation,	GBR	may	obviate	the	

use	of	autologous	bone	grafts.	Although	an	excellent	source,	

the	use	of	autogenous	tissue	is	not	desirable	due	to	the	pain	

and	morbidity	associated	with	 the	graft	harboring	site4,18.	

To	function	properly,	GBR	membranes	must	meet	certain	

requirements,	 including	cell	 exclusion,	 space	 creation,	

scaffolding	for	progenitor	cell	 in-growth,	biocompatibility,	

host	tissue	integration,	and	clinical	manageability1,11,17.	

2. Non-resorbable and resorbable membranes

The	 first	 generation	of	 barrier	membranes	was	non-

resorbable,	with	expanded	polytetrafluorothylene	(ePTFE)	

(Teflon;	Gore,	Flagstaff,	AZ,	USA)	membranes	becoming	

the	most	frequently	used1,8,11.	With	 its	high	stability,	non-

immunogenicity,	and	 reliably	successful	 results,	 ePTFE	

membranes	have	been	considered	a	gold	standard	for	bone	

regeneration11,19,	despite	 the	 fact	 that	ePTFE-membrane	

exposure	to	the	oral	cavity	always	resulted	in	a	failure	of	the	

treatment.	

Even	with	the	favorable	outcomes	using	non-resorbable	

ePTFE,	 the	 strong	disadvantage	of	 requiring	 a	 second	

surgery	to	remove	the	material	encouraged	the	development	

of	a	 second	generation	of	GBR	with	degradable	barrier	

membranes.	Along	with	 the	morbidity	associated	with	a	

second	surgical	procedure	 for	non-resorbable	membrane	

removal,	 there	 is	 a	 risk	of	 tissue	damage	and	disturbed	

healing19.	Additionally,	there	are	some	post-surgical	compli-

cations	of	membrane	exposure	with	non-biodegradable	

membranes	 that	 lead	to	a	high	incidence	of	 infection	that	
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glass	is	another	inorganic	bone	graft	material	that	displays	

osteoconduction	and	an	ability	to	bond	with	bone	through	

chemical	linkages46,47.

2. Growth factors

Membranes	and	graft	materials	can	act	as	a	barrier	 to	

fibrous	tissue	ingrowth	and	a	scaffold	to	support	bone	and	

some	even	provide	 some	osteoinductive	activity,	but	 a	

further	critical	role	of	biomaterials	 in	 improving	oral	and	

maxillofacial	bone	 regeneration	 is	delivering	bioactive	

molecules.	Growth	 factors	 are	 signaling	 proteins	 that	

regulate	cellular	growth,	proliferation,	and	differentiation.	

Enamel	matrix	derivative	 and	platelet	 rich	plasma	are	

both	biologically-derived	products	 that	contain	multiple	

growth	factors	and	have	demonstrated	enhanced	healing	in	

periodontal	 tissues	even	 though	 the	mechanism	of	action	

is	not	understood3,48,49.	Platelet	rich	plasma	is	comprised	of	

various	autologous	growth	factors	 that	have	 individually	

been	 identified	 to	enhance	bone	 regeneration,	 including	

platelet-derived	growth	factor50,	fibroblast	growth	factor51,	

and	 insulin-like	growth	factor52,	but	 its	positive	effect	on	

regeneration	processes	appears	to	be	restricted	to	soft	tissue	

healing49,53.	

The	class	of	bone	morphogenetic	proteins	(BMPs),	first	

identified	to	generate	extraskeletal	bone	formation	in	bone	

extracts	in	196554,	have	now	been	extensively	studied	and	

shown	to	be	critical	for	the	induction	of	bone55.	The	class	of	

BMPs	consists	of	15	variants,	with	BMP-2,	BMP-4,	BMP-

7,	and	BMP-12	shown	to	be	particularly	effective	in	bone	

regeneration56.	BMP-2	and	BMP-7	have	been	recombinantly	

produced	for	commercial	use45.	BMP-2	has	shown	impressive	

potential	to	regenerate	bone	in	animal	studies	and	the	clinic,	

including	in	oral	applications57.	GBR	in	conjunction	with	

BMP-2	delivery	by	a	bone	substitute	material	has	been	shown	

to	be	an	effective	strategy	in	humans	as	well58.	However,	

milligram	doses	 that	are	orders	of	magnitude	higher	 than	

normal	physiological	levels	are	required59.	An	enhancer	of	

BMP-2,	such	as	N-methyl	pyrrolidone	(NMP),	can	possibly	

avoid	 the	high	cost	and	possible	 side	effects	and	safety	

concerns	of	the	large	dose60.	In	a	rabbit	calvarial	model,	NMP	

enhanced	bone	regeneration	over	a	polylactide	membrane	

alone,	emphasizing	the	importance	of	the	bioactivity61.	

Besides	enhancers,	controlled	release	of	growth	factors	

can	increase	their	efficiency.	In	fact,	acting	as	a	vehicle	for	

local	delivery	of	growth	factors	and	protecting	them	from	

degradation	and	inactivation	are	major	roles	of	biomaterials.	

GBR	membranes,	the	inclusion	of	bone	substitute	materials	

can	render	a	membrane	bioactive.	Current	research	aims	to	

develop	a	third	generation	of	GBR	membranes	that	are	not	

only	occlusive	and	degradable,	but	also	contain	bioactivity	

to	biologically	stimulate	osteoprogenitor	cells	for	enhanced	

bone	growth.	Using	tissue	engineering	principles,	advanced	

materials	with	the	incorporation	of	bioactive	molecules	and	

cells	are	being	explored	for	 the	development	of	 the	next	

generation	of	membranes.	Instead	of	simply	maintaining	a	

space	for	osteoprogenitor	ingrowth,	the	critical	aspects	of	the	

natural	environment	are	being	recapitulated.	

1. Bone graft materials

Effective	bone	graft	materials	can	biologically	stimulate	

bone	growth	through	either	osteoconduction	by	allowing	cell	

growth	through	a	scaffolding	mechanism	or	osteoinduction	

by	 recruiting	 osteoprogenitors	 into	 the	 defect	 space4.	

Although	 cancellous	 autogenous	bone	grafts	 act	 as	 an	

osteoconductive	material,	 the	associated	morbidity	of	 the	

graft	site	restricts	its	use.	Other	natural	sources	include	both	

allografts	and	xenografts,	which	are	processed	 to	 reduce	

immunogenicity36.	Demineralized	bovine	bone	matrix	retains	

type-1	collagen,	non-collagenous	proteins	as	well	as	a	small	

amount	of	osteoinductive	growth	factors37.	One	of	the	most	

common	commercially	used	products	 is	 deproteinized	

bovine	 bone	matrix,	Bio-Oss	 (Geistlich	Biomaterials,	

Wolhusen,	Switzerland),	which	 is	stripped	of	all	organic	

elements	by	pyrolysis,	a	high	temperature	sintering,	leaving	

hydroxyapatite	 (HA)	as	 the	main	component38.	Unfortu-

nately,	high	 temperature	 sintering	also	 affects	HA	and	

alters	 it	 from	a	biological	HA	to	a	more	synthetic	one39.	

Despite	positive	outcomes	of	naturally-derived	materials,	

there	are	still	concerns	regarding	disease	transmission	and	

immunogenicity4.	

Synthetic	graft	materials	supply	various	formulations	of	

calcium	phosphate	without	 the	 limitations	of	 the	animal-

derived	products.	Bone	is	composed	of	a	majority	of	calcium	

phosphate	and	these	synthetic	substitutes	are	known	to	have	

biologically	active	surface	chemistry	for	osseointegration40.	

Additionally,	these	biodegradable,	inorganic	materials	have	

a	crystallographic	structure	similar	to	bone	and	controllable	

porosity	that	is	important	for	mimicking	bone,	making	them	

effective	substitutes41,42.	HA	has	been	utilized	as	granules42,43,	

incorporated	as	nanoparticles3,	or	as	a	coating44.	Tricalcium	

phosphate	(TCP),	which	resorbs	faster	than	HA,	is	another	

commonly	used	 inorganic	bone	substitute41,45.	Bioactive	
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bone	marrow,	have	been	suggested	as	a	cell	source	for	tissue	

engineering56.	Since	they	are	easily	attained	and	expanded,	

bone	marrow	MSCs	 (BMSCs)	 are	 the	most	 commonly	

explored	MSCs36.	A	number	of	studies	have	demonstrated	

alveolar	bone	regeneration	with	BMSCs79-81.	A	study	also	

showed	 the	positive	effect	of	combining	stem	cells	with	

growth	factor	release	through	BMP-2	expressing	BMSCs82.	

In	addition	to	BMSCs,	there	are	several	other	cell	 types	

that	 are	being	explored	 for	oral	 and	maxillofacial	bone	

tissue	 engineering.	Umbilical	 cord	MSCs	 are	 another	

easily	obtainable	reservoir	of	stem	cells	and	initial	studies	

show	promising	 results	 for	bone	 regeneration	with	 this	

source83-86.	Adipose-derived	stem	cells	are	other	extraoral	

and	non-craniofacial	cells	that	are	easily	accessible	and	were	

successfully	used	 to	regenerate	bone87,88.	The	periodontal	

ligament	and	dental	pulp	are	both	sources	of	stem	cells	 in	

the	oral	cavity	that	have	been	isolated	and	characterized56,89.	

Stem	cells	from	both	of	these	tissues	have	demonstrated	bone	

regeneration	capabilities90-92.	However,	these	cells	are	more	

difficult	to	harvest36.

With	 all	 of	 these	 stem	cells	 sources,	 the	biomaterial	

that	supports	 them	is	a	critical	aspect	for	facilitating	bone	

regeneration.	Many	of	 the	same	materials	 that	have	been	

developed	as	bone	graft	materials	and	bioactive	molecule	

delivery	vehicles	have	been	explored	as	cell	scaffolds.	HA93,	

collagen94,	fibrin87,	and	poly(lactide-co-glycolide)95	as	well	as	

composites	such	as	HA/TCP96,	chitosan-gelatin79,	and	calcium	

phosphate	cement-chitosan-polyglactin86	are	amongst	these	

scaffolds.	

IV. Conclusion

The	field	of	bone	regeneration	for	oral	and	maxillofacial	

tissues	has	progressed	dramatically	 from	 the	 first	non-

resorbable	GBR	membranes	to	bioactive	materials.	Guided	

by	 tissue	engineering	principles,	 there	 is	a	 large	amount	

of	current	 research	on	designing	membranes	consisting	

of	 bioactive	materials	 that	 can	 deliver	 growth	 factors	

and	cells.	Future	 improvements	will	 require	appropriate	

combinations	of	materials,	growth	 factors	and	cells	 that	

permit	 temporal	and	spatial	growth	factor	release,	suitable	

degradation	profiles	 that	both	allow	 tissue	 ingrowth	and	

maintain	 sufficient	occlusivity,	 and	positive	mimicking	

of	 the	extracellular	matrix	 to	support	and	encourage	cell	

proliferation	and	differentiation.	Composite	materials,	multi-

layered	constructs,	and	varying	physical	forms	are	amongst	

the	possible	strategies	in	biomaterial	development	for	 this	

A	slow,	controlled	release	BMP-2	delivery	system	has	been	

shown	to	induce	and	sustain	bone	formation62.	Many	of	the	

same	materials	used	as	bone	grafts	have	also	been	explored	

as	delivery	systems:	collagen63,	calcium	phosphates64,	and	

polyesters	like	polycaprolactone65.	

Growth	 factors	can	non-covalently	bind	or	covalently	

attach	to	the	carrier66.	Non-covalent	growth	factor	delivery	

systems	can	 function	 through	adsorption	 (e.g.,	 collagen	

sponge63	 and	deproteinized	bovine	bone	matrix38),	 ion	

complexation	with	charged	polymers	(e.g.,	poly-L-ornithine	

and	poly-L-arginine	complexes67)	or	physical	entrapment	

(e.g.,	polyesters68	and	PEG38).	The	materials	that	physically	

incorporate	growth	 factors	can	 take	various	 forms	 from	

liposomes69	to	nanoparticles70	to	hydrogels71.	In	contrast	to	

these	modes	of	delivery,	covalent	systems	retain	growth	

factors	at	 the	site	of	action	until	cleaved	off	or	 the	carrier	

is	degraded,	extending	the	residence	time66.	Additionally,	

immobilization	 enables	 spatial	 growth	 factor	delivery,	

limits	 side	effects	by	constraining	 the	growth	 factors	 to	

the	site	of	action,	and	mimics	physiological	matrix-bound	

situations72.	Growth	factors	can	be	covalently	tethered	to	a	

material	directly73,74	or	through	a	linker75,76.	Another	strategy	

is	genetically	engineering	fusion	growth	factors	that	include	

an	attachment	 site	outside	 the	active	protein	 sequence.	

BMP-2	was	engineered	to	contain	amino	acid	domains	that	

enable	both	enzymatic	covalent	attachment	 to	and	release	

from	fibrin-based	substances,	creating	a	system	that	mimics	

physiological	binding	and	liberation77.	Although	it	is	possible	

that	 the	growth	factor	may	lose	some	activity	 through	all	

of	these	covalent	immobilization	methods,	this	loss	may	be	

mitigated	by	the	higher	retention	and	other	advantages.

3. Cells

In	addition	to	allowing	the	delivery	of	bioactive	molecules,	

biomaterials	are	also	critical	for	enabling	cell-based	therapies.	

To	encourage	proliferation	and	differentiation,	cells	require	

an	artificial	extracellular	matrix,	which	can	be	supplied	

through	an	appropriately	designed	biomaterial36.	Including	

a	cell	source	can	further	encourage	oral	and	maxillofacial	

bone	growth	through	direct	tissue	growth	and	bone	repair	as	

well	as	growth	factor	secretion	from	the	cells78.	Although	this	

area	has	only	been	actively	pursued	relatively	recently,	due	

to	advancements	in	biological	cell	research,	there	are	some	

promising	studies.	

Mesenchymal	stem	cells	(MSCs),	multipotent	adult	stem	

cells	that	can	be	harvested	from	mesenchymal	tissues	such	as	
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