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Mouse Models of Gastric Carcinogenesis
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Gastric cancer is one of the most common cancers in the world. Animal models have been used to elucidate the details of the molecular 
mechanisms of various cancers. However, most inbred strains of mice have resistance to gastric carcinogenesis. Helicobacter infection 
and carcinogen treatment have been used to establish mouse models that exhibit phenotypes similar to those of human gastric cancer. 
A large number of transgenic and knockout mouse models of gastric cancer have been developed using genetic engineering. A combi-
nation of carcinogens and gene manipulation has been applied to facilitate development of advanced gastric cancer; however, it is rare 
for mouse models of gastric cancer to show aggressive, metastatic phenotypes required for preclinical studies. Here, we review current 
mouse models of gastric carcinogenesis and provide our perspectives on future developments in this field.
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Introduction

Gastric cancer is the second leading cause of death from can-

cer worldwide and is associated with a poor prognosis and a high 

incidence of drug resistance.1,2 The molecular mechanisms that 

promote gastric carcinogenesis are not yet fully understood. Gastric 

carcinomas can be divided into intestinal and diffuse types ac-

cording to histological characteristics.3 Intestinal-type carcinomas, 

which are thought to be derived from gastric mucosa cells, are his-

tologically differentiated and exhibit well-defined glandular struc-

tures with expanding growth patterns developing through sequential 

stages, including chronic gastritis, atrophy, intestinal metaplasia (IM), 

spasmolytic polypeptide-expressing metaplasia (SPEM), dysplasia, 

and submucosal invasion; these changes are typical of precancer-

ous epithelium.4 On the other hand, diffuse-type carcinomas are 

histologically undifferentiated and have a diffuse infiltrative growth 

pattern, with tumor developing through a shorter, less well-charac-

terized sequence of events from gastric epithelial cells.5

Abate-Shen6 suggested an association between development 

and gastric carcinogenesis. Inappropriate activation of specific de-

velopmental pathways seems to be involved in the development of 

IM and intestinal-type gastric carcinomas. An appropriate animal 

model needs to be developed in order to improve our understand-

ing of the mechanisms involved in gastric cancer and to pro-

mote the discovery of novel therapeutic interventions. The gastric 

anatomy of mice is different from that of humans. In mice, the 

squamo-columnar junction does not universally approximate the 

gastro-esophageal junction as it does in normal human anatomy. 

Moreover, rodents rarely develop spontaneous gastric cancer, al-

though cotton rats (Sigmodon hispidus) and the Z strain of the 

African rodent Mastomys natalensis exhibit enterochromaffin-like 

cell carcinoids and develop gastric tumors more frequently.7-11 Thus, 

studies have concentrated on the development of chemical, infec-

tious, or genetic tools to induce gastric cancer in animals.

Here, we review chemically induced, Helicobacter infection-

induced, and genetic models of gastric carcinogenesis and compare 

their pathological patterns, limitations, and applications to improve 
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our understanding of gastric carcinogenesis. 

Chemical Carcinogen-Induced  
Models of Gastric Cancer

Establishment of adequate mouse models of gastric cancer is 

necessary for exploring the mechanisms of gastric tumorigenesis. 

To this end, researchers have tested the utility of various chemical 

carcinogens to induce gastric cancer in mice. N-nitroso compounds 

(NOCs), which are generated in the stomach by anaerobic bacteria 

following ingestion of nitrates and nitrites, have been studied as 

cancer inducers. N-methyl-N-nitro-N-nitrosoguanidine (MNNG) 

has been used to induce stomach tumors in rats. For example, 

Schoental et al.12 treated rats with MNNG using a stomach tube to 

induce formation of squamous cell carcinoma in the rat forestom-

ach. Additionally, Sugimura and Fujimura13 generated antropyloric 

adenocarcinomas with high frequency by administering MNNG 

orally to rats in drinking water. MNNG was found to be a very po-

tent gastric carcinogen in Mongolian gerbils.14,15 Treatment with 400 

ppm MNNG in drinking water for 50 weeks resulted in the devel-

opment of gastric adenocarcinomas in 63.6% of gerbils.15 However, 

because of the lack of genetic models using these animals, rats and 

gerbils have limited applications as model systems, and therefore, 

the effects of oral administration of nitrosamines has been investi-

gated in inbred strains of mice. However, mice have been shown to 

have resistance to MNNG-induced gastric carcinogenesis. Indeed, 

when Balb/c mice were infected with H. heilmannii and admin-

istered MNNG in drinking water for 38 weeks, squamous cell 

carcinomas were found in the mouth and forestomach, but adeno-

carcinoma was not observed in the glandular stomach.16 The ability 

of N-methyl-N-nitrosourea (MNU) to induce gastric carcinogen-

esis in mouse models has also been explored. Biweekly intragastric 

intubation with 0.5 mg MNU resulted in death of most Balb/c 

mice due to squamous cell carcinoma in the forestomach. Opera-

tive removal of the forestomach prior to MNU treatment helped to 

promote the development of well-differentiated adenocarcinoma in 

the glandular stomach, with a 100% incidence rate after 40 weeks 

of treatment.17

Therefore, while glandular stomach is sensitive to the carci-

nogenic effects of MNU, this phenotype was not the result of the 

greater sensitivity of the forestomach to MNU under the inves-

tigated treatment conditions (dose and route of administration). 

Tatematsu et al.18 demonstrated that low-dose MNU (30-120 

ppm) given in drinking water was effective without the induction 

of tumors in the forestomach. The efficiency of tumor induc-

tion by MNU depends on its concentration rather than the total 

intake,19 and MNU in the drinking water at 240 ppm for 5 weeks 

(every other week) has been shown to induce gastric cancer in six 

strains of mice.20 Consequently, this protocol is used currently as 

a standard method for induction of gastric carcinogenesis in mice. 

MNU-induced tumors in mice are located mainly in the gastric 

antrum and are uniformly well-differentiated adenocarcinomas.21

The MNU mouse model of gastric cancer has been used for 

studying various signaling pathways in gastric carcinogenesis, in-

cluding the roles of p53,22 nuclear factor-kappaB (NF-κB),23 the 

mitogen-activated protein kinase (MAPK) pathway,24,25 Cox-2,26,27 

β-catenin,26 E-cadherin,28 and Kruppel-like factor 4 (KLF4).29 

MNU is known to modify amino acids in histone proteins, espe-

cially histone H3 lysine residues, leading to chromatin remodel-

ing.30 MNU treatment in mice induces altered expression of Trefoil 

factor 1 (TFF1), a gastric-specific tumor suppressor gene, through 

epigenetic modifications similar to those observed in human gastric 

cancer.31 This suggests that epigenetic effects are likely to consti-

tute a key mechanism of NOC-induced carcinogenesis. While the 

MNU model does not progress through a classical atrophy-meta-

plasia-dysplasia sequence, this latter H. pylori-dependent pathway 

results in achlorhydria with subsequent bacterial overgrowth. NOCs 

may be generated from nitrates and nitrites in this setting, and thus 

the argument can be made that the generation of NOCs may play a 

role in Helicobacter-associated carcinogenesis. Recent studies used 

a combination of MNU and H. felis infection achieved a very rapid 

induction of antral gastric cancer31 and induced a high frequency of 

gastric cancer in H. pylori-infected Mongolian gerbils compared 

to gerbils receiving MNU only.32,33 Thus, the combination of Heli-

cobacter infection and MNU treatment may, in some ways, mimic 

the proposed pathogenesis of human antral carcinogenesis.

Helicobacter Infection Models

H. pylori are thought to be the main cause of chronic gastritis. 

The first animal models of Helicobacter infection-induced carci-

nogenesis in the gastric mucosa was the ferret model.34-36 Ferrets 

with H. mustalae infection exposed to 100 mg/kg MNNG devel-

oped gastric cancer, while H. mustalae-infected ferrets did not,34 

although MNNG-induced gastric cancer from H. mustalae-free 

SPF ferrets was not proven because these animals were not avail-

able. H. mustelae-infected ferrets have been shown to develop gas-

tritis, dysplasia, and gastric adenocarcinoma with aging.37 Several H. 
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pylori strains, including G1.1,38 TN2,39 and B128,40 have the ability 

to colonize Mongolian gerbils and induce gastric adenocarcinoma.

The mouse C57BL/6 strain is remarkably resistant to coloni-

zation with various H. pylori strains.41,42 Thus, alternative mouse 

models of gastric Helicobacter infection have been established us-

ing H. felis, a close relative of H. pylori. This strain was isolated 

from the cat stomach and was shown to readily colonize the mouse 

stomach.43 Several papers have reported that H. felis can induce se-

vere gastritis and atrophy in mice.43-45 H. felis-infected mice show 

gastric SPEM, dysplasia, and invasive cancer with long observation 

periods.46,47 Extensive dysplastic lesions are observed in the gastric 

corpus at the squamocolumnar junction (SCJ) along the lesser cur-

vature, and large polypoidantral tumors develop.48,49

In the H. felis infection model in mice, eradication studies have 

revealed that inflammation, metaplasia, and dysplasia are revers-

ible when early eradication therapy is applied and that progression 

to dysplasia can be restricted with eradication therapy at a later 

time point.50,51 This phenomenon is linked to an epidemiological 

decrease in the incidence of gastric adenocarcinoma in humans.52,53 

Gerbils and INS-GAS mice treated with antibiotics to eradicate H. 

pylori exhibit arrested progression of gastric lesions.43,54

The Sydney strain of H. pylori (SS1) has been adopted as a use-

ful strain in murine model systems.55 High levels of colonization 

have been achieved in inbred C57BL/6 mice, while colonization 

levels in Balb/c, DBA/2, and C3H/He strains were lower. Active 

gastritis and severe atrophy have been observed with detectable 

levels of bacteria after 8 months of infection. In a 2-year follow-

up, infection with SS1 or other strains (i.e., 119p and G50) did not 

progress to gastric cancer, although some mice developed gastric 

lymphoma.56 Infection with H. pylori SS1 did result in the develop-

ment of carcinomas in situ in C57BL/129 mice after 15 months 

of infection.49 Moreover, H. pylori infection can also cause gastric 

cancer in genetically modified mice, as shown in a study of INS-

GAS mice.57 

Vacuolating cytotoxin (Vac), encoded by the vacA gene, fa-

cilitates the pathogenesis of stomach dysplasia. Infection with an 

adapted H. pylori strain lacking VacA reduces the incidence of gas-

tric carcinoma in a Mongolian gerbil model. While CagA depriva-

tion protects against cancer development by enhancing inflamma-

tion, ablation of VacA does not affect inflammation.58 The genetic 

loci cag and vacA are thought to be related to crucial virulence 

factors in gastritis. In H. pylori, a 40-kb genomic fragment known 

as the cag pathogenicity island (cag-PAI) encodes a type IV secre-

tion (TFSS) apparatus for the bacterial protein CagA, particularly 

in high-risk intestinal-type adenocarcinoma.49 After invasion of 

CagA into host cells, CagA phosphorylation by host cell kinases 

induces activation of SHP-2 tyrosine phosphatase, NF-κB signal-

ing, and MAPK signaling.59-61

CagA and/or the cag-PAI may play a key role in gastric carci-

nogenesis. Nevertheless, in mice, cag-negative strains, such as H. 

felis, display carcinogenic abilities similar to cag-positive H. pylori 

strains. Moreover, while inactivation of the cagE gene encoding 

TFSS delays the progression to carcinoma in an H. pylori strain, 

neoplasia ultimately develops in all INS-GAS mice infected with H. 

pylori mutant.57 Thus, these results suggest that gastric preneoplasia 

occurs in mice through host-related factors, such as inflamma-

tion or other genetic factors. For example, the C57BL/6 strain is 

more sensitive to H. felis-induced gastric atrophy than the Balb/c 

strain because C57BL/6 mice show much higher levels of pro-in-

flammatory cytokines, such as interferon (IFN)-γ due to increased 

T-helper-1 (Th1)-dependent immune responses in C57BL/6 mice 

compared to the Th2-dominant immune response in Balb/c mice.47

Mouse models of Helicobacter infection have been studied to 

determine the effects of other cofactors in gastric carcinogenesis, 

such as gender, diet, and co-infection. Gender may be an impor-

tant factor, as gastric cancer is much more prevalent in men than 

in women. However, C57BL/6 mice infected with H. felis did not 

exhibit significant gender-related differences in the incidence of 

gastric carcinoma.46,57 These data suggested that these models have 

distinct mechanisms of carcinogenesis. High-salt diets and diets 

rich in nitrates and nitrites have been associated with an increased 

risk of gastric cancer. Treatment with MNU prior to H. pylori in-

fection induces more severe preneoplastic changes and increased 

incidence of gastric cancer.62,63 C57BL/6 mice with SS1 infections 

and consuming a high-salt diet develop more pronounced gastric 

atrophy and hyperplasia.64 Concurrent parasitic infection may al-

ter the effects of Helicobacter infection. Indeed, co-infection of 

C57BL/6 mice with H. felis and the helminth Heligmosomoides 

polygyrus reduces the severity of gastric atrophy and preneoplas-

tic lesions observed following infection with H. felis alone.65 This 

response has been shown to be associated with a switch from the 

usual Th1 immune response to a polarized Th2 response.

Murine models of chronic Helicobacter infection are defini-

tive and reproducible models that can be used to investigate the 

molecular mechanism of gastric carcinogenesis. However, there 

are limitations to Helicobacter mouse models, including the limited 

number of H. pylori strains available, the slow time course for the 

progression of tumors, the low incidence rate of advanced gastric 
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cancer, and the anatomical differences between humans and mice 

(Table 1).17-20,28,31,46,66-71

Genetically Engineered Mouse Models

Most genetic models in mice have been established on the 

C57BL/6 or mixed C57BL/6/129SvJ background. In the models 

discussed below, there are differences in tumor progression and 

phenotypes that are dependent on genetic background and gender. 

As expected for inbred mouse populations, genetic variability in 

mouse strains produces different susceptibilities to the development 

of gastric cancers. Therefore, when using particular genetic models 

of gastric cancer, the use of wild-type control mice with genetic 

backgrounds identical to the mutant mice is crucial.

The epithelium of the mouse stomach comprises the proximal 

fundus and the distal antrum, and these tissues have distinct func-

tions. The fundus produces acid for digestive enzymes, while the 

antrum has an endocrine and mucus-secretory role. Gastric tumors 

progress independently in separate regions under the control of 

different genetic triggers. Most of the models summarized in Table 

257,70,72-141 produce various stages of tumors in either the fundus or 

the antrum, while some model produce tumors in both tissues.

1. The Trefoil factor 1-/- mutant

TFF1 (also called pS2) is a member of the trefoil domain pep-

tide family, which also includes TFF2 and TFF3. These peptides 

are highly expressed in the gut, and TFF1 and TFF2 are synthe-

sized and secreted by surface/pit mucus and mucus neck/astral 

gland cells, respectively. TFF1-/- mice have gastric astral/pylorus-

specific hyperplasia by 1 week of age, and one-third of mice 

develop dysplasia and multifocal intra-epithelial carcinomas by 20 

weeks.72

TFF1-/- tumors have two phenotypes. Tumors with the first 

phenotype are located in the distal stomach, supporting a role for 

TFF1 as a stomach-specific tumor-suppressor gene.73 Secondary 

phenotypes show increased lengths of small intestinal villi with as-

sociated lymphocytic infiltrate72 and the loss of neutral glycoprotein 

from surface and pit cells of the stomach. This phenotype suggests 

a role for TFF1 in regulating gastric differentiation pathways.

The genes exhibiting the highest levels of overexpression in the 

stomachs of TFF1-/- mice are claudin 7 (encoding a tight junction 

protein), early growth response 1 (encoding a nuclear transcription 

factor), and epithelial membrane protein 1 (encoding a junctional 

membrane protein).74 Upregulation of claudin 7 has also been ob-

served in preneoplastic lesions in human stomachs and in gastric 

adenocarcinoma, thus underscoring the utility of the TFF1-/- mouse 

model in the discovery of genes related to gastric cancer progres-

sion.

Table 1. Mouse models of gastric cancer by chemical treatment or/and infections of helicobacter and viruses

Model Incidence 
(%) Duration Location

Phenotype
State References

Atrophy Metaplasia Dysplasia Adenocarcinoma

MNU <70 12 months Antrum + - + + 17~20

Helicobacter felis 80 18 months SCJ/transition + + + + 46

MNU+H. pylori 80 12 months Antrum + + + + 66, 67

MNU+H. felis 100 36 weeks Antrum + + + + 31

CDH1+/−+MNU 45.8 40 weeks Antrum - - - + Signet-ring cell Ca 28

RUNX3−/−+MNU 71 52 weeks Corpus/antrum - + + + 68

CEA/SV40 100 50 days Antrum - - + + Invasion to 
submucosa and 
duodenum

69

MMTV/Ad12 82 (male) 3~4 months SCJ - - - + Adenosquamous 
Ca

70

HPV-16 100 246~352 days Antrum Carcinoid, 
metastasis to LN 
and liver

71

MNU = N-methyl-N-nitro-N-nitrosoguanidine; CEA = carcinoembryonic antigen; HPV = human papillomavirus; SCJ = squamocolumnar 
junction; Ca = cancer; LN = lymph node.
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Table 2. Pathologic development in the stomach examplified by various genetic models of gastric hyperplasia or tumoriogenesis in mice

Model Age of onset Fundus Antrum Carcinoma 
in situ Invasion Metastasis References

TFF1−/− 1 week ++ ++ Y Y N 72~74

gp130757F757F 3~4 weeks +++ +++ Y Y N 75~77

Cdx2 transgenic 12 weeks ++ - Y Y N 78~80

INS-GAS 24 months +++ - N N N 57, 81, 82

ACT-GAS 20 months +++ - Y N N 83, 84

Gastrin−/− 12 months ND +++ Y N N 85~90

H/K-ATPase α subunit−/− 3 months +++ - Y N 91

H/K-ATPase β subunit−/− 20 months +++ - N N 91

NHE2−/− 3 months ++ - N N N 92

NHE4−/− 3 months ++ - N N N 93

Kv1qt1−/− ND +++ - N N N 94

KCNE2−/− ND +++ - N N N

Kcnq1−/− ND +++ - N N N 95

Histamine H2 receptor−/− 17 months ++ - N Herniation N 96, 97

IQGAP1−/− 24 months + - N N N 98

TGF β1−/− 0.5 month ND or +++ - N N N 99, 100

SMAD4+/− 18 months - ND or +++ Y Y N 101

ELF+/−SMAD4+/− ND - ND or +++ Y Y N 102

Runx3−/− 8 months +++ ND Y Y N 103~105

β-Catenin transgenic (D) ND ND or +++ - N N N 106~110

MTH1−/− ND - ND or + Y ND ND 111, 112

K19-C2mE transgenic 5 weeks 	 ++ - N N N 113~115

TSP-1−/− ND ND ND or + ND ND ND 99, 116, 117

TGF α transgenic 4~6 week ++ - N N N 118~124

AhR transgenic 12 months +++ - Y Y N 92, 125, 126

Klf4 conditional−/− 6 months +++ +++ N N N 127, 128

p27Kip1−/− 12 months ND or +++ - N N N 129

MHC Class II−/− 6 months ++ - N N N 130

CA IX−/− ND ND or ++ - N N N 131, 132

CEA SV40 transgenic 5 months - ND or +++ Y Y N 70, 133

H+/K+-ATPase β subunit
  SV40transgenic

12 months ND or +++ - Y Y Y 134~136

Fkh6−/− 0.1 month ND or ++ - ND ND ND 137

Shh−/− 18.5 day embryo ND or ++ ND or ++ ND ND ND 138

Occludin−/− 10 months ND or ++ - ND ND ND 139

CCR7−/− 12 months ND or +++ - N Y N 140

NF-κB2−/− 12 months - +++ ND ND ND 141

TFF1 = Trefoil factor 1; NHE = Na+/H+ exchanger; TGF = transforming growth factor; TSP = thrombospondin; AhR = aryl hydrocarbon receptor; 
Klf4 = Kruppel-like factor 4; MHC = major histocompatibility complex; CA = carbonic anhydrase; CEA = carcinoembryonic antigen; Fkh6 = 
forkhead homolog 6; Shh = Sonic hedgehog; NF-κB2 = nuclear factor-kappa B2; ND = not detectable; Y = yes; N = no.
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2. The gp130757F757F knock-in mutant

gp130757F757F mice were generated by knock-in mutation of the 

SHP2/SOCS3 binding site on the interleukin (IL)-6 family core-

ceptor gp130 in order to genetically dissect the independent con-

tribution of the two proteins downstream of the signal transducing 

receptor.75 The tyrosine (Y) residue at position 757 in the intracel-

lular domain of gp130 was changed to a phenylalanine residue in 

both alleles (757F757F), thereby preventing SHP2 (and SOCS3) 

docking after ligand binding with the receptor complex and 

blocking signal transduction through the Ras/extracellular signal-

regulated kinase (ERK)/AP-1 signaling pathway. Inhibition of this 

pathway prevents activation of target genes by AP-1 and promotes 

signaling via an alternate pathway including IL-6 cytokines, which 

involves the transcription factor STAT3. Thus, loss of feedback 

inhibition of STAT3 activation by SHP-2/Ras/ERK and SOCS3 

results in constitutive oncogenic signaling by STAT3 dimers. The 

resulting phenotype is characterized by splenomegaly and rapid 

gastric tumorigenesis, with downregulation of genes regulated by 

IL-6 via the SHP-2/Ras/ERK/AP-1 pathway and upregulation of 

genes mediated by STAT3, including growth factors like Reg176 and 

anti-apoptotic, pro-angiogenic, and cytostatic genes.77

A principle feature of this model is the phenotypic changes 

in the intestine characteristic of human gastric adenocarcinoma, 

including gastritis, atrophy, intestinal-type mucus metaplasia and 

SPEM, dysplasia, and submucosal invasion, but without metastasis. 

This tumorigenesis is independent of H. pylori infection, hyper-

gastrinemia (mice are hypogastrinemic), and constitutive activation 

of epidermal growth factor receptor,76 as required for many other 

stomach cancer models, and highlights the importance of IL-6 

signaling in the maintenance of gastric homeostasis. The timing 

and site of tumor initiation and dysplastic changes are consistent in 

all mice; development is rapid, such that initiation of antral tumors 

with transmural gastritis is observed by 4 weeks of age, and tumor 

growth then progresses rapidly along the lesser curvature of the 

stomach to encompass the entire secretory mucosa by 20 weeks of 

age.76

3. Cdx1 and Cdx2 transgenic models

Cdx1 and Cdx2 are adult intestine/colon-specific transcription 

factors that play roles as caudal-related homeobox genes during 

development. These proteins are involved in IM, the intestinaliza-

tion of the gastric mucosa associated with progression to intestinal-

type gastric adenocarcinoma in both mice and humans. When 

housed under specific pathogen-free (SPF) conditions, Cdx2 

transgenic mice in the C57BL/6 background exhibit incomplete IM 

throughout gastric fundic glands at 12 weeks of age,78 coincident 

with hypergastrinemia, achlorhydria, and SPEM.79,80 The stomachs 

from Cdx1 transgenic mice show rapidly expanding IM, similar to 

that observed in Cdx2 transgenic mice, but with a variety of differ-

entiated cell types, including Paneth cells and hormone-expressing 

endocrine cells.79,80

4. Gastrin mutants

Gastrin, which is produced by G cells in the antral mucosa, is a 

crucial regulatory hormone in the gastric mucosa and can regulate 

cell division, invasion, angiogenesis, and anti-apoptotic activity at 

the transcriptional level.142,143 It functions to regulate acid secretion 

in response to feeding and in maintaining developmental epithe-

lial cell homeostasis in the fundic and antral mucosa. A failure 

to strictly regulate gastrin expression will induce perturbations in 

gastric epithelial cell dynamics and potentially promote gastric can-

cer. Such dysregulation of gastrin has been used in various mouse 

models of stomach cancer.

1) Insulin-gastrin transgenic mice

Expression of the human gastrin transgene is induced by a 

mouse insulin promoter, and processed forms of gastrin are found 

in the pancreas, stomach, and colon.144,145 In 1-year-old INS-GAS 

mice, marked thickening of the fundic mucosa and multifocal 

hyperplasia are observed in the stomach in the context of gastrin 

overexpression,145 and these mice spontaneously develop atrophy 

and cancer by 2 years of age.81 INS-GAS mice can be used in 

combination with other agents as a model of gastric cancer devel-

opment due to the lower threshold for carcinogenesis. At 7 months 

after infection with H. pylori or H. felis, male INS-GAS mice de-

velop atrophy, IM, dysplasia, and finally, gastric adenocarcinoma.57,81 

Cancers develop in situ or intramucosal carcinoma57 by reactivation 

of sonic hedgehog expression.82 Inhibition of the gastrin/CCK2 and 

histamine H2 receptors limits the development of gastric cancer in 

these mice.146

2) Actin-gastrin transgenic mice

The actin promoter has been used to drive gastrin expression 

in the Act-Gas transgenic model. Mutation of the gastrin gene al-

lows the expression of processed forms of gastrin by nonendocrine 

cells.83 By 16 weeks of age, mice develop mucosal hypertrophy, 

consisting mainly of foveolar hyperplasia, accompanied by parietal 

cell atrophy.84 Similar to the TFF1-/- model, treatment with a selec-
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tive COX-2 inhibitor reduces cell proliferation and foveolar thick-

ness, suggesting that COX-2 and prostaglandin E2 (PGE2) might 

function downstream of gastrin.84

3) Gastrin-konckout mice

Gastrin-deficient mice are hypochlorhydric due to the absence 

of the gastrin hydrochloric acid secretory pathway.85,86 The absence 

of gastric acid provides permissive conditions for bacterial over-

growth in hypochlorhydric mice.87 This overgrowth with inflam-

mation was recovered by treatment with antibiotics. By 12 months 

of age, hypochlorhydric mice develop chronic gastritis, atrophy, 

metaplasia, dysplasia, and intramucosal carcinoma in the antral 

mucosa,88 dependent on mucosal inflammation. The metaplasia that 

develops in this model is not a true IM (marked by the presence of 

goblet cells), but is instead a naturalization caused by inflammation-

dependent expansion of a mucous cell lineage often seen in mouse 

gastric metaplasia (SPEM).89,90 Moreover, in this model, the devel-

opment of carcinomas is independent of gastrin, but is related to 

increases in the amount of activated STAT3 and loss of RUNX3 

expression.88

5. Parietal cell mutants

Parietal cells of the fundic stomach secrete hydrochloric acid 

to sterilize gastric contents and promote the activation of stomach 

enzymes for protein digestion. Physical loss of parietal cells or their 

acid synthetic function promotes bacterial colonization of the gas-

tric lumen, and this, along with the constitutive inflammatory re-

sponse of the host, likely predisposes the cells to gastric pathology, 

including cancer. Therefore, it follows that a variety of mutations 

affecting the acid secretion function of parietal cells will contribute 

to improving our understanding of the mechanisms predisposing 

the gastric tissue to metaplasia and cancer in mouse models.

1) H+/K+-ATPase-knockout mice

Gastric acid plays a role in minimizing infection and the subse-

quent inflammatory response in the stomach. The H+/K+-ATPase 

expressed by fundic parietal cells is responsible for acidification of 

gastric contents. The mice deficient for the H+/K+-ATPase α sub-

unit exhibit progression of fundic hypertrophy to hyaline transfor-

mation, mucocystic and ciliated metaplasia, and chronic gastritis at 

20 months of age, particularly in female mice.91

2) Na+/H+ exchanger-knockout mice 

Na+/H+ exchangers (NHEs) are proteins in the basolateral 

membrane of gastric epithelial cells, particularly parietal cells, and 

are known to be involved in mediating acid secretion and in main-

taining epithelial cell viability. Knockout of NHE292 or NHE493 

induces fundic atrophy, parietal cell loss, achlorhydria, hypergas-

trinemia, and glandular hyperplasia. 

3) Potassium channel-knockout mice

Due to the high activity of the H+/K+-ATPase in gastric parietal 

cells, potassium channels have important roles in the maintenance 

of ion homeostasis. The fundic mucosas of these mice morphologi-

cally resemble those of the H+/K+-ATPase knockout mice because 

these mice develop achlorhydria, hypergastrinemia, and hyperpla-

sia, although the mechanism has not been directly tested.94 Targeted 

mutation of Kcnq1 in mice leads to an expanded fundic prolifera-

tion zone with severe hyperplasia, achlorhydria, and hypergastrin-

emia. Several mouse lines with a defective Kcnq1 locus (14Gso) 

have been generated using random mutagenesis induced by X-ray 

irradiation of spermatogonia.95 The products of these mutations are 

similar to those in H+/K+ ATPase α- or β-null mutant mice. 

4) Histamine receptor-knockout mice

The histamine histamine receptor (H2R) is expressed on acid-

secreting parietal cells of the gastric mucosa and functions to stim-

ulate gastric acid secretion. H2R-knockout mice are viable, fertile, 

and have normal basal gastric acid secretion, maintained by mus-

carinic receptors.96 Fundic hyperplasia occurs as a direct product of 

increased numbers of parietal and enterochromaffin-like cell until 

17 months of age, after which the pathology worsens to include 

mucocystic metaplasia, with a proportion of the mice developing 

herniation of the epithelium penetrating the muscularis mucosa and 

producing a phenotype closely mimicking Ménétrier’s disease in 

humans.97

5) IQGAP1-knockout mice

Parietal cells in the gastric mucosa show subcellular reorganiza-

tion upon activation, leading to secretion of gastric acid. Through its 

F-actin-binding function, IQGAP1 is involved in this subcellular 

reorganization event, which is dependent on the precise formation 

of F-actin structures by the Rho family of Ras-related GTPases.98 

6. Transforming growth factor beta, transforming 

growth factor beta receptor, and signaling mutants

There are three isoforms of transforming growth factor beta 

(TGF β): TGF β1, -2, and -3, and all three isoforms can bind to 
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TGF β receptor II, although TGF β1 is most frequently altered in 

tumorigenesis. Upon ligand binding to TGF β receptor II, heterodi-

merization and activation of TGF β receptor I occur. Activation of 

the SMAD complexes via activation of TGF β receptor I can acti-

vate TGF β-responsive genes in the nucleus. Many of the down-

stream components of the TGF β signaling pathway are thought to 

act as tumor-suppressor proteins, including TGF β receptor I, TGF 

β receptor II, SMAD2, and SMAD4. Changes in TGF β signaling 

can stimulate tumor growth, invasion, and metastasis.147,148

1) Transforming growth factor beta1-knockout mice

TGF β1 suppresses cell growth and tumor development by 

reducing the expression or activity of TGF β receptors and by 

altering downstream signaling pathways. This resistance to TGF 

β1 signaling may represent a significant step in the process of car-

cinogenesis.99,100 TGF β1 also functions to control the production 

and degradation of extracellular matrix proteins, as well as cellular 

differentiation. About 20 days after birth, mice homozygous for the 

TGF β1-null mutation develop a severe wasting syndrome resulting 

from multifocal, mixed inflammatory cell infiltration in a variety of 

tissues, including the stomach. In particular, ulceration, hyperplasia, 

and nodule formation have been observed in the mucosa of the 

stomach.99,100 Because this mutation results in early lethality, the ef-

fects of TGF β1 knockdown on gastric carcinogenesis have not yet 

been assessed.

2) Transforming growth factor beta type II receptor 

dominant-negative transgenic mice

A dominant-negative transgene of the TGF β type II recep-

tor was produced under control of the TFF1 promoter to direct 

stomach-specific expression.149 These transgenic mice did not 

respond to TGF β ligands in the stomach, but also did not exhibit 

gastric abnormalities. However, infection with H. pylori induced the 

acquisition of a more severe phenotype in the fundus and antrum 

including greater hyperplasia, inflammation, and dysplasia, as well 

as intramucosal carcinoma.

3) SMAD4 hemizygous knockout mice

SMAD4 belongs to a family of proteins involved in the TGF β 

signaling cascade. Homozygous SMAD4-knockout mice exhibit 

embryonic lethality, whereas heterozygotes appear normal up to 

1 year of age. SMAD4 mutations have been observed in 50% of 

patients with familial juvenile polyposis. Moreover, mice in which 

SMAD4 is conditionally ablated in T cells or epithelia, including the 

intestinal epithelium, begin to display signs of illness by 3 months 

of age and exhibit shortened lifespans as a result of pathological 

changes initiated in the small and large intestine, which eventually 

develop into invasive and metastatic epithelial cancer.101 However, 

specific deletion of SMAD4 in epithelial cells is not sufficient to 

induce these cancers in the gut. SMAD4-deficient T cells exhibit 

increased IL-6 receptor α expression in the gastric epithelium. In 

some epithelial cancers, the control of TGF β signaling in the in-

flammatory cells is crucial for regulating tumor development.

4) ELF and SMAD4 double hemizygous knockouts

Embryonic liver fodrin (ELF), a novel β-spectrin, is a mem-

brane-associated cytoskeletal component in cellular differentiation. 

ELF plays a role as an adaptor for SMAD proteins. Loss of ELF 

disrupts nuclear translocation of SMAD3 and SMAD4. Mice with 

homozygous ELF4-deficiency die during embryonic development, 

and mice with heterozygous deletions for both SMAD4 and ELF 

show a higher incidence of severe gastric lesions than those with 

mutations in SMAD4 alone.102 

5) Runx3-knockout mice

Runx proteins act as regulators of gene expression in devel-

opmental pathways. Runx3-knockout mice on a C57BL/6 back-

ground show reduced viability and do not survive beyond 10 days 

of age.103 Runx3-knockout mice exhibit thickened gastric mucosa 

with increased proliferation and decreased apoptosis in the fun-

dic and antral mucosa. In contrast, Runx3-knockout mice in an 

ICRxMF1 background survive for several months and do not de-

velop gastric hypertrophy or carcinogenesis,104 while mice on either 

a C57BL/6 or BALB/c background do not survive after birth.105 At 

8 months of age, Runx3 mice on an ICRxMF1 background develop 

marked hyperplasia, glandular atrophy, hyaline degeneration, hy-

perproliferation, and gastritis in the fundic mucosa. 

7. APCmin/+ and Wnt signaling pathway mutants

Wnt signaling plays a major role in determining cell fate and 

morphogenesis during embryogenesis and maintaining homeostatic 

control of rapidly repaired tissues in adults. Transgenic overexpres-

sion of activated β-catenin, which is stabilized and translocated to 

the nucleus upon activation of Wnt ligands, is involved in tumori-

genesis.106,107 These models have shown that β-catenin is overex-

pressed in a large number of cells. In order to mimic the process 

of human carcinogenesis, in which tumors arise from a mutation 

in single cell, a transgenic model with overexpression of the acti-
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vated form of β-catenin occurring in sporadic cells was established. 

However, in this model, few mice developed discrete multifocal 

dysplastic lesions in the gastric mucosa. 

Loss of the APC tumor-suppressor gene is involved in the 

initiation of colorectal cancer in humans and mice via nuclear ac-

cumulation and activation of β-catenin/Tcf target genes. APC mu-

tant mice (codon 1638) develop gastric tumors with low frequency 

during the aging process.109,110 Gastric pathology associated with the 

APCmin/+/C57BL/6 background may be infrequently observed be-

cause of the shortened lifespan of these mice. Recently, APCmin/+/

C57BL/6 mice were shown to develop gastric adenomas of the an-

trum by 20 weeks of age when maintained under SPF conditions. 

Microbial infection seems to play a role in the development of 

some types of pathologies in these mice. Moreover, antral adeno-

mas show hyperplasia and nuclear atypia acquired from the strong 

expression of Myc, cyclin D1, and β-catenin.110

8. MTH1-knockout mice

MTH1 acts as a tumor suppressor by inhibiting the incorpo-

ration of 8-oxodGTPase residues into DNA, thereby promoting 

nucleotide oxidation and transversion during DNA synthesis and 

inducing carcinogenesis in susceptible tissues. Assessment of organ 

pathology using 18-month-old MTH1-knockout mice and lit-

termate controls, revealed the presence of lung and liver tumors, 

stomach adenomatous polyps, and adenocarcinomas in 14% of 

MTH1-/- mice, but only 4% of wild-type controls.111 Additionally, 

tumors were more prevalent in males than in females. Cai et al.112 

demonstrated that MTH2 has a similar activity profile as MTH1, 

suggesting the possibility that this gene family may contribute to 

the inhibition of tumorigenesis by mediating local oxidative dam-

age.

9. K19-C2mE transgenic mice and genetic variants

K19-C2mE mice exhibit overexpression of COX-2 and mi-

crosomal PGE synthase 1 genes under the control of the cyto-

keratin 19 gene promoter.113 In the context of PGE2 upregulation, 

this mouse model develops gastric hyperplasia in a macrophage-

dependent manner. Although hyperplasia appears by 12 weeks of 

age, maximal tumorigenesis is not found until about 50 weeks of 

age or more. Loss of the pro-inflammatory cytokine IL-1b or the 

adaptive immune response (Rag2-/-) in the K19-C2mE transgene 

does not affect tumorigenesis. However, depletion of tumor ne-

crosis factor causes severe delays in inflammation, hyperplasia, and 

development of TFF2-associated mucous cell SPEM,114 suggesting 

that pro-inflammatory cytokines are important in gastric metapla-

sia and oncogenesis. Compared with K19-C2mE mice alone, K19-

C2mE×K19-Wnt1 transgenic mice exhibit accelerated formation 

of gastric tumors, concurrent with severe dysplasia, hyperplasia, 

inflammation, and submucosal invasion by 20 weeks of age.115

10. Thrombospondin 1-knockout mice

Thrombospondin (TSP) proteins are extracellular calcium-

binding proteins that regulate cellular attachment, migration, dif-

ferentiation, and proliferation.116 Due to the TSP-1-dependent 

activation of TGF β1, TGF β1-/- and TSP-1-/- mice have similar 

phenotypes in various tissues, including IM and increased mitosis 

and hyperplasia of the gastric epithelium after postnatal days 17 to 

21.99 Compound TSP-1×aVb6 integrin-null mice develop stom-

ach hyperplasia (21%), gastric papillomas, and squamous cell carci-

nomas.117

11. Transforming growth factor alpha transgenic 

mice

TGF α transgenic mice with transgene overexpression in fundic 

stomach mucus cells (MT-TGF α) exhibit a phenotype in which 

giant fundic mucosal folds form as a result of massive cellular 

hyperplasia and glandular cystic dilation.118,119 This phenotype is 

reminiscent of the rare human condition Ménétrier’s disease, which 

exhibits elevated TGF α expression.118 In adult TGF α transgenic 

mice, the surface mucous cell population increases at the expense 

of both parietal and chief (zymogenic) cells, with the isthmus-

located stem cell zone nearer to the base of the glands,120-122 and 

the mucosa become much more fibrotic.123 Thus, the fundic mucosa 

phenocopies the antralization observed in precancerous metaplasia 

accompanying antral expression of Pdx1.124 However, invasive gas-

tric tumors with IM are not observed. 

12. Dioxin/aryl hydrocarbon receptor transgenic mice

Activation of aryl hydrocarbon receptor (AhR) by environmen-

tal stimuli, such as dioxins and biphenyls, results in transcriptional 

activation of genes encoding xenobiotic metabolizing enzymes.125 

Endogenous expression of AhR is observed predominantly in the 

lungs, although mice transgenic for AhR also show expression 

of the transgene in the thymus, spleen, liver, skin, and stomach. 

In AhR transgenic mice, cysts are grossly apparent in the fun-

dic gastric mucosa at 3 months of age and develop into dysplastic 

structures that penetrated the muscularis mucosa into the submu-

cosa and subserosa by 12 months of age, at which point trans-
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gene expression results in lethality. The penetrating mucosal cells 

exhibit a well-differentiated, benign appearance and seem to be 

invasive rather than a result of herniation.125 Similar lesions have 

also been observed in laboratory animals following treatment with 

AhR ligands.125 As cause of lesions, decreased expression of os-

teopontin has been detected in these fundic lesions in differential 

gene expression analyses. Because osteopontin is involved in tissue 

remodeling, invasive lesions may be caused by its altered expres-

sion in this mouse model.126 In contrast, H+/K+-ATPase α subunit-

knockout mice have elevated levels of osteopontin compared with 

wild-type mice and exhibit reduced invasion of lesions into the 

gastric muscularis.93 

13. Kruppel-like factor 4-knockout mice

Kruppel-like factor 4 (Klf4) is an epithelial-specific, zinc fin-

ger transcription factor that plays important roles in the regulation 

of cellular proliferation and differentiation. Klf4-knockout mice 

exhibit early lethality,127 and mice with Klf4 deletions specifically 

in the glandular gastric mucosa show epithelial hypertrophy, hy-

perproliferation, mucous metaplasia, atrophy, and polypoid lesions 

in the fundus and antrum, but no inflammation, hypergastrinemia, 

dysplasia, or malignancies.128

14. p27Kip1-knockout mice

The p27Kip1 protein inhibits cyclin-dependent kinases to block 

cell cycle progression, playing vital roles in cell migration, apopto-

sis, differentiation, and inflammatory responses. p27Kip1-knockout 

mice develop mild epithelial hyperplasia at approximately 1 year 

of age, mucous cell metaplasia, and low-grade dysplasia. After H. 

pylori infection, these preneoplastic conditions facilitate the de-

velopment of high-grade dysplasia or intramucosal carcinoma in 

p27Kip1 mice due to increased cell turnover and an exaggerated 

inflammatory response.129

15. Major histocompatibility complex class II knockout

Major histocompatibility complex (MHC) class II molecules 

have major roles in regulating the CD4+ arm of the adaptive im-

mune response. MHC class II-deficient mice are unable to produce 

a functional CD4+-mediated immune response because MHC 

class II protein is required for the maturation of CD4+ T cells in 

the thymus. At 6 months of age, these mice have fundic stomachs 

with gastrin-dependent mild hyperplasia, including infiltration of 

granulocytes and macrophages, but no epithelial cell atrophy.130 

Thus, these data have shown that persistent activation of the innate 

immune system can produce hyperplastic changes in the fundic 

mucosa. 

16. Carbonic anhydrase IX-knockout mice

Carbonic anhydrases (CAs) are metalloenzymes containing zinc 

that are involved in pH regulation. CA IX has tumor-related ex-

pression and high catalytic activity and has been shown to function 

as an adhesion molecule. Moreover, CA IX may function as a pH 

regulator in the hypoxic tumor mass. CA IX-deficient mice have 

nonprogressive glandular expansion, restricted to foveolar hyper-

plasia in the fundus.131 CA IX-knockout mice in the C57BL/6 or 

BALB/c background or feeding of a high-salt diet produces varia-

tions in the observed pathological changes.132 However, deletion of 

CA IX does not affect gastric acid secretion, serum pH, electrolytes, 

or gastrin, suggesting that CA IX contributes to the hyperplastic 

phenotype. 

17. p53 hemizygous knockout

p53 is a transcription factor that acts as a regulator of prolifera-

tion, apoptosis, and genomic repair. p53 hemizygous knockout 

mice have been shown to exhibit a low incidence of spontaneous 

carcinogenesis (2%) in organs. Infection with H. felis in hemizy-

gous p53-knockout mice leads to an increased proliferative index 

and growth advantage compared with wild-type mice, but no 

obvious neoplasia was observed.132 Moreover, wild-type C57BL/6 

mice develop early invasive adenocarcinomas at 15 months after 

infection, with associated metaplasia and a greater inflammatory 

response. Therefore, hemizygosity of p53 appears to result in de-

pressed Th1 immune responsiveness.150

18. SV40 T antigen transgenic mice

The SV40 T antigen from the simian virus is a potent trans-

forming agent and oncogene. Its aberrant expression has been used 

to generate transformations in a number of different cells lines and 

tissues.

19. Carcinoembryonic antigen and SV40 T antigen 

transgenic mice

Carcinoembryonic antigen (CEA) is expressed during em-

bryonic development and in various tumors, including colorectal, 

breast, lung, and pancreatic carcinomas. The CEA promoter has 

been used to drive the transgenic expression of the SV40 T antigen. 

Despite detectable levels of SV40 T antigen transgene expression 

only in the stomach, these animals develop carcinomas, lympho-

mas, and sarcomas with varying frequencies. Only one transgenic 

line has been shown to reproducibly develop tumors in the antral 
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stomach; these tumors were poorly differentiated adenocarcinomas 

that had lost gastric mucin expression. Additionally, these tumors 

were visible macroscopically from 5 weeks of age, and penetration 

of tumors in all tissue layers of the stomach invaded and blocked 

the duodenum, causing death of the mice at approximately 20 

weeks of age.70 A mouse adenocarcinoma cell line generated from 

these gastric adenocarcinomas is currently available.133

20. H+/K+-ATPase ß subunit SV40 T antigen transgenic

When the promoter of the H+/K+-ATPase β subunit is used to 

direct transgenic expression of the SV40 T antigen, a dramatic in-

crease in number of rare preparietal cells was observed by 12 weeks 

of age. However, such changes did not lead to differentiation into 

mature parietal cells.134 Mice with this transgene exhibit hyper-

plasia in the stomach, accompanied by a reduction in the numbers 

of mature zymogenic cells and parietal cells. By 40 weeks of age, 

these mice exhibit various abnormal gastric phenotypes, with pro-

gressive hyperplasia, cystic dilations, and focal dysplasia. Moreover, 

by 1 year of age, all mice have invasive gastric cancer with lym-

phatic-vascular invasion and associated lymph node and hepatic 

metastasis. Invasive tumor cells were only weakly positive for SV40 

T antigen and negative for the H+/K+-ATPase β subunit. However, 

typical mucous-glandular structures used as histopathological diag-

nostic criteria in adenocarcinomas of the human stomach were not 

maintained. Using transcriptome analysis, researchers have shown 

that invasive tumor cells can transdifferentiate into neuroendocrine 

cells based on their expression of dopa decarboxylase, chromo-

granin A, and tryptophan hydroxylase, as well as increased expres-

sion of Sox2, Hey1, and Neuro D1.135 Moreover, use of the H+/K+-

ATPase β subunit promoter to induce cultured progenitor cells into 

mature parietal cells at the nonpermissive temperature for the SV40 

T antigen resulted in development of fundic hypertrophy in trans-

genic mice at 12 weeks of age.136

21. Forkhead homolog 6-knockout mice

Forkhead homolog 6 (Fkh6) is expressed in the gastrointestinal 

tract in the mesenchyme directly adjacent to the endoderm-derived 

epithelium. Fkh6-knockout mice have progressively worsen-

ing gastric pathology from 3 days of age. Stomachs from these 

mice display epithelial hyperplasia, cyst formation, mucous cell 

metaplasia, increased cell proliferation, and a diffuse submucosal 

mesenchyme, as well as a significant reduction in BMP4, which has 

been implicated in epithelial signaling processes. Thus, this result 

suggests that BMP4 may be a downstream target of Fkh6.137 The 

dramatic and rapid changes in phenotype in this knockout mouse 

highlight the important role of mesenchymal-epithelial cell inter-

actions in the growth and differentiation of the gastric mucosa.

22. Sonic hedgehog-knockout mice

Sonic hedgehog (Shh)-knockout mice die at or shortly after 

birth. Therefore, analysis must be performed before birth. Such 

analyses have shown that at 18.5 days of embryonic life, Shh-

knockout mice exhibit hyperplastic gastric epithelium with no 

increase in cell proliferation and occlusion of the duodenum caused 

by overgrowth of villi. Additionally the stomachs of these mice 

show evidence of intestinalization due to increased expression of 

intestinal alkaline phosphatase, a marker of the brush border of 

enterocytes.138

23. Occludin-knockout mice

Occludin is a functional component of tight junctions, which 

are involved in cell-cell adhesion and maintaining the integrity 

of intercellular spaces. Occludin-knockout mice do not exhibit 

changes in viability, but have significant reductions in body weight. 

While deletion of occludin does not affect the morphology, protein 

content, or function of tight junctions in intestinal epithelial cells, 

occludin-knockout mice exhibit atrophy of the fundic mucosa by 3 

to 6 weeks of age.139 Moreover, gastritis develops progressively, and 

the fundic mucosa becomes hyperplastic with mucous cell meta-

plasia by 40 weeks of age. 

24. CCR7-knockout mice

CCR7 is a chemokine receptor that regulates the trafficking 

and retention of leucocytes in secondary lymphoid organs. Loss of 

expression of CCR7 leads to a number of phenotypes, including 

accumulation of functional lymphoid follicles in the stomachs of 

mice at 8 to 10 week of age, with concomitant development of the 

gastric mucosa, including accumulation of cells in the mucous neck 

region.139 At 12 month of age, profound hyperplasia is observed, 

with cystic dilatation reminiscent of Ménétrier’s disease. As a result, 

differentiation and proliferation of fundic tissue are affected by the 

presence of nonspecific, noninflammatory lymphoid aggregates in 

the gastric mucosa. 

25. Nuclear factor-kappaB2-knockout mice

Supporting the role of the inflammatory system in regulating the 

gastric mucosa, loss of the COOH terminus of NF-kB2, an impor-

tant transcription factor mediating inflammatory signals, has been 
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shown to stimulate activation of Rel/NF-kB transcription factors.141 

These mice have antral epithelial tissue with severe hyperplasia at 3 

weeks of age, resulting in premature death.151-168 It is unclear which 

genes are affected by the increased activation of NF-κB, leading to 

this gastric phenotype. Additional studies are required to elucidate 

the details of these mechanisms.

Mouse Models of Preneoplastic Changes 

H. pylori-related gastric cancer in humans is preceded by 

chronic gastritis, gastric atrophy, IM, and dysplasia. Thus, in ad-

dition to mouse models of gastric cancer, there are a number of 

genetically engineered models exhibiting decreased numbers of pa-

rietal cells or gastric atrophy, along with metaplasia. Several models 

of atrophy and metaplasia can be considered for use in experimen-

tal studies (Table 3).49,80,94,121,123,124,132,151-162 However, most of these 

models do not show the progression to neoplasia and most have 

not been examined to assess susceptibility to cancer in response to 

carcinogens.

Table 3. Mouse models of precancerous changes

Model Duration Phenotype References

Helicobacter pylori (SS-1) 6~9 months Atrophy, SPEM 49

TGF-α transgenic 3 months Atrophy 121, 123

H/K-ATPase/DT 28~80 days Atrophy 151

H/K-ATPase/Tk Ganciclovir-treatment Atrophy 152

H/K-ATPase-α−/− 10 weeks Atrophy 153

H/K-ATPase-β−/− 17 days Atrophy 154, 155

NHE2−/− 17 days Atrophy 94

Car9−/− 4 weeks Atrophy 132

CCK2R−/− 18 weeks Atrophy 156, 157

H/K-ATPase/Shh−/− 3~8 months Pit cell hyperplasia, loss of parietal cell function 158

DMP-777 7~14 days Atrophy, SPEM 124, 159

L-635 7 days Atrophy, SPEM 160

Cdx2 transgenic 120 days Intestinal metaplasia 161, 162

Cdx1 transgenic 120 days Intestinal metaplasia 80

TGF = transforming growth factor; Shh = Sonic hedgehog; SPEM = spasmolytic polypeptide-expressing metaplasia.

Table 4. Promoters for establishing gene expression in the stomach 

Gene Location Lineage in the stomach References

TFF1 Surface of stomach (pit cell area) 72~74

TFF2 Isthmus of corpus & base of antrum Parietal, mucous neck, and chief cells 79

H/K-ATPase Fundus (parietal cell) All gastric lineages of the fundus glands with Notch activation 163

Foxa3 Whole stomach, other organ from endoderm 164

K19 Whole stomach, intestine, colon, etc. 164

Lgr5 Cardia, antrum, intestine, colon, etc All major cell types in the cardia, antrum and transition zone 165

Sox2 Fundus, antrum, esophagus, forestomach, etc. All major cell types in the fundus and the antrum 166

Mist1 Corpus (chief cell), Brunner gland, pancreas Chief cell and drug-induced SPEM 160

Villin Antrum, intestine, colon All gastric lineages of the antral glands with IFN-γ treatment 167

Lrig1 Fundus, whole stomach 168

TFF1 = Trefoil factor 1; SPEM = spasmolytic polypeptide-expressing metaplasia; IFN = interferon.
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Conclusions and Future Perspectives 

Numerous mouse models with various gastric phenotypes are 

now available for studies of gastric carcinogenesis. These include 

transgenic mice, knockout mice, Helicobacter infection, and car-

cinogen (MNU) models. These models have demonstrated that 

gender, diet, bacterial flora, inflammatory cytokines, T helper im-

mune response, acid secretion, virulence, colonization properties of 

H. pylori strains, and host genetic background may all have roles in 

mediating the development of gastric cancer. 

Unfortunately, genetic models of metastatic gastric cancer 

similar to those developed for pancreatic cancer, comprising two 

or three mutations targeted to specific cell lineages, are not avail-

able. The major limitations of these models are minimal and in-

clude dispersion of promoter activity in the stomach and the lack 

of stomach-specific promoters that target antral progenitors only 

(Table 4).72-74,79,160,163-168

Reasonable mouse models of gastric cancer are available for 

studies of early-stage pathogenesis and cancer therapy, which have 

distinct mechanisms and different tumor phenotypes, with varia-

tions in the time course, location, and pathology of the disease. 

Thus, researchers are able to utilize appropriate mouse models for 

their studies. Newly suggested research methods, including lineage 

tracing or genome-wide analysis, should prove valuable for under-

standing the causes of gastric cancer, and thereby facilitating the 

discovery of a cure for this disease.
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