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INTRODUCTION

Dental caries is a chronic infectious disease that is

one of the most common problems encountered in

clinical dentistry that results in the localized dissolu-

tion and destruction of dental calcified tissue.1,2 An

understanding of the dental caries process and

strategies to manage this disease have advanced

through numerous studies.3 Modern evidence reveals

that there is a continuum of disease states ranging

from subclinical, subsurface changes to more

advanced, clinically detectable subsurface caries, to

stages of more advanced lesions with microscopic and

later macroscopic cavitations of the enamel and sig-

nificant dentin involvement.4,5

If carious lesions are detected early enough, they

can be arrested or reversed through nonsurgical ther-

apies.6 The effectiveness of this nonsurgical therapy

is contingent on detecting the lesion in the outer

enamel and requires imaging modalities that can

safely and accurately monitor the success of such

treatment.7 Visual examination and probing with a

sharp explorer is a rather subjective method depend-

ing on the examiner’s experience and training.8
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Clinical radiology is another widely used method that

has poor sensitivity for detecting early carious lesions

since the lesions are too shallow and do not provide

enough contrast.9 Furthermore, clinicians need a

diagnostic tool that employs nonionizing radiation to

aid in caries management and diagnosis and reliably

tracks the course of caries lesions over an extended

time period in order to determine whether the lesion

is active and expanding and requires intervention or

if the lesion has been arrested.10

Efforts have been made to develop an imaging

modality for the accurate detection of early caries.

Quantitative laser fluorescence (QLF) and DIAGNOdent

(KaVo, Biberach, Germany) are examples, and these

tools have been reviewed in recent papers.10,11 New

fields of research have resulted from studies like

these in conjunction with the rapid technological

growth that has occurred over the past two decades.

In addition to ensuring accuracy, every attempt is

made to eliminate and substitute invasive, haz-

ardous, and contact methods in favor of other tech-

niques that provide similar results without having a

negative impact on the examined object.12 Optical

coherence tomography (OCT) is another candidate

for early caries detection in addition to the advance-

ment of medical optics. 

OCT is an emerging nondestructive three-dimen-

sional imaging technique that is capable of producing

high-resolution cross-sectional images through inho-

mogeneous samples such as biological tissue.13

Basically, OCT is analogous to ultrasound B mode

imaging except that it uses light instead of sound.14 It

was originally used in ophthalmology, and as a

result, more than 50% of the estimated 4,000 OCT

publications dated up to 2008 have been published in

ophthalmic followed by endoscopic applications.14

The optical configuration of OCT is that of a low

coherence (white light) interferometer (LCI), similar

to those used in industrial metrology for measuring

the thickness of thin films and the refractive index.15-17

The potential use of LCI for three-dimensional imag-

ing in biological tissue was first realized in 1991.18

Since that original work, a large number of papers

have been published regarding every aspect of OCT.13

These are available in a variety of publications cover-

ing general physics, optics, materials science, and a

wide array of specific medical areas. Therefore, it is

becoming increasingly difficult to keep abreast of the

current developments and applications of OCT. It is

even more difficult to form a comprehensive review of

the subject. 

To limit the study of OCT to the field of dentistry,

the investigation of porcine dental tissue by Colston

et al. in 1998 was the first in vitro imaging of OCT.19

Until now, several studies have been completed to

investigate the diagnostic utility of in vivo OCT in

detecting and diagnosing oral pre-malignancies and

actual malignancies.20-26 Two studies have used OCT

in determining tooth movement.27,28 Many trials in

dentistry have been mainly restricted to detecting

dental caries.

In this article, a brief history of the development of

and a basic introduction to OCT theory will be

reviewed according to the scheme. The applications of

OCT in caries detection will also be discussed in

detail according to the research groups. 

BRIEF HISTORY OF OCT DEVELOPMENT

The early use of optical interferometry in the bio-

medical field, which was related to the measurement

of the refractive index of animal eye lenses, was

described by Simonsohn et al. in 1969.29 Human in

vivo retinal resolving power measurements were

reported by Rassow et al. in 1978.30 In the early

1980s, Fercher et al. reported on an ophthalmologic

length measurement experiment.31 This study was

the first to reveal that laser interferometry could be

used for in vivo distance measurements of the human

eye. Hence, several studies have reported the use of

low-time coherence light for interferometric eye

length measurements.32-35 Low coherence interferome-

try enables ocular biometry without making contact

with the eye, has significantly higher resolution com-

pared to ultrasound methods, and has high repeata-

bility.36-39

After some success in biometry, recording structur-

al data in a similar fashion to the ultrasound B-scan

technique was the next investigative step. A 2D in

vivo depiction of a human eye fundus contour along a

horizontal meridian was presented by Fercher in

1990.40 Huang et al. combined transverse scanning
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with a fiber optic optical coherence domain reflectom-

etry (OCDR) system to produce the first OCT cross-

sectional images of biological microstructure in

1991.18 In 1993, the first in vivo OCT images were

created by groups in Vienna and Boston.41,42

The first commercial OCT instruments, developed

by Humphrey Instruments, were based on the work

of the group in Boston. Further developments includ-

ing endoscopic OCT paved the way for new fields

such as cardiovascular OCT and gastrointestinal

OCT.43-45 The introduction of ultrahigh-resolution

OCT and spectral domain OCT has dramatically

increased the diagnostic potential of OCT.46,47 In the

meantime, approximately 17 OCT equipment manu-

facturers share a current market of about $200 mil-

lion with a growth rate of 34% p.a. This trend is

expected to continue for the next several years, with

revenues topping $800 million by 2012.48

PRINCIPLES OF OCT

The principles discussed in this section will be lim-

ited to the types of OCT used in caries research. 

a. Time-domain OCT (TdOCT)

OCT is an interferometric technique that relies on

interference between a split and a later re-combined

broadband optical field. The general scheme of an

interferometric OCT setup is presented in Figure 1.

Here, the amplitude of electromagnetic radiation in

the Michelson interferometer is divided into two

parts by a beam splitter. The split field travels in a

reference path, reflecting from a reference mirror,

and also in a sample path where it is reflected from

multiple layers within a sample. The light wave

returning from the object is a superposition of waves

arriving with different delays, τ= Δz/c. Due to the

broadband nature of the light, interference between

the optical fields is only observed when the reference

and sample arm optical path lengths are matched to

within the coherence length of the light. Therefore,

the depth (axial) resolution of an OCT system is

determined by the temporal coherence of the light

source. Sharp refractive index variations between

layers in the sample medium manifest themselves as

corresponding intensity peaks in the interference

pattern. A time domain interference pattern can be

Figure 1. The general scheme of an interferometric OCT setup. The linear polarizer and the polarizing beam splitter in

parenthesis are equipped in PS-OCT. OCT, optical coherence tomography; PS-OCT, polarization-sensitive OCT.

This illustration was partly modified with permission from the original one of Wojkowski12 by courtesy of Optical Society.
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obtained by translating the reference mirror to

change the reference path length and match multiple

optical paths due to layer reflections within the sample.

b. Fourier-domain OCT (FdOCT)

In the original study from 1991, TdOCT enabled

researchers to obtain cross-sectional images of rela-

tively low quality.49 This was mainly due to physical

limitations influencing the measurement time, sensi-

tivity, and resolution of the TdOCT method. An

alternative solution to time-domain detection is

FdOCT.50 Here, information on the location of reflec-

tive points along the sampling beam is coded in the

frequency of the oscillatory signal modulating an

original spectrum of the light source. In such an

arrangement, the reference optical path length

remains fixed and component frequencies of the OCT

output are detected using a spectrometer.

Subsequent scientific studies have shown that the

change from time-domain to Fourier-domain detec-

tion enables one to increase the acquisition rate over

100 times. An additional advantage of this method is

that it is possible to separate dependence on axial

resolution (defined as the resolving power of the

imaging system in the direction parallel to the prob-

ing light beam) from imaging speed.51,52 For the same

reasons, it has been very difficult to create an in vivo

image of the entire three-dimensional structure of

the examined object by TdOCT. Thanks to these fea-

tures, it is now possible to reconstruct a 3D structure

with axial resolution on a micrometer scale from in

vivo measurements.53,54

c. Polarization-sensitive OCT (PS-OCT)

The basic structures of PS-OCT are similar to those

of the aforementioned TdOCT. However, dental hard

tissue has a special characteristic called “birefrin-

gence.”Birefringence, or double refraction, is the

decomposition of a ray of light into two rays when it

passes through certain anisotropic materials. In con-

trast to sound enamel that is highly transparent,

sound dentin and carious enamel strongly scatter

light in the near-IR and are also highly birefringent,

which can interfere with polarization resolved imag-

ing.55 The optical properties of tooth enamel and

dentin change markedly as a result of demineraliza-

tion during the caries process. Therefore, caries

detection schemes that exploit such changes hold

considerable promise for the early detection and

characterization of caries lesions.56,57

Prior to 1992, the emphasis in OCT was the recon-

struction of 2D maps of tissue reflectivity while

neglecting the polarization state of light. Thus, the

original TdOCT and FdOCT configurations do not

account for birefringence within a sample, treating

the electromagnetic wave as a scalar quantity.

However, light waves are transverse and have extra

degrees of freedom described by the polarization

state. Hee et al. first demonstrated a low-coherence

reflectometer capable of polarization sensitive mea-

surements of birefringence.57 This technique was later

extended by de Boer et al. to enable two-dimensional

imaging of the birefringence within a biological sam-

ple.58 The polarization sensitive OCT (PS-OCT) mea-

surement apparatus is similar to that of TdOCT or

FdOCT, with the addition of a linear polarizer after

the source, and a polarizing beam-splitter (PBS)

with an extra detector in the output arm.

Propagation of light through a sample may alter the

optical polarization state of the reflected light. This

can occur due to optical scattering and birefringence

within the sample. Since birefringence describes a

change in the polarization state of light due to the

refractive index difference for light polarized in two

orthogonal planes, polarization sensitive measure-

ments of the output interferogram can resolve depth

correlated information about the birefringence of the

sample material.

Mathematically, the two orthogonal polarization

states can be treated separately as two electromag-

netic waves propagating in separate interferometers.

The two states are coupled by the Jones matrix of

the sample that specifies its birefringence. Currently,

Mueller-Stokes formalism has replaced the Jones

matrix since the latter is unable to describe partially

polarized light and the processes that lead to depo-

larization.59

d. Swept-source OCT (SS-OCT)

FdOCT can also be performed using a single detec-

tor by sweeping the source spectrum and detecting

the intensity due to component frequencies.60 FdOCT
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of this type has been called swept source OCT (SS-

OCT), and uses a tunable laser that sweeps the

wavelength over a certain range. SS-OCT time-

encodes the wavenumber by rapidly turning the nar-

rowband and source through a broad optical band-

width. Fringe response versus frequency is detected

with a balanced detector and the signal is Fourier

transformed to obtain a depth-reflectivity profile from

which a cross-sectional image is reconstructed.60 It

should also be possible to use a monochromator and

broadband light source. However, the spectral inten-

sity of the monochromatic light may be too low for

imaging in highly scattering media if only a single

conventional superluminescent diode (SLD) is used.

APPLICATIONS IN CARIES DETECTION

A PubMed search from 1965 to February 2011 was

conducted for articles published in dental literature,

using the search terms “optical coherence tomogra-

phy”and “dental caries.”Manual searches of the

bibliographies of all of the full text articles and relat-

ed reviews selected from the electronic search were

also performed and the review articles were excluded.

As mentioned above, the first OCT in the field of

dentistry was performed by Colston et al. in 1998.19

They developed a prototype OCT and acquired

images of porcine periodontal tissues. In these

images, enamel and cementum were clearly visible,

representing the first application of OCT for imaging

biologic hard tissue. In that same year, they present-

ed in vivo OCT images of human dental tissues.61 For

this purpose, they developed a novel dental OCT sys-

tem that incorporated a sample arm and scanning

optics into a handpiece instrument. Their system had

a lateral resolution of 50 ㎛ and an average total lat-

eral scan distance of 12 mm. The system used a 15

mW fiber amplified source that had a central wave-

length of 1,310 nm.

After that initial study, several groups showed

interest in imaging dental hard tissue using OCT.

Amaechi et al. from the University of Texas have

published three articles since 2001. The first article

was a short communications dealing with the

methodology of OCT.62 The second investigation in

2003 involved the quantitative comparison of OCT

with QLF in an artificial caries model.63 The third

study in 2004 elaborated on the comparison of OCT

with transverse microradiography (TMR) in the

quantification of mineral loss in root caries.64 Both

the second and third reports demonstrated the possi-

bility of using OCT to image dental hard tissues by

comparing the results of OCT with QLF and TMR.

The authors used a system developed initially for

retina imaging, which had 250 ㎼ power, a wave-

length of 850 nm, and an optical source line width of

16 ㎛. In particular, they collected c-scans, which are

also known as en-face transverse images.

It is impossible to discuss the use of OCT in caries

detection without mentioning the group from the

University of California San Francisco (UCSF). Until

now, the number of papers published by this group

comprised almost half of the total publications

reviewed. The experiments sequentially performed

were systematic. In 2002, Fried et al. demonstrated

that PS-OCT was well-suited for monitoring changes

in enamel demineralization over a time period of 1 to

14 days.65 After that, a series of studies using an

artificial caries model and PS-OCT was performed to

evaluate caries under composite sealants and

restorations, the severity of interproximal caries

lesions, occlusal surface caries, remineralization of

the lesion, inhibition of demineralization by anti-

caries tools such as fluoride or lasers, demineraliza-

tion of enamel by CO2 lasers, demineralization of

exposed root surfaces, and de-/re-mineralization of

dentin.7,66-75 In addition, this group compared the

near-infrared (NIR) transillumination to PS-OCT

and combined these methods with other optical tech-

niques into image-guided laser ablation systems.76-78

Recently, the study of automated analysis algorithms

to assess enamel demineralization and the use of

novel cross-polarization OCT were reported.79,80

Except for one recent study, this group used a con-

ventional PS-OCT as their tool.80 This system has a

polarized SLD operating at a central wavelength of

1,310 nm. The authors usually compared the in vitro

study results with TMR and polarized light

microscopy.

Although, the devotion and achievements of the

UCSF group are noteworthy, the first use of PS-OCT

for early caries detection was not the work of this
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group. Baumgartner et al. presented the first polar-

ization resolved images of dental caries, however the

penetration depth was limited and the image quality

was poor due to the limited source intensity.81

Feldchtein et al. presented in vivo high resolution

dual wavelength (830 and 1,280 nm) images of den-

tal hard tissues, enamel and dentin caries, and

restorations.82 Wang et al. measured the birefrin-

gence in dentin and enamel and suggested that the

enamel rods act as waveguides.83 In the following

year, Everett et al. presented polarization resolved

images using a high power 1,310 nm broadband

source and a bulk optic PS-OCT system.84 In those

images, changes in the mineral density of tooth

enamel were resolvable to depths of 2 - 3 mm. Otis

et al. demonstrated improved imaging characteristics

of a system operating at 1,310 nm vs. 850 nm.85

Canadian groups have also devoted their studies to

caries research using OCT.8,86-88 They also used PS-

OCT systems; however, they creatively combined

polarized Raman spectroscopy (PRS) with OCT in

detecting early carious lesions. Raman spectroscopy

uses laser excitation and the resulting scattering

effect is observed in the target tissues. Inelastic scat-

tering results in a frequency shift in the reflected

Raman spectra, which are functions of the type of

molecules in the sample. PRS can provide informa-

tion not only about bacterial porphyrins leached into

carious regions, but also about the primary mineral

matrix and, thus, the state of demineralization or

remineralization of the tooth. They suggested that

PRS can be used to confirm suspect lesions identified

by OCT and rule out false-positive signals. Recently,

a rotating kernel transformation filter for OCT image

analysis was introduced by this group.89

In addition to the research conducted by the afore-

mentioned groups, several other studies of OCT in

the context of caries detection have been per-

formed.2,90-93 Most of these investigations stressed the

possibility of using OCT in the diagnosis of early car-

ious lesions and provided some useful information.

Overall, PS-OCT was the most frequently used sys-

tem for caries detection. Shimada et al. first intro-

duced SS-OCT for this purpose.2 This system

acquired images more rapidly than previous systems,

and speed is particularly important for clinical appli-

cations. PS-OCT and SS-OCT are not incompatible

and as a result, several reports have mentioned com-

bining them to create PS-SS-OCT.94

CONCLUSIONS

Caries remains prevalent throughout modern soci-

ety and is the primary disease in the field of den-

tistry. The early detection of lesions and application

of the appropriate treatment before cavitation is of

utmost importance. OCT is an emerging non-invasive

three-dimensional imaging technique that produces

high-resolution cross-sectional images of biological

tissue to create an “optical biopsy.”In this article,

the brief history and the general principles of OCT

and its usage in caries detection were extensively

reviewed. As OCT is a nondestructive optical diag-

nostic tool that does not use ionizing radiation, it has

substantial promise for clinical use. However, most

studies performed to date have been in vitro or ex

vivo. Several problems that limit the clinical applica-

tion of OCT such as short penetration depth, patient

motion, and other disturbing intraoral environments

during image acquisition and optimal image process-

ing must be resolved. In addition, it needs more cus-

tomization for dental usage and is not easily avail-

able for now as a commercial product. Although, it

could be made for relatively lower costs in compari-

son with computed tomography, the price of the

instruments will be crucial for popular use as well as

the superiority to the conventional tools.

Nonetheless, this technology has the advantage of

rendering a 3D image of the lesion. Combining this

technology with other optical devices or automations

in the near future seems possible. For this to be pos-

sible, however, additional studies must be performed.
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국문초록

광간섭단층촬영술을 이용한 치아우식증의 발견

박영석1∙조병훈2∙이승표1∙손원준2*

서울대학교 치의학대학원 1구강해부학교실 및 치학연구소, 2치과보존학교실 및 치학연구소

치아우식증의 조기 발견은 외과적 삭제를 피하면서, 적절한 치료를 할 수 있는 좋은 기회를 제공한다. 광간섭단층촬영술은

최근 각광받기 시작한 3차원 이미지 기술로서, 안과에서 광학적 생검의 목적으로 빈번히 이용되는 것을 필두로 다양한 의학 분

야에 적용되어 왔고, 최근 초기 우식증의 발견에 전도유망하여 다양한 연구가 진행 중이다. 이 기술은 저 상관도 간섭계의 원리

에 근거하고 있으며, 장점으로는 비침습적이고, 방사선을 사용하지 않으며, 3차원 이미지 구축이 가능하다는 점이다. 본 연구

에서는 광간섭단층촬영술의 원리와 개략적인 개발 과정에 대한 기술과 함께 치아우식증에 관한 연구들에 대하여 고찰해 보았

고, 이를 통해 이 기술의 응용 가능성을 확인하였다. 그럼에도 불구하고, 임상적인 유용성을 입증하기 위해서는 몇 가지 기술적

문제를 해결해야 하고, 보다 많은 생체 내 실험이 뒷받침되어야 할 것이다. 

주요단어: 광간섭단층촬영, 진단, 치아우식증, Optical coherence tomography (OCT)
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