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Introduction

As of 2018, 4 institutions in the United States have widely incor-
porated computerized adaptive testing (CAT) technology in high-
stakes examinations for U.S. health professionals: (1) the National 
Council of State Boards of Nursing for the National Council Licen-
sure Examination for Registered Nurses; (2) the American Society 
for Clinical Pathology Board of Certification for 24 examinations, 
including the Medical Laboratory Scientist, Medical Laboratory 
Technician, Phlebotomy Technician, and Histotechnician examina-
tions; (3) the National Registry of Emergency Medical Technicians 
for the Emergency Medical Responder, Emergency Medical Techni-
cian (EMT), and Advanced-EMT exams; and (4) the National As-

sociation of Boards of Pharmacy for the North American Pharmacist 
Licensure Examination. The stability of the CAT-based exams ad-
ministered by these institutions has been maintained due to contin-
ual improvements to the CAT algorithm. It is anticipated that many 
more countries worldwide will adopt CAT administration for na-
tional licensing examinations for health professions due to the re-
duced test time and more accurate estimation of the test-taker’s abili-
ty parameter. Furthermore, re-testing can be accomplished more eas-
ily with CAT than with other forms of computer-based testing or 
paper-and-pencil testing.

When taking a CAT-based exam, a test-taker’s performance is eval-
uated not just at the end of the test, but continuously during the test-
ing period—specifically, after the administration of each item. Based 
on the interim evaluation of the test-taker’s performance, the CAT 
engine selects and administers the next test item at the difficulty level 
expected to be the most relevant to the test-taker’s performance abili-
ty. Such an individualized adaptive test construct can dramatically in-
crease the efficiency of the measurement tool [1]. It is not unusual to 
see test length decrease by 30% to 50% with CAT administration, 
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while maintaining a similar level of test score accuracy.
Because test forms are assembled on-the-fly in CAT, the CAT de-

velopment process is completely different from that used for con-
structing linear, fixed test forms. In typical fixed test-form construc-
tion, the created test form is usually evaluated analytically based on, 
for example, a test score reliability index, the standard error of mea-
surement, the test information function (if operating in the frame-
work of item response theory), and many other criteria. With CAT, 
the number of possible adaptive forms grows exponentially as the 
size of the item pool and test length increase. For example, if one ad-
ministers CAT with 30 items using an item pool of 500 items, the 
number of possible test forms would be approximately 3.83359E+80. 
This would make the evaluation of CAT test forms using standard 
analytical means impractical, if not impossible.

Simulation techniques using the Monte-Carlo (MC) method have 
been used extensively in the field of educational measurement. The 
known true values of MC simulations, such as the person parameter 
(θ) and item parameters, make studies of test construction, item 
analysis, data-model fit evaluation, differential item function, test 
performance and score distribution, and others not only possible but 

effective. The MC simulation method is especially important in the 
CAT arena because often it is the only practical way to study and 
evaluate CAT programs and their implementation. As noted above, 
other analytical methods are often not applicable or feasible with 
CAT programs.

SimulCAT is a software program that was developed as a solution 
for CAT simulation in response to strong demand for an easy-to-
use, comprehensive tool for performing such simulations [2]. The 
program is freely available from: https://www.umass.edu/remp/soft-
ware/simcata/simulcat/. This article introduces the basics of Simul-
CAT, as well as some key statistics for evaluating simulation results, 
followed by several examples of simulation studies.

Basics of SimulCAT

SimulCAT implements all 3 (iterative) processes of CAT as ex-
plained by Han [1]: (1) θ estimation, (2) CAT termination policy, 
and (3) item selection. It supports various CAT administration op-
tions to create CAT testing environments that are as realistic as pos-
sible. The interim and final score estimates can be calculated using 16 
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Fig. 1. SimulCAT GUI step 1: examinee/item data. Users can generate examinee and item data from normal, 

uniform, and beta distributions. SimulCAT also supports charts of the generated examinee and item data (the 

“Histogram” button and “Plot Item(s)” button). GUI, graphical user interface. 

 

Fig. 1. SimulCAT GUI step 1: examinee/item data. Users can generate examinee and item data from normal, uniform, and beta distributions. SimulCAT 
also supports charts of the generated examinee and item data (the “Histogram” button and “Plot Item(s)” button). GUI, graphical user interface.
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the maximum likelihood, the Bayesian maximum a posteriori or ex-
pected a posteriori estimations, or the maximum likelihood estima-
tion with fences [3]. SimulCAT users also can set the initial score 
value, the range of score estimates, and restrictions on how much the 
estimate can change. The length of CAT administration can be ei-
ther fixed or variable. For variable-length testing, SimulCAT sup-
ports multiple termination rules, including the standard error of esti-
mation (SEE) and score estimate consistency. Within SimulCAT, 
users can choose the number of test takers to be administered simul-
taneously at each test time slot and set the frequency of communica-
tion between a test server and client computers (i.e., terminals).

The core part of CAT is the item selection process, and Simul-
CAT supports most of the methods described by Han [1] for the 3 
key components of item selection: the item selection criterion, item 
exposure control, and content balancing. The item selection criteria 
supported in SimulCAT include (but are not limited to): (1) maxi-
mized Fisher information (MFI) [4], (2) a-stratification [5,6], (3) 
global information [7], (4) interval information [8], (5) likelihood 
weighted information [8], (6) gradual maximum information ratio 
[9], and (7) efficiency balanced information [10]. 

Along with a choice of item selection criteria, a variety of item ex-
posure control options are available within SimulCAT, including the 
following: (1) randomesque strategy [11], (2) Sympson and Hetter 
[12] method, (3) multinomial methods, both conditional and un-
conditional [13,14], and (4) fade-away method [9].

For content balancing, SimulCAT supports the content script meth-
od and the constrained CAT method [11].

SimulCAT features an intuitive graphical user interface (GUI) that 
involves a 3-step process: (1) examinee and item data generation, (2) 
item selection, and (3) test administration. Figs. 1–3 display the soft-
ware prompts for each of the 3 steps.

Software users may choose to use a syntax file mode and/or batch 
mode instead of SimulCAT’s GUI, and also may use existing exam-
inee and item data sets.

Once SimulCAT completes a simulation run (or a set of replica-
tions), it saves the following 2 output files by default (Figs. 4, 5).

SimulCAT software, user’s manual, and sample files can be down-
loaded from the website at http://www.hantest.net. MSTGen [15] is 
also available for simulations involving multistage testing [16].
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Fig. 2. SimulCAT GUI step 2: item selection. The software prompts users to choose item selection criteria, 

item exposure control, test length, and content balancing. GUI, graphical user interface. 

 

Fig. 2. SimulCAT GUI step 2: item selection. The software prompts users to choose item selection criteria, item exposure control, test length, and con-
tent balancing. GUI, graphical user interface.
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Some statistics for evaluating computerized 
adaptive testing performance

Once a test program based on CAT is designed, it is important to 
evaluate the CAT administration’s performance, given the item pool 

and test-taker distribution, using a CAT simulation. The most im-
portant aspect of CAT performance evaluation is the measurement 
precision of the test program. Except for CAT applications such as 
patient self-report surveys and personality assessments, where indi-
viduals’ pre-knowledge of test items would not change their response 
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Fig. 3. SimulCAT GUI step 3: test administration. Users specify the details of the testing environment of 

computerized adaptive testing, for example, the score estimation method, number of simultaneous test 

administrations, pretest item administration, and other research tools and output options. GUI, graphical user 

interface. 
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Fig. 4. SimulCAT output file 1: SimulCAT test administration data (*.sca). Each column shows the 

examinee’s ID, true theta value, test length, final theta estimate, the standard error of estimation, responses, 

and item ID, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. SimulCAT output file 1: SimulCAT test administration data (*.sca). Each column shows the examinee’s ID, true theta value, test length, final theta 
estimate, the standard error of estimation, responses, and item ID, respectively.
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behavior, it is often equally important to evaluate the performance of 
most CAT programs regarding test security, especially for tests with 
high-stakes consequences, as in college admissions. The next section 
introduces several useful statistics and indices for evaluating CAT 
performance.

Measures of measurement precision
Because true θ values are readily available in MC simulation stud-

ies, evaluating the measurement error and precision of CAT is a strai
ghtforward calculation. The bias statistic, which is a measure of sys-
tematic measurement errors, can be computed simply by averaging 

the difference between the estimated θ 
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where I is the number of simulees. The bias statistic is commonly 
used with most conventional, nonadaptive test programs, and is still 
often used with many CAT programs as a “good-to-know” summa-
ry statistic. However, because the characteristic of test forms can dif-
fer dramatically across θ ranges with CAT, conditional bias (CBIAS), 
which is bias within each θ range (for example, θ<−2, −2≤ θ<−1, 
−1≤ θ<0, 0≤ θ<1, 1≤ θ<2, and θ≥2), is generally the more im-
portant statistic to investigate in CAT. An example of CBIAS will be 
presented later in this article.

The mean absolute error (MAE) is a useful statistic that summa-
rizes overall measurement error (both systematic and nonsystematic 
error). The MAE can be computed as

� (2)

The root mean square error (RMSE) is another frequently used 
statistic, and is expressed as

� (3)

As in the example of bias, when using the MAE and RMSE statis-

tics with a CAT simulation, it is often more meaningful to examine 
the conditional MAE (CMAE) and conditional RMSE (CRMSE) 
for each θ range.

The CMAE and CRMSE across different θ ranges are often inter-
preted as approximates of the conditional standard error of measure-
ment (CSEM). The exact point estimate of CSEM can be easily com-
puted using the CRMSE with a simulation design that repeats thou-
sands of simulees at the same exact θ value; for example, for 1,000 
simulees with θ=−1, the CRMSE of those 1,000 simulees is the 
CSEM at θ=−1.

The SEE at the final     which is 1⁄          , where TIF stands for the 
test information function for the specific test form that each simulee 
was administered, is often a readily available statistic in CAT. It is 
sometimes used as a CAT termination criterion for variable-length 
CAT programs. Like CMAE and CRMSE, the conditional SEE 
(CSEE) also is often interpreted as an approximation of the CSEM; 
however, it should be noted that the relationship between the CSEE 
and the actual CSEM may not be consistent, depending on other 
factors such as test length and the θ estimation method.

The reliability coefficient was one of most extensively used indices 
for evaluating the quality of test programs in the classical test theory 
era. It can sometimes still be appropriate to use the reliability coeffi-
cient for CAT-based programs; however, as pointed out above, the 
characteristics of CAT test forms can vary dramatically across θ rang-
es, and the reliability coefficient could often mislead people about 
the quality of measurement at different θ levels. For CAT programs, 
reporting the CSEM (or its approximations, such as the CRMSE or 
CMAE) at the most relevant θ ranges is strongly advised instead of 
reporting the reliability coefficient. If the reliability coefficient must 
be reported, it should be computed based on the most representative 
sample set of simulees, and it should be accompanied by CSEM sta-
tistics.

If a CAT program is of variable length, the CSEE is usually tightly 
controlled as a CAT termination criterion, and it is important to eval-
uate the conditional test length as an indicator of measurement effi-
ciency.
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Table 1. Example of computerized adaptive testing simulation design

Simulees 10,000 Simulees with θ–N (0, 1)

Item pool 300 Items based on a 2-parameter logistic item response theory model
   •  ma–U (0.5, 1.2)
   •  b–U (-3, 3)

Item selection criterion Maximum Fisher information
Item exposure control Randomesque (randomly select an item from among the 5 best items)
Test length Variable length

   •  aTerminate when standard error of estimation becomes smaller than 0.3
   •  bMaximum of 50 items

Content balancing None
Score estimation maximum likelihood estimation with fences (lower and upper fences at −3.5 and 3.5, respectively)

Initial score randomly chosen between −0.5 and 0.5
Limit the estimate jump by 1 for the first 5 items

Outputs Save item use (exposure)
21 

 

21 
 

 

Fig. 6. Display of 5,000 simulees randomly drawn from a standard normal distribution (actual θ values differ 

each time), and 300 items generated for the item pool (item parameters differ each time, and are generated by 

clicking on the “Generate True Item Parameters” button). 

 

Fig. 6. Display of 5,000 simulees randomly drawn from a standard normal distribution (actual θ values differ each time), and 300 items generated for 
the item pool (item parameters differ each time, and are generated by clicking on the “Generate True Item Parameters” button).

Measures for test security performance
Most measures used to evaluate test security performance in CAT 

focus on item exposure because in CAT items are reused over time, 
and highly exposed items are likely to increase the chance of test tak-

ers obtaining knowledge about those items. Compromised test secu-
rity could pose serious threats to test validity and fairness, since test 
takers who gain pre-knowledge about the compromised items would 
respond to the items differently. When simulation studies are con-
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ducted to evaluate the test security aspects of CAT, it is extremely 
important to use a sample set of simulees that reflects the actual test-
taker population.

The maximum item exposure rate is directly observable from the 
item usage file (*.scu) of SimulCAT. The maximum item exposure 
rate often forms the basis of exposure control methods such as the 
Sympson and Hetter [12] method. Even if the overall maximum 
item exposure rate is tightly controlled at a certain target, it is often 
possible to have a much higher item exposure rate to test takers at a 
similar θ level. Therefore, it is common for high-stakes tests to evalu-
ate and control the conditional maximum item exposure within each 
θ level [14].

The percentage of unused test items offers important insights into 
the efficiency of the CAT algorithm and is sometimes (especially with 
a small item pool) indirectly related to overexposure of some items. 
A large percentage of unused items often indicates that the item pool 
was not optimally designed for the specific CAT algorithm given the 
size of the test-taker population.

The standard deviation of the item exposure rate is another useful 
statistic for understanding the overall effectiveness of item exposure 

control and pool utilization. For example, if 2 different CAT designs 
result in similar CSEMs, then the CAT design that exhibits a lower 
standard deviation of the item exposure rate (i.e., a more even use of 
items) should be selected.

The average percentage of test overlap among all pairs of observed 
test forms is another test security-related measure that is often re-
ported for CAT-based programs. It can be computed by

� (4)

where J is the number of items in the pool, rj is the exposure of 
item j, p is the number of (fixed-length) CAT forms administered, 
and k is the number of items in each form. Because this test overlap 
index is used frequently in practice, it could cause test practitioners 
to overlook the worst instances of test overlap. Thus, test practitio-
ners should still investigate the most severe cases of test overlap, even 
if the average between-test overlap index is within a reasonable range.

Computing the correlation coefficient between items’ a-parameter 
values and item exposure could provide important information about 
the pattern of item selection and use given the item selection criteri-
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Fig. 7. Input for step 2. 

  

 

Fig. 7. Input for step 2.
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Fig. 8. Input for step 3. After filling in all necessary information, including the output file name, the user 

clicks on the “Run Simulation” button. 

 

 

 

 

 

 

 

 

Fig. 8. Input for step 3. After filling in all necessary information, including the output file name, the user clicks on the “Run Simulation” button.
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Fig. 9. SimulCAT output file with test administration information (*.sca). The values in columns 3 through 7 

indicate the simulee ID, true θ, number of items administered, θ estimate, and standard error of estimation, 

respectively. 

 

Fig. 9. SimulCAT output file with test administration information (*.sca). 
The values in columns 3 through 7 indicate the simulee ID, true θ, num-
ber of items administered, θ estimate, and standard error of estimation, 
respectively.

on of CAT. A test item’s a-parameter is one of the most important 
factors in the item information function, and many item selection 
criteria, including the MFI, have a strong tendency toward excessive 
use of items with higher a-parameter values. If the correlation coeffi-
cient is observed to be too high to accept, a test practitioner might 
improve the situation by lowering the target item exposure rate or 
changing the item selection criterion (for example, from the MFI to 
the b-matching method).

Example of a computerized adaptive testing 
simulation study using SimulCAT

The CAT design of this example is presented in Table 1. The in-
put values that should be recorded in the SimulCAT GUI are pre-
sented in Figs. 6–8.

Two output files are generated after running SimulCAT, as shown 
in Figs. 9 and 10. It is important to note that the actual values shown 
in Figs. 9 and 10 differ with each operation because of the random 
nature of MC simulation. Nonetheless, the findings of the simula-
tion should be consistent across replications. Using the values (true θ, 
θ estimate, and SEE) in the SimulCAT output file (*.sca), we can 
easily compute and plot CSEE, CMAE, and CBIAS (SPSS was used 
in this example). The simulation results show that the CSEE was 
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Fig. 10. SimulCAT output file with information about item exposure/usage. The first 2 columns indicate the 

item ID and number of item exposures, respectively. 

 

 

Fig. 10. SimulCAT output file with information about item exposure/us-
age. The first 2 columns indicate the item ID and number of item expo-
sures, respectively.

Fig. 11. Conditional SEE (average SEE in each θ range). SEE, standard er-
ror of estimation.
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Fig. 12. Conditional MAE (average MAE in each θ range). MAE, mean ab-
solute error.
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Fig. 13. Conditional bias (average bias within each θ range).
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tightly controlled to be lower than 0.3 across all θ areas as targeted 
(Fig. 11), and the actual observed errors based on CMAE seemed to 
be consistent across all θ areas (Fig. 12). The CBIAS (Fig. 13) indi-
cated that the observed systematic error was almost zero. The average 
number of items administered (while satisfying the SEE criterion of 
0.3) was less than 17 when −2<θ<2 (Fig. 14). The average test length 
increased to about 18 when |θ| >3, which was within the expected 
range for this CAT design where the initial θ value was set to be cho-
sen randomly between −1 and 1, and the θ estimate jump was limit-
ed to less than 1 for the first 5 items. If one wants to reduce the aver-
age number of items for individuals at the extreme θ level, one could 
consider relaxing the constraint for the θ estimate jump.

The evaluation of item exposure control and item pool is mainly 

accomplished by using the item usage output file (*.scu) of Simul-
CAT. The maximum observed item exposure rate exceeded 2,700 
(out of 5,000 test administrations/simulees), meaning that the ran-
domesque method and its setting (1 of the best 5 items) was not suf-
ficiently effective. Moreover, 164 of the 300 items (54.7% of the 
item pool) were not used at all. Looking deeper into the situation by 
investigating the relationship between item exposure and a-parame-
ter values (Fig. 15), it is apparent that the studied CAT design too 
strongly favored items with higher a-values. One possible change to 
remedy this issue would be changing the item selection criterion 
from the MFI method to the b-matching method, which does not 
take a-values into consideration. Regarding the item difficulty (b-
value) of items in the pool, there seemed to be no shortage of items 
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Fig. 15. Item exposure by a-value.
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Fig. 16. Item exposure by b-value.
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Fig. 14. Average test length in each θ range.

Theta area

Av
er

ag
e 

te
st

 le
ng

th

	 -3	 -2	 -1	 0	 1	 2	 3

20

19

18

17

16

15

14

with certain difficulty levels (Fig. 16).
This purpose of this CAT simulation study demonstrates how a 

representative CAT simulation study can be conducted and how its 
results can be interpreted. In many cases, the simulation process and 
analyses of results shown in this example can be a good starting point 
for a CAT simulation study. This example, nevertheless, should not 
be understood as a rule of thumb for CAT simulation study practice, 
since each CAT simulation study examines different aspects of CAT 
depending on the research question.

Conclusion

Conducting simulation studies is essential in almost all stages of 
CAT development, namely: the test blueprint and target planning 
stage, the CAT algorithm development stage, the item pool construc-
tion stage, and the quality control/assurance stage. To make simula-

tion studies as effective as possible, it is critically important to clearly 
identify the research questions and to design the CAT simulation ac-
cordingly. It should also be noted that in many CAT simulations, 
the findings are often not generalizable to other conditions. For ex-
ample, even when the same CAT design and specifications are re-
peated, a couple of item changes in the item pool could completely 
alter the item exposure rates (especially if the Sympson and Hetter 
method is used). For this reason, CAT simulations should be repeat-
ed in each stage of CAT development.
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