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Introduction

Gastric cancer is the fifth leading cause of cancer deaths 

globally.1 The prognosis of gastric cancer is poor because even 

after curative resection, advanced cancer has a high risk of re-

currence despite adjuvant chemotherapy.2-5 

To improve the response rate of chemotherapy, adenosine 

triphosphate-based chemotherapy response assays (ATP-CRAs) 

have been employed to individualize treatment.6,7 It would be 

an ideal method for choosing the most effective patient-specific 

chemotherapy agent, provided that an in vitro assay could pre-

dict the in vivo chemo-responsiveness. The most attractive fea-

ture of this assay is that it can simultaneously test the sensitivity 
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Purpose: The purpose of this pilot study was to evaluate the association between adenosine triphosphate-based chemotherapy response 
assays (ATP-CRAs) and subsets of tumor infiltrating lymphocytes (TILs) in gastric cancer.
Materials and Methods: In total, 15 gastric cancer tissue samples were obtained from gastrectomies performed between February 2007 
and January 2011. Chemotherapy response assays were performed on tumor cells from these samples using 11 chemotherapeutic 
agents, including etoposide, doxorubicin, epirubicin, mitomycin, 5-fluorouracil (5-FU), oxaliplatin, irinotecan, docetaxel, paclitaxel, meth-
otrexate, and cisplatin. TILs in the tissue samples were evaluated using antibodies specific for CD3, CD4, CD8, Foxp3, and Granzyme B.
Results: The highest cancer cell death rates were induced by etoposide (44.8%), 5-FU (43.1%), and mitomycin (39.9%). Samples 
from 10 patients who were treated with 5-FU were divided into 5-FU-sensitive and -insensitive groups according to median cell death 
rate. No difference was observed in survival between the two groups (P=0.216). Only two patients were treated with a chemothera-
peutic agent determined by an ATP-CRA and there was no significant difference in overall survival compared with that of patients treated 
with their physician’s choice of chemotherapeutic agent (P=0.105). However, a high number of CD3 TILs was a favorable prognostic 
factor (P=0.008). Pearson’s correlation analyses showed no association between cancer cell death rates in response to chemotherapeu-
tic agents and subsets of TILs.
Conclusions: Cancer cell death rates in response to specific chemotherapeutic agents were not significantly associated with the distribu-
tion of TIL subsets.
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of multiple chemotherapy agents.

The distribution of tumor infiltrating lymphocytes (TILs) 

could also predict responses to neoadjuvant8-12 and adjuvant 

chemotherapies13-15 in solid cancers. TIL distribution is an in-

dependent prognostic marker for gastric cancer and other solid 

cancers.8,10,16,17 Gastric medullary carcinomas that have extensive 

infiltration of lymphocytes often show excellent prognosis.18

Thus, improving predictions for chemo-responsiveness is 

a highly desirable possibility when combining ATP-CRA re-

sults and TIL distribution. The aim of the present study was 

to explore the possibility of selecting patient-specific sensitive 

chemotherapeutic agents based on TIL-related immune micro-

environments. 

Materials and Methods

1. Patients

At Severance Hospital, Yonsei University College of Medi-

cine, from February 2007 to January 2011, 15 patients were en-

rolled for the study with histologically proven gastric cancer who 

had undergone gastric resection surgery. All data on patients’ 
characteristics and pathological features of resected tumors were 

collected by a retrospective review of a prospectively maintained 

database. No patients were treated with neoadjuvant chemo-

therapies or had histories of another primary tumor. All patients 

agreed to the chemosensitivity test of their resected tumors and 

gave informed consent. This study was approved by the Yonsei 

Institutional Review Board (4-2011-0864).

2. Adenosine triphosphate-based-based chemo

therapy response assays 

ATP-CRAs were performed as previously described.6 

Briefly, a 0.5-cm3 sample of cancer tissue was collected, stored 

in Hank’s balanced salt solution (GIBCO BRL, Rockville, MD, 

USA) containing 100 IU/ml penicillin (Sigma, St. Louis, MO, 

USA), 100 mg/ml streptomycin (Sigma), 100 mg/ml gentamicin 

(GIBCO BRL), 2.5 mg/ml amphotericin B (GIBCO BRL), and 5% 

fetal bovine serum (GIBCO BRL), and immediately sent to the 

pathology laboratory. Tissues were washed, quantified, minced, 

and enzymatically dissociated. Cells were purified by density 

centrifugation to eliminate debris. After dilution of the separated 

tumor cells to 2×104 cells/ml, cells were seeded in triplicate in 

96-well microplates (Costar, Cambridge, MA, USA). 

In the treated groups, 100 ml of chemotherapeutic agents were 

added to the seeded cells, and 100 ml of Iscove’s modified Dul-

becco’s medium (GIBCO BRL) without chemotherapeutic agents 

were added to the untreated control groups. Samples from each 

patient were individually treated with each of the chemotherapeutic 

agents. The test drug concentrations were determined based on peak 

plasma concentrations according to previous reports: etoposide (3.57 

mg/ml), doxorubicin (1.5 mg/ml), epirubicin (1.2 mg/ml), mitomycin 

(0.2 mg/ml), 5-fluorouracil (5-FU, 10 mg/ml), oxaliplatin (2.9 mg/

ml), irinotecan (4.7 mg/ml), docetaxel (3.7 mg/ml), paclitaxel (8.5 

mg/ml), methotrexate (0.37 mg/ml), and cisplatin (2.5 mg/ml).19-21 

Three different doses (0.2-, 1-, and 5-fold) of the test drug were 

used in triplicate. Microplates were cultured for 48 hours at 37oC 

in 5% CO2. ATP levels in the cell lysates were measured us-

ing flash type luminescence measurements (Roche, Mannheim, 

Germany). Cancer cell death rates were determined as the ratio 

of ATP luminescence reduction in the treated groups compared 

to that of the untreated control.

3. Quantification of tumor infiltrating lymphocyte 

subsets

Immunohistochemical staining and quantification of TIL 

subsets was performed as previously described.16 Paraffin-

embedded gastric cancer tissue sections were serially sectioned 

at 4-mm, deparaffinized in xylene, and rehydrated in decreasing 

concentrations of ethanol. Antigen retrieval was performed in 

citrate buffer in a microwave. Endogenous peroxidase activity 

was blocked by incubating in 3% hydrogen peroxide in methanol 

for 5 minutes. Sections were incubated for 60 minutes at room 

temperature (20oC to 25oC) with primary monoclonal antibodies: 

CD3 (1:100; Lab Vision Corporation, Fremont, CA, USA), CD4 

(1:100; Novocastra, Newcastle Upon Tyne, UK), CD8 (1:100; 

Novocastra), Foxp3, (forkhead/winged helix transcription fac-

tor 3, 1:100, ab20034; Abcam, Cambridge, UK), and Granzyme 

B (1:100; Lab Vision Corporation), which were used to identify 

the following T lymphocyte subsets: total T lymphocytes, helper 

T lymphocytes, cytotoxic T lymphocytes, regulatory T cells, 

and activated cytotoxic T lymphocytes, respectively. Incuba-

tion in horseradish peroxidase-conjugated secondary antibody 

was subsequently performed, followed by development with 

diaminobenzidine and counterstaining with hematoxylin. Five 

high-power fields (×400) from each slide were selected for 

manual counting using an Olympus CX31 microscope (Olym-

pus America, Center Valley, PA, USA). The absolute number 

of lymphocytes per high-power field was determined for each 



ATP-CRA and TILs in Gastric Cancer

225

antibody (CD3, CD4, CD8, Foxp3, and Granzyme B). The me-

dian count number was used to divide the patients into low- and 

high-density groups.

4. Statistical analysis

Pearson’s correlation tests were performed for cancer cell 

death rates and TIL subsets. Absolute numbers of cells positive 

for each stain were dichotomized using cut-off values derived 

by the median. Survival curves were constructed using the Ka-

plan-Meier method, and the log-rank test was used to evaluate 

the significance. A statistical significance level was defined as a 

P-value of 0.05 or less. All statistical analyses were performed 

with SAS 9.2 software (SAS Institute, Cary, NC, USA).

Results

1. Clinicopathological characteristics

The clinicopathological features of 15 patients are presented 

in Table 1. Of 15 patients, 14 were male and 1 was female. The 

mean age was 58.9 years. The distribution of the stages accord-

ing to 7th American Joint Committee on Cancer classification 

included seven stage II (46.7%), six stage III (40.0%), and two 

stage IV (13.3%).

2. In vitro chemosensitivity test results

The cytotoxic effect of the chemotherapeutic agents tested 

at previously published peak plasma concentrations19-21 ranged 

from 0% to 72.7% cell death (Table 2). The highest cancer cell 

death rates were seen in cells treated with etoposide (44.8%), 

5-FU (43.1%), and mitomycin (39.9%). The rank of each 

chemotherapeutic agent among 11 agents was determined ac-

cording to that cell death rate in each patient. The most active 

chemotherapeutic agent was etoposide, with the highest chemo-

sensitivity, 60.0% (9/15) for the tested specimens. Ten patients 

who underwent 5-FU chemotherapy were categorized into 

higher- and lower-cell death rate groups based on their median 

cell death rates. The overall survival of these two groups was 

analyzed. The 5-FU-sensitive patients showed better survival, 

though the difference was not statistically significant (P=0.216; 

Fig. 1A). Among the 15 patients, only two patients were treated 

with adjuvant chemotherapeutic agents as determined by ATP-

CRAs (one with etoposide and one with cisplatin) that had 

the highest chemosensitivity results. Among the remaining 13 

patients, 8 patients were treated with 5-FU based chemothera-

peutic agents and 1 patient was treated with a docetaxel based 

chemotherapeutic agent. The other 4 patients did not received 

adjuvant chemotherapy. Fig. 1B shows the survival comparison 

of patients who were treated according to ATP-CRA results or 

who were treated with chemotherapeutic agents chosen by their 

physician (P=0.105). 

3. Subsets of tumor infiltrating lymphocytes

The median number of cells positive for CD3, CD4, CD8, 

Foxp3, and Granzyme B were 156.0, 64.7, 80.7, 15.3, and 10, 

Table 1. Clinicopathological features of patients

Variable Characteristic Patient (n=15)

Sex Male 14 (93.3)

Female 1 (6.7)

Age (yr) 58.9

Tumor location Upper 5 (33.3)

Middle 1 (6.7)

Lower 9 (60.0)

T classification* T1 1 (6.7)

T2 0 (0)

T3 8 (53.3)

T4 6 (40.0) 

N classification* N0 5 (33.3)

N1 2 (13.3)

N2 1 (6.7)

N3 7 (46.7)

M stage* M0 13 (86.7)

M1 2 (13.3)

Stage* Stage I 0 (0)

Stage II 7 (46.7)

Stage III 6 (40.0)

Stage IV 2 (13.3)

Lauren classification Intestinal 10 (66.7)

Diffuse 5 (33.3)

Lymphatic invasion Yes 10 (66.7)

No 5 (33.3)

Vascular invasion Yes 9 (60.0)

No 6 (40.0)

Neural invasion Yes 11 (73.3)

No 4 (26.7)

Values are presented as number (%) or mean only. *Classification 
according to the standard of American Joint Committee on Cancer, 
7th edition.
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respectively (Table 3). Using the median values, all cases were 

classified into low- and high-density groups for each variable and 

survival rates were compared. A higher number of total T lym-

phocytes (CD3) was a good prognostic factor (P=0.008; Fig. 1C).

Table 2. Cancer cell death rates following treatment with chemotherapeutic agents in adenosine triphosphate-based chemotherapy response 
assays

Chemo agent Mean±standard deviation Median (range) 1st rank No. Chosen for adjuvant 
chemotherapy

Etoposide 44.8±22.7 56.0 (3.6~72.7) 9/15 1/9

Doxorubicin 27.9±19.3 29.3 (0~70.3) 0/15

Epirubicin 24.8±17.0 21.7 (0~55.8) 0/15

Mitomycin 39.9±18.9 46.9 (2.7~65.8) 0/15

5-fluorouracil 43.1±12.8 45.7 (18.8~62.7) 2/15 0/2

Oxaliplatin 38.6±13.8 41.9 (16.4~57.1) 0/15

Irinotecan 35.0±11.5 34.8 (15.2~54.2) 2/15 0/2

Docetaxel 23.6±14.1 19.9 (0~44.0) 0/15

Paclitaxel 22.3±17.4 16.0 (0~49.3) 0/15

Methotrexate 17.8±15.7 17.1 (0~56.2) 1/15 0/1

Cisplatin 23.2±17.7 23.3 (0~53.4) 1/15 1/1
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Fig. 1. Survival analysis according to chemotherapeutic agent choice 
and tumor infiltrating lymphocytes (TILs). (A) Survival of patients 
who were treated by 5-fluorouracil (5-FU) (P=0.216). From 15 pa-
tients, 10 patients underwent 5-FU adjuvant chemotherapy. According 
to median cell death rates in adenosine triphosphate-based chemo-
therapy response assays (ATP-CRAs), patients were grouped as sensi-
tive (n=5) and insensitive (n=5) to 5-FU. (B) Survival of patients who 
were treated with therapeutic agents as determined by ATP-CRAs (n=2) 
versus those chosen by a physician (n=8) (P=0.105). (C) Survival of 
high- (n=5) and low-CD3 (n=5) patients. Of the various TIL subsets 
examined, only high numbers of CD3 TILs (total T lymphocytes) 
showed favorable prognosis (P=0.008).
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4. Association between cancer cell death rates and 

tumor infiltrating lymphocyte subsets

Pearson’s correlation tests showed no statistically significant 

association between cancer cell death rates as determined by 

ATP-CRA for each chemotherapeutic agent and the TIL subsets 

from the correlating patient (Table 4). Three pairings of che-

motherapeutic agents/count number of TIL subsets, docetaxel-

CD4, 5-FU-Granzyme B, and methotrexate-Granzyme B had 

marginal associations with correlation coefficients of -0.453, 

0.506, and 0.477, respectively, and P-values of 0.090, 0.054, and 

0.072, respectively (Fig. 2A~C). The most commonly used che-

motherapeutic agents in Korea, 5-FU and cisplatin, also showed 

no significant association with the CD3 subset, which showed 

prognostic implications in this study (Fig. 2D, E). 

Discussion

Accumulating evidence suggests that the immune microen-

vironment alters chemo-responsiveness.22,23 Previous studies on 

chemo-responsiveness used various chemotherapeutic agents 

for different types of cancer. Thus, translation of the results to 

gastric cancer treatment is challenging. For example, high post-

treatment levels of CD3 or CD8 TIL subsets in the tumor micro-

environment correlates with more robust responses to paclitaxel 

neoadjuvant chemotherapy in breast cancer.24 Additionally, the 

density of CD8 TILs affects the chemo-responsiveness to 5-FU 

in stage III colon cancer.25 Higher densities of CD3, CD8, and 

Granzyme B, but not of Foxp3 TILs at invasive margins are 

related to improved chemo-responsiveness to irinotecan- and 

platinum-based chemotherapies in metastatic colorectal cancer.26 

Furthermore, the level of regulatory T cells prior to chemother-

apy is a predictive marker for early breast cancer.27 However, 

the relationship of the immune microenvironment and chemo-

responsiveness in gastric cancer has never been studied. To ex-

plore whether cancer cell response to chemotherapeutic agents 

has any relationship with immune microenvironments, we 

investigated the association of cancer cell death rates in ATP-

CRAs and the distribution of TIL subsets within the tumor tissue 

microenvironment. However, no significant associations were 

identified.

It is unknown whether TILs cause or enhance susceptibil-

ity to chemotherapeutic agents or are simply chemosensitiv-

Table 3. Tumor infiltrating lymphocyte subsets within tumor tissues

Subset Mean*±standard 
deviation Median (range) Survival 

P-value

CD3 159.0±43.0 156.0 (67~221) 0.008

CD4 68.1±18.3 64.7 (46~115.3) 0.369

CD8 85.5±37.3 80.7 (36~165.3) 0.389

Foxp3† 18.6±7.6 15.3 (9~37) 0.165

Granzyme B 13.6±10.1 10 (2.7~39.7) 0.309

*Number of cells per high-power field. †Forkhead/winged helix 
transcription factor 3.

Table 4. Pearson’s correlations between tumor infiltrating lymphocyte subsets and cell death rates in response to chemotherapeutic agents

Variable
Correlation coefficient (P-value)

CD3 CD4 CD8 Foxp3* Granzyme B

Etoposide 0.005 (0.986) 0.164 (0.560) –0.048 (0.865) 0.199 (0.478) –0.212 (0.449)

Doxorubicin 0.097 (0.730) 0.232 (0.405) 0.010 (0.973) 0.356 (0.193) –0.087 (0.758)

Epirubicin 0.392 (0.149) 0.276 (0.318) 0.156 (0.578) 0.386 (0.155) 0.014 (0.962)

Mitomycin –0.159 (0.571) 0.194 (0.489) –0.058 (0.837) 0.324 (0.239) –0.238 (0.393)

5-fluorouracil 0.356 (0.193) –0.002 (0.994) 0.255 (0.360) 0.338 (0.217) 0.506 (0.054)

Oxaliplatin 0.248 (0.373) 0.402 (0.137) –0.101 (0.721) 0.257 (0.355) –0.219 (0.433)

Irinotecan 0.285 (0.302) 0.282 (0.309) 0.135 (0.631) 0.308 (0.264) 0.138 (0.625)

Docetaxel –0.022 (0.937) –0.453 (0.090) –0.066 (0.816) 0.091 (0.747) 0.277 (0.318)

Paclitaxel –0.116 (0.693) 0.148 (0.614) –0.117 (0.691) 0.026 (0.931) 0.248 (0.393)

Methotrexate 0.238 (0.393) 0.111 (0.694) 0.365 (0.181) 0.223 (0.424) 0.477 (0.072)

Cisplatin 0.238 (0.393) –0.052 (0.853) –0.230 (0.410) 0.136 (0.630) –0.053 (0.851)

*Forkhead/winged helix transcription factor 3.
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ity markers. The current study suggests that TILs are more 

representative of susceptibility to chemotherapy rather than a 

marker of chemosensitivity. Our ATP-CRA and TIL analyses 

were separately performed using cultured cancer cells and im-

munohistochemical staining of tumor tissues. Thus, it may not 

completely and accurately represent the in situ interactive effects 

of chemotherapy on the tumor/host immune system. A subset 

of TILs in tumor microenvironments can modulate the suscep-

tibility of chemotherapy against cancer cells.9,28,29 Conversely, 

chemotherapy can enhance the efficacy of host immune func-

tions by reducing tumor burdens and enhancing tumor cell sus-

ceptibility.30 It is also known that tumor-associated antigens are 

released when chemotherapeutic agents destroy tumor cells.9 

Limitations of this study include the small number of the 
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Fig. 2. Pearson’s correlation scatter plots for cell death rates in response 
to various chemotherapeutic agents in adenosine triphosphate-based 
chemotherapy response assays and tumor infiltrating lymphocyte 
subsets for 15 patients. (A) CD4-docetaxel cell death rate (CDR). (B) 
Granzyme B-5-fluorouracil (5-FU) CDR. (C) Granzyme B-Methotrex-
ate CDR. (D) CD3-5-FU CDR. (E) CD3-cisplatin CDR. For all graphs, 
each point represents results from a single patient.
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patients, emphasizing the need for further validation of these 

observations in additional data sets; only a small portion of the 

patients were treated according to ATP-CRA results; and the 

biological mechanism underlying these observations was not 

studied. Despite these limitations, we tried to assess the associa-

tion of chemosensitivity test results and TIL subsets in gastric 

cancer. No significant association between the two suggests that 

current ATP-CRA has limitations for predicting cancer cell de-

struction, which could be affected by the immune system.

In conclusion, cancer cell death rates in response to specific 

chemotherapeutic agents had a poor association with the distri-

bution of TIL subsets. 
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