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INTRODUCTION

1. Hemispatial neglect

Hemispatial neglect refers to a cognitive disorder in 
which patients with unilateral brain injury fail to report, 
orient to, or respond to stimuli located in the contra-
lesional hemispace, which is not attributed to primary 
sensory or motor defects.1 Hemispatial neglect is more 
severe and frequent after the right than the left hemisphere 
injury,2 representing one of the major cognitive disorders 
resulting from right hemisphere damage. Hemispatial 
neglect usually recovers spontaneously3 but can be 
persistent in about 10% of thepatients.4 

When a horizontal line is presented in front of the 
patients with hemispatial neglect, they place the bisection 
mark to the ipsilesional space from the true midpoint 
(Fig. 1-A). When asked to cancel out lines randomly 
distributed in an A4 sized paper, they place the marks 
on the right side of the page (Fig. 1-B).5,6 This rightward 
bias or preference also occurs when copying figures 
(Fig. 1-C).7,8 These behaviors seen in test situations may 
be translated into patients’ daily lives. For instance, 
patients with left hemispatial neglect from a right 
hemisphere stroke may eat food placed on the right side 
of the plate. When reading newspapers, they read only 
the right side of the page. This rightward preference 
occurs not only for environmental objects but for 
patient’s own body: patients neglect their own left limb, 
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thus fail to shave the left side of their face or do not 
sleeve their left arm while putting on clothes. Patients 
with severe left neglect also show anosognosia for 
hemiplegia in which patients deny their muscle weak-
ness or asomatognosia in which patients deny that their 
left arm belongs to them. Thus, hemispatial neglect is 
one of the factors that interfere with rehabilitation,9,10 
and serves as one of the poor prognostic factors for 
stroke patients.11 

Considering these clinical implications of hemispatial 
neglect, it is thus worthwhile developing therapeutic 
modalities for hemispatial neglect. Since Lawson intro-
duced a method,12 there have been a variety of inter-
ventions to ameliorate hemispatial neglect for the last 40 
years. While the effectiveness of these interventions is 
controversial,13 researches are going on worldwide and 
new methods have been proposed. 

2. Treatment modalities of hemispatial neglect

We will first describe various methods for improving 
hemispatial neglect and focus our discussion on the 
effect of caloric stimulation and optokinetic stimulation 
(OKS). 

1) Enhancing visual scanning toward the neglected 
field

The patients with left hemispatial neglect were trained 

to look at stimuli on the left hemispace.13 Alternatively, 
cues were placed on the left hemispace such that 
patients’ attention is drawn to the left hemispace. These 
cue interventions have been proved to be effective in 
reducing patients’ hemispatial neglect. The cues used in 
those studies included auditory as well as visual ones. 
The researchers used even motor cues asking to move 
left arm or leg while performing bisection tasks.14 

2) Vestibular stimulation
One of the accounts for hemispatial neglect is the 

shift of patients’ egocentric reference frame to the right. 
Several methods have been proposed assuming that these 
may restore the distortion of reference frame. These 
include caloric stimulation, neck muscle vibration, trans-
cutaneous electric nerve stimulation (TENS), trunk 
rotation, OKS. Being involved in the generation of 
information about the position of the head relative to the 
extrapersonal space, the vestibular system is crucial for 
the organization of subjective spatial coordinates (ego-
centric space). Therefore it is likely that the vestibular 
stimulation produces an attentional bias coherent with 
the direction of the slow phase of the nystagmus, which 
may either compensate or increase the attention bias of 
these patients toward the side ipsilateral to the cerebral 
lesion.

3) Transcranial magnetic stimulation (TMS)
Recently, repetitive TMS on the left hemisphere 

(injured left hemisphere) was reported to improve left 
hemispatial neglect.15

4) Prism adaptation
Prism lens can be designed such that objects on the 

left appear on the right side. Therefore, wearing this 
prism lens allow patients with left neglect to see objects 
on the left side. This prism also showed a delayed 
effect; patients demonstrated improved performances on 
neglected tasks even after taking the prism off.16 

5) Eye patching
Normally, the superior colliculus plays an important 

role in mediating orienting behavior to the contralateral 
space. In an experiment with cats with unilateral cortical 

Figure 1. An illustration of left hemispatial neglect in right 
hemisphere stroke (A) Line bisection, (B) Modified Albert's line
cancellation, (C) Copying of modified ogeden picture.
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lesion (e.g., right cortical lesion) and consequent left- 
sided neglect, a surgical ablation of left superior 
colliculus improved the neglect.17 This improvement was 
explained by a release of inhibition of the right superior 
colliculus from the left superior colliculus, thus impro-
ving leftward orienting mediated by the right superior 
colliculus. Colliculi receive input mostly from the 
contralateral eye and left neglect associated with right 
hemisphere injury would be reduced when the patients’ 
right eye is patched. They observed that right eye 
patching decreased left neglect, although subsequent 
studies showed inconsistent results. Instead of using 
monocular patching, some researchers used hemispatial 
glasses to block input to the contralateral colliculus18 

while others reported that half patch was superior to full 
patch.19

6) Dopamine agonists
According to underlying mechanisms of hemispatial 

neglect, neglect can be divided into perceptual and 
premotor neglect.20 In perceptual neglect, patients fail to 
respond to left-sided stimuli since they are not aware of 
them. On the other hand, in premotor neglect, patients 
fail to respond to left-sided stimuli since they lack the 
intent to move despite intact awareness of the target 

stimuli. It has been hypothesized that dopaminergic 
circuits play a role in the premotor components of the 
unilateral neglect syndrome. Indeed, experimental studies 
demonstrated that monkeys having parkinsonism by 
infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP) via intracarotid artery showed apparent contra-
lesional hemispatial neglect that is probably due to 
delayed initiation of movements.21 Consistent with these 
experimentalfindings, unilateral neglect in some human 
subjects was reduced by administration of dopamine 
agonist.22,23

NEURAL CIRCUITS INVOLVED IN 
CALORIC STIMULATION

1. Caloric stimulation

The caloric stimulation is ordinarily performed with 
the subject reclining, head inclined 30 degrees up from 
horizontal so as to place the horizontal canal in the 
vertical plane. Water is introduced into the ear canal on 
one side, either 7℃ above or below the assumed body 
temperature (30 or 44℃). The flow rate is such that the 
ear rapidly equilibrates with the water. The water is 

Figure 2. (A) Pathway for vestibulo-ocular reflex by left cold caloric stimulation. Cold water irrigation on left ear causes tonic deviation
of eyeball to the left and rapid corrective eye movements toward the right. Thick lines are excited pathways and dotted lines are inhibited
ones. (B) Central connection of vestibular system. Note that the vestibular apparatus is connected ipsilaterally with the spinal cord and
cerebellum. Projections in the medial longitudinal fasciculus are both crossed and uncrossed. The projection to the thalamus and cerebral
cortex is incompletely understood. III, oculomotor nuclei; IV, trochlear nuclei; VI, abducens nuclei; VIII, vestibular nuclei.
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stopped after 30 seconds, and nystagmus is observed. 
Nystagmus commonly builds for about 30 seconds, then 
gradually decays away over roughly 2 minutes.

2. Anatomy related to unilateral caloric 

stimulation (Fig. 2)

Vestibular pathways run from the VIIIth nerve and 
the vestibular nuclei through ascending fibers such as 
the medial longitudinal fasciculus to the ocular motor 
nuclei and the supranuclear integration centers in the 
pontomesencephalic and rostral mesencephalic brainstem. 
This part represents the three-neuron arc of the 
vestibulo-ocular reflex, which is embedded in a more 
complex sensorimotor system responsible for the 
orientation of eyes, head and body in space with 
descending input to vestibulospinal projections for head 

(vestibulocollic reflex) and postural control (vesti-
bulospinal reflexes)24-27 and ascending input to thalamo-
cortical connections for perception.28 Coordination of 
eye, head and body movements during locomotion is 
further mediated by corticofugal connections between 
cortical areas and the vestibular nuclei.27 From the 
midbrain, ascending fibers reach several multisensory 
cortical areas through thalamic projections. The two 
major cortical functions of the vestibular system are the 
perception of verticality and of self-motion. Perception 
of verticality relies mainly on otolith input; perception of 
self-motion involves otolith and semicircular canal input. 
The multiplicity of representations of vestibular cortex 
areas has been identified in electrophysiological and 
tracer studies in animals29-41 and the multisensory 
neuronal functions of these areas argue for a network of 
multisensory (vestibular) areas at the cortical level.

Figure 3. (A) Areas activated during caloric stimulation (warm water at 44°C) in the right ear of the right-handed healthy volunteers 
and in the left ear of those left-handed (group analysis; n=12; P<0.001; 15O-labelled H2O bolus, positron emission tomography). 
Activations were located in the anterior and posterior insula, the STG, the inferior frontal gyrus, the post-central gyrus, the IPL and the
anterior cingulum. Note that the activations were more pronounced in right-handers during irrigation of the right ear in the right 
hemisphere and in left-handers during irrigation of the left ear in the left hemisphere. This indicates dominance of the non-dominant
hemisphere in the processing of vestibular information. (B) Lateral views of the surfaces of both hemispheres showing activated areas
during caloric stimulation of the right or left ear in right-handers in the superior temporal cortex, TPJ, insular cortex and inferior frontal 
cortex. Compared with the activation pattern during caloric irrigation of the right ear, caloric irrigation of the left ear led to activations
which were smaller in both hemispheres and more frequently located within the ipsilateral left hemisphere. These results represent 
dominance of the ipsilateral vestibular pathways.49 
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3. Functional imaging studies with caloric stimulation

A complex network of areas predominantly located in 
the temporo-insular and temporo-parietal cortex could be 
delineated in both human hemispheres.42-51 The areas 
activated during caloric stimulation in humans include 
the posterior insula (first and second long insular gyri) 
and the retroinsular regions [representing the parieto- 
insular-vestibular cortex (PIVC) and the posterior 
adjacent visual temporal sylvian area36 in the monkey], 
superior temporal gyrus (STG), parts of the inferior 
parietal lobule (IPL) representing area 7 in monkeys, 
intraparietal sulcus representing monkeys’ ventral 
intraparietal area (VIP), post-central and pre-central gyri, 
anterior insula and adjacent inferior frontal gyrus, 
anterior cingulate gyrus, precuneus and hippocampus 
which is most often activated bilaterally (Fig. 3). 
Simultaneous to these activations, deactivations of areas 
within the visual and somatosensory systems of both 
hemispheres were observed.45,52 Activation of the cortical 
network during vestibular stimulation is not symmetric 
in both hemispheres. Rather, it depends on three deter-
minants which were defined recently in a study investi-
gating healthy right- and left-handers.49 The determinants 
were first the subjects’ handedness, second the side of 
the stimulated ear and third the direction of the induced 
vestibular symptoms. Activation was stronger in the 
non-dominant hemisphere, in the hemisphere ipsilateral 
to the stimulated ear, and in the hemisphere ipsilateral 
to the fast phase of vestibular caloric nystagmus in cases 
of warm caloric stimulation (Fig. 3).45,49,53

NEURAL CIRCUITS INVOLVED IN OKS

1. OKS

OKS requires a stimulus that fills the field of vision. 
A common method is for the patient to sit inside a large, 
patterned optokinetic drum. Virtual reality technology 
has been used to overcome the cumbersome nature of 
large mechanical rotating drums. Another method is to 
rotate the patient at a constant velocity for more than a 
minute with the eyes open in a lighted room; as the 

labyrinthine signal dies away, the sustained nystagmus is 
due to purely visual drives. Small hand-held optokinetic 
drums or tapes primarily test the pursuit system. The 
optokinetic response is judged by both the nystagmus 
during visual stimulation (which in primates consists of 
pursuit and optokinetic components) and the optokinetic 
after-nystagmus (OKAN) that occurs after the lights are 
turned out. It is known that an OKS produces a nystagmus 
with a slow phase coherent with the movement and a 
quick phase going back to the initial fixation. This reflex 
keeps constant the retinal image when the body moves 
in the external space. It is evoked by continuous retinal 
signals and not by phasic labyrinthine signals. For this 
reason it does not exhibit decay after 20-30 s as for the 
vestibular reflex, but it can be produced for long period 
of time.

2. Anatomy related to OKS (Fig. 4)

OKS activates directionally-selective retinal ganglion 
cells that project via the magnocellular layers of the 
lateral geniculate nucleus to layer 4Cα of striate cortex.54 
Some neurons in striate cortex respond to moving visual 
stimuli, but these cells having small receptive fields, 
respond only to motion in the frontal plane, and cannot 
encode higher image velocities. Striate cortex projects 
both directly and indirectly to the middle temporal visual 
area (MT or V5)55; in addition, MT receives inputs that 
bypass striate cortex,56 perhaps via the superior colliculus 
and pulvinar.57 Neurons in area MT have larger receptive 
fields than those in striate cortex and encode the speed 
and direction of target movements in three dimensions.58-60 
Experimental lesions in MT corresponding to extrafoveal 
retina cause a scotoma for motion in the contralateral 
visual field: stationary objects are perceived appro-
priately but motion perception is disrupted.61 The conse-
quences of lesions of extrafoveal MT for eye movements 
are that saccades can still be made accurately to stationary 
targets in the affected visual field, but moving stimuli 
cannot be tracked accurately by saccades or smooth 
pursuit.62 Functional imaging studies have demonstrated 
the human homologue of area MT which is located at 
the temporo-parieto-occipital junction, posterior to the 
superior temporal sulcus, at the junction of Brodmann 
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areas 19, 37 and 39, close to the intersection of the 
ascending limb of the inferior temporal sulcus and the 
lateral occipital sulcus.63,64 Patients with cortical lesions 
have been described who appear to have perceptual65-67 
or ocular motor68,69 deficits similar to those reported 
with MT lesions in monkeys.61,62

Visual area MT, in turn, projects to the medial superior 
temporal visual area (MST),58,70 which contains neurons 
that not only encode moving visual stimuli but also 
appear to carry an eye movement signal.71 Area MST 
seems to be important for analyzing the optic flow that 
occurs during locomotion.72,73 Area MST is also important 
for the generation of smooth pursuit eye movements; 
lesions here or in the foveal representation of MT cause 
a deficit primarily of horizontal smooth pursuit for 
targets moving towards the side of the lesion. In 
addition, a retinotopic deficit for motion detection, 

similar to that with extrafoveal lesions of MT, is present 
for targets presented in the contralateral visual hemifield.62 
The human homologue of area MST may lie adjacent to 
MT.74 Other cortical regions, such as the superior 
temporal polysensory area,75 visual area 3a, and the 
superior parietal occipital region76 may also contribute to 
processing of moving visual stimuli and directing 
visuospatial attention, but their homologous areas and 
contributions to human eye movements remain yet to be 
determined.

MT also projects to the frontal eye field (FEF). MST 
also receives inputs from its contralateral counterpart. 
MST projects through the retrolenticular portion of the 
internal capsule68 and the posterior portion of the 
cerebral peduncle to the dorsolateral pontine nucleus 
(DLPN).77-79 The DLPN also receives inputs important 
for pursuit from the FEF; these inputs descend in the 
medial portion of the cerebral peduncle. The DLPN 
projects, mainly contralaterally, to the flocculus, 
paraflocculus,80 and ventral uvula of the cerebellum; 
projections also pass to the dorsal vermis.81 The 
flocculus projects to the ipsilateral vestibular nuclei, 
which in turn project to the contralateral abducens 
nucleus. The output of the vestibular nuclei influences 
the brainstem circuitry that controls eye movements, 
posture, and perception of self-motion.

Retinal ganglion cells also project to neurons in the 
nucleus of the optic tract, which in turn project to 
neurons in the dorsal cap of the inferior olive. Dorsal 
cap neurons project to Purkinje cells in the contralateral 
flocculus and nodulus of the cerebellum. Activity of 
cerebellar Purkinje neurons directly modifies the activity 
of neurons in the vestibular nuclei. But functional 
capacity of the subcortical visual pathway in adult 
humans with normal binocular vision is uncertain.

3. Functional imaging studies with OKS

functional MRI (fMRI) studies using frequency- 
spoiled single-slice fast low-angle shot (FLASH) pulse 
sequences and echo planar imaging (EPI) during 
optokinetic nystagmus (OKN) found bilateral activations 
in a complex sensorimotor network, especially in the 
visual cortex, including the motion-sensitive area 

Figure 4. A hypothetical scheme for horizontal smooth pursuit. 
Primary visual cortex (V1) projects to the homologue of the 
middle temporal visual area (MT) that in humans lies at the 
temporal-occipital-parietal junction. MT projects to the 
homologue of the medial superior temporal visual area (MST) 
and also to the frontal eye field (FEF). MST also receives inputs
from its contralateral counterpart. MST projects through the 
retrolenticular portion of the internal capsule and the posterior 
portion of the cerebral peduncle to the dorsolateral pontine 
nucleus (DLPN). The DLPN also receives inputs important for 
pursuit from the FEF; these inputs descend in the medial portion
of the cerebral peduncle. The DLPN projects, mainly contra-
laterally, to the flocculus, paraflocculus, and ventral uvula of the
cerebellum; projections also pass to the dorsal vermis. The 
flocculus projects to the ipsilateral vestibular nuclei (VN), which
in turn project to the contralateral abducens nucleus. Dotted 
circles show structures on the opposite side. 
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MT/MST in the occipitotemporal cortex and the adjacent 
occipitoparietal cortex, as well as ocular motor areas 
such as supplementary, frontal, and parietal eye fields, 
and the prefrontal cortex.49,82-84 In the first study, Bucher 

et al.82 individually compared the signal intensity 
changes and the extent of activation of each activated 
area (by counting the number of voxels per cluster in 
only one slice) in every single subject, and an analysis 

Figure 5. (A) OKN during rightward (upper row) and leftward (lower row) small-field visual stimulation vs. rest condition (stationary
screen) in a group of 15 healthy right-handed volunteers elicited very similar bilateral activations of the visual cortex, which merged into
the adjacent occipitotemporal (motion-sensitive area MT/V5) and parietooccipital areas including the parietal eye field (PEF) along the
intraparietal sulcus. Additional activations were located nearly symmetrically in the anterior insular region and the adjacent parts of the
inferior frontal gyri (GFi) as well as in different ocular motor structures such as the prefrontal cortex (PFC, GFm=middle frontal gyrus),
frontal (FEF), and supplementary eye fields (SEF). For illustrative purposes, voxels above a threshold of P≤0.005 uncorrected are shown.
(B) OKN during rightward (upper row) and leftward (lower row) small-field visual stimulation in a group of 15 healthy right-handed
volunteers caused deactivations in the posterior corpus callosum which partly merged into adjacent parts of the posterior cingulate gyrus
and optic radiation. Additional bilateral deactivations were found in the parieto-insular vestibular cortex (PIVC) in the posterior insula,
in the central sulcus region (best attributed to the somatosensory cortex), and in the frontal-most and medial part of the right middle
frontal gyrus (BA 8, GFm). For illustrative purposes, voxels above a threshold of P≤0.005 uncorrected are shown.92
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for repeated measurements revealed no significant 
difference between rightward or leftward OKN. How-
ever, the number of activated voxels on average was 
smaller in the left hemisphere than in the right 
hemisphere, and a right hemispheric dominance in the 
occipitotemporal region was assumed, regardless of the 
direction of OKN.82 Using a similar type of data analysis 
in single subjects, the second study confirmed the 
assumption of a right hemispheric dominance in visual 
motion-sensitive areas, predominantly in the occipito-
temporal cortex and ocular motor and vestibular cortex 
areas (posterior insula) during horizontal and vertical 
OKN stimulation.83 In contrast, this hemispheric domi-
nance of cortical ocular motor areas was not found in 
several fMRI and PET imaging studies that used 
statistical group analysis techniques to determine the 
cortical processing of other types of eye movements 
such as smooth pursuit or voluntary saccades.85-87 Only 
eye movements in the context of spatial and visual 
attention tasks showed a right hemispheric dominance.88-90 
In one recent study,91 the subtraction analysis between 
rightward and leftward OKN showed no direction- 
specific activation of the ocular motor areas such as the 
frontal, prefrontal, and parietal eye field or other cortical 
or subcortical areas (Fig. 5-A). Although earlier monkey 
studies reported that almost all pursuit neurons in the 
FEF92 and MT/MST had a preferred direction of motion, 
neurons with different direction preferences obviously 
lay intermingled within the frontal eye fields and MT/V5 
region.59,93 Functional imaging studies have not yet been 
able to monitor these effects for single neurons, most 
probably due to insufficient spatial resolution; however, 
they were able to demonstrate direction-selective imbal-
ance in the area of MT+.94 In conclusion, the absence of 
a significant difference in the activation pattern of the 
cortical eye fields supports the view that the processing 
of eye movements in both horizontal directions is 
mediated in the same cortical ocular motor areas. 
Functional scanning studies have often yielded discrep-
ant results, partly reflecting the use of different test 
paradigms. Another pitfall of functional scanning is that 
inferred local changes in cerebral metabolism may 
represent excitation or inhibition. More developed studies 
with excellent temporal resolution (e.g., magnetoen-

cephalography) may present differential patterns of 
cerebral activations by directional OKS.

Horizontal OKN led in both directions to a similar 
nearly symmetrical bilateral pattern of BOLD signal 
decreases (deactivations) compared to the control 
condition (Fig 5-B).92 Decreases were located in the 
posterior part of the corpus callosum and the neighbor-
ing lower posterior cingulate gyrus (BA 24/31), partly 
merging into the hippocampus, and in the optic radiation
/ tapetum. Additional bilateral deactivations were found 
in the central sulcus region, predominantly in the 
postcentral gyri, which could be best attributed to the 
somatosensory cortex and adjacent parietal areas. Small 
unilateral signal decreases were located during both 
OKN directions in the frontal-most and medial part of 
the right middle frontal gyrus (BA 8). Decreases in the 
posterior insula region containing the human homolog of 
the parieto-insular vestibular cortex as described earlier49 
were found bilaterally only at a significance level of P 
≤0.005. Since these activation-deactivation patterns 
which occurred during visually induced self-motion 
perception with activations of parietal areas and 
concurrent deactivations of the multisensory (vestibular) 
cortex were opposite from those by vestibular 
stimulation,83,95 a reciprocal inhibitory cortical interaction 
between the sensory systems was assumed.95 

TREATMENT EFFECT OF LEFT COLD CALORIC 
STIMULATION ON HEMISPATIAL NEGLECT

1. Consequences of unilateral caloric stimulation 

in healthy subjects

Unilateral vestibular stimulation of the horizontal 
semicircular canal by caloric irrigation of one ear 
induces a tonic imbalance in the bilateral vestibular 
system provoking identical vestibular symptoms as 
observed with a unilateral vestibular lesion. The 
direction depends on the water temperature used for 
caloric irrigation of the horizontal canal (ipsilateral 
effects with 30℃ cold water; contralateral effects with 
40℃ warm water). Unilateral vestibular stimulation in 
healthy subjects also induces a tonic shift of the average 



Journal of Clinical Neurology: Vol. 2, No. 1, 2006

- 20 -

horizontal eye position with the nystagmus.96,97 This 
lateral bias of eye position is towards the left with 
left-sided cold caloric stimulation and towards the right 
with right-sided caloric stimulation. In addition, unilat-
eral caloric stimulation provokes a shift of the 
exploratory eye movements towards the side of stimu-
lation, leading to asymmetric target search (Fig. 6). A 
further consequence of unilateral vestibular stimulation 
in healthy subjects is a tonic bias of spontaneous head 
orientation around the yaw axis.98 For example, cold 
caloric stimulation of the right ear provokes a deviation 
of spontaneous head orientation of 20-30° towards the 
right. 

2. Treatment effect of left cold caloric stimulation 

on hemispatial neglect

The ipsilesionally biased field of spontaneous 
exploration in neglect patients has been demonstrated to 
be transiently shifted back towards the contralesional 
side by cold caloric stimulation of the left vestibular 
organ (Fig. 5).99-105

For the first time, Rubens studied performance on 
tests of visual neglect and left lateral gaze after caloric 
stimulation in 18 patients with left-sided visual neglect 
from strokes.99 Except for one patient with absent 
vestibulo-ocular responses, all improved during caloric 
stimulation on the left by cold (LC) or on the right by 
warm water (RW). During LC and RW caloric stimu-
lation, patients worked from left to right instead of their 
usual right to left. He interpreted the improvements in 
spatial exploration as a consequence of the induction of 
a motor response directed toward the left side. He 
proposed that caloric stimulation might be of use in 
training patients with hemispatial neglect to orient 
toward the affected hemispatial field. Cappa observed 
improvement of both personal neglect and anosognosia 
in some neglect patients.100 The latter findings appear 
inconsistent with any interpretation of this effect as 
dependent upon ocular nystagmus. In one experiment,105 
three patients with a right, predominantly parietal lesion 
and marked left-sided neglect without visual field 
defects were asked to direct a laser point to the position 
which they felt to lie exactly ‘straight ahead’ of their 

bodies’ orientation. Whereas in both light and darkness, 
the subjective body orientation was close to the 
objective body position in the control groups, the three 
neglect patients localized the body's sagittal midplane 
approximately 15 degrees to the right of the objective 
orientation. No relevant differences of ‘straight ahead’ 
were found between the neglect patients and controls in 
the vertical plane. The neglect patients’ horizontal 
displacement of sagittal midplane to the right could be 
compensated for either by neck muscle vibration or by 
caloric vestibular stimulation on the left side. When 
vestibular stimulation was combined with neck muscle 
vibration, the horizontal deviation linearly combined by 
adding or neutralizing the effects was observed when 
both types of stimulation were applied exclusively in the 
control groups as well as in the neglect patients. More-
over, data analysis revealed that the neglect patients’ 
ipsilesionally displaced subjective body orientation does 
not result from a disturbed primary perception or 
disturbed transmission of the vestibular or propriocep-
tive input from the periphery. The results supported the 

Figure 6. Exploratory scan paths of an exemplary patient with
spatial neglect (left) and a healthy subject (right) while searching
for a (non-existent) target in darkness with their heads fixed. The
upper panel shows the patients' exploratory eye movements with 
no further stimulation; the lower panel is the result under 
left-sided vestibular stimulation (cold water irrigation). In the 
condition without stimulation, the neglect patient showed a bias 
of ocular exploration towards the right and neglect of the left, 
while symmetrical eye movements were observed under 
unilateral vestibular stimulation. The healthy subject showed 
exactly the opposite behavior, i.e. symmetrical search without 
stimulation and asymmetrical search under vestibular stimu-
lation.84
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hypothesis that the essential aspect leading to neglect in 
brain-damaged patients is a disturbance of those cortical 
structures that are crucial for transforming the sensory 
input coordinates from the peripheral sensory organs (the 
retina, neck muscle spindles and cupulae) into an 
egocentric, body-centred coordinate frame of reference. 
In neglect patients the coordinate transformation seems 
to work with a systematic error and deviation of the 
spatial reference frame to the ipsilesional side leading to 
a corresponding displacement of subjective localization 
of body orientation. It could be concluded further that 
neck muscle proprioception and vestibular stimulation 
directly interact in contributing to the subject's mental 
representation of space. The data suggested that the 
afferent information from these different input channels 
is used simultaneously for computing egocentric, body- 
centered coordinates that allow us to determine our body 
position in space. 

The superior temporal cortex, insula and the temporo- 
parietal junction are not strictly ‘vestibular’ but rather 
have a multimodal character representing a significant 
site for the neural transformation of converging vesti-
bular, auditory, neck proprioceptive and visual input into 
higher order spatial representations.106 Neurons of these 
regions provide us with redundant information about the 
position and motion of our body in space. They seem to 
play an essential role in adjusting body position relative 
to external space. 

TREATMENT EFFECT OF OKS ON 
HEMISPATIAL NEGLECT

1. General description

Cold water irrigation on left ear in patients with left 
hemispatial neglect causes tonic deviation of eyeball to 
the left and rapid corrective eye movements toward 
right, presumably shifting the viewer center reference 
frame to the left resulting in temporary improvement of 
the signs associated with left neglect.99 Similarly, a 
leftward moving background or OKS can also induce 
similar eye movements, i.e., slow leftward and rapid 
corrective rightward eye movements,13 suggesting that a 

moving background may have the same beneficial 
effects on neglect as the caloric stimulation. Several 
studies have provided support for the postulate that 
movement of the background can influence the signs 
associated with hemispatial neglect and can even induce 
attentional biases in healthy individuals. For example, 
when patients with neglect were asked to bisect 
stationary horizontal lines superimposed on an MB, the 
MB caused their attempts at line bisection to deviate 
from no movement condition in the direction of 
MB.13,107,108

2. Studies of hemispatial neglect with OKS

According to our literature search, there had been 11 
studies that investigated effect of OKS on hemispatial 
neglect. The first study recruited 33 patients with left 
neglect who were asked to bisect lines placed on the 
plexiglass box within which light spots were moving.109 
The results showed that leftward moving background 
improved the left neglect. In this study, all three groups 
of subjects (normal subjects, patients with neglect and 
without neglect) were affected by OKS, placing the 
bisection marks in the same direction of OKS. 

Zoccolotti et al110 performed a case study in which 
visual scanning of a patient with left hemispatial neglect 
improved by standard training along with OKS which, 
however, did not affect the patient’s anosognosia for 
visual disturbance. 

Two studies done by Vallar et al.111,112 used dependent 
variable as the pointing task. Ten patients with neglect 
were asked to point straight ahead with the index finger 
while watching OKS (moving dots). In the control 
condition where the dots were stationary, patients 
pointed to the right. Leftward OKS improved this 
rightward bias while the rightward OKS aggravated it. 
These results have clinical implications that OKS can 
affect even nonsensory components of neglect. 

Mattingley et al.107 presented lines on a computer 
display, with a neutral, static, or slowly drifting, random 
dot background. The background was moving at speeds 
that did not elicit optokinetic nystagmus or perceptual 
aftereffects. Controls were accurate in all conditions, 
whereas patients with left hemispatial neglect showed a 
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significant leftward shift in bisection errors, when the 
background was moving leftward. There was no signifi-
cant effect of rightward motion in comparison with the 
neutral and static conditions.

Karnath113 asked three patients with neglect to direct 
a laser point to the position which they felt lay exactly 
“straight ahead” of their bodies' orientation. Without 
OKS, the patients’ pointing shifted to the right but 
leftward OKS improved and rightward OKS aggravated 
this bias. 

Bisiach et al.108 superimposed lines printed on a 
transparent over the OKS generated by computer display. 
Ten patients with left neglect were asked to bisect lines 
in this experimental setting. The leftward OKS made the 
bisection marks shift to the left compared to the neutral 
condition. However, rather than bisecting accurately, 
patients bisected to the left of the true midpoint, 
suggesting that OKS does not correct the distorted 
representation but that patients’ with neglect had the 
representation that is vulnerable to OKS. 

Vallar et al.114 studied two patients with left neglect 
and reported that leftward OKS improved motor weak-
ness of left hand, albeit transiently. The same group 
published another article115 that OKS improved left neglect 
but did not affect position sense (i.e., pointing straight 
ahead, 30, 60, 90 degree from the midsagittal plane).

Kerkhoff et al.116 requested six patients with left 
neglect to estimate lengths of lines that were presented 
on the moving background. In control condition where 
there was no motion, patients underestimated the lines 
presented on the left hemispace and overestimated the 
lines presented on the right hemispace. Leftward moving 
background restored the misperception of size. In 
contrast, the rightward moving background aggravated 
the overestimation of the right-sided lines, which 
however did not reach significance. 

Pizzamiglio et al.117 compared two groups of patients: 
one group received only conventional spatial scanning 
while the other group received spatial scanning and 
OKS. Both groups showed beneficial effects 6 weeks 
later, but the effects did not differ between the two 
groups.

3. The role of illusory motion on attention on 

normal subjects and patients with neglect

Previous studies showed that when the OKS moves 
leftward or rightward, the line bisection error of neglect 
patients deviates in the same direction of background 
movement. Even normal subjects showed the same 
behavior.117 However, when normal subjects are looking 
at a stationary object on a moving background, the 
stationary object appears to move. This perception of 
illusory motion (IM) might bias the subject’s allocation 
of spatial attention. Our group tested for the first time 
whether the IM affects line bisection performances in 
normal subjects.118 Young normal volunteers were asked 
to bisect stationary lines with a background of horizontal 
OKS. To maximize IM, the stimuli were generated by 
computer and displayed on a large screen via a beam 
projector as illustrated in Fig 7. In addition to bisection, 
subjects were also asked to rate the degree of IM on a 
1 to 5 point scale. In one condition where subjects 
reported minimal IM, bisection errors were in the same 
direction as background motion, a finding that replicates 
previous studies. Conversely, in the other condition 
where subjects reported IM present, bisection marks 
deviated in a direction opposite the background OKS. 

Another study done by our group investigated eye 
movements while young healthy volunteers were asked 
to look at a stationary horizontal line superimposed on 
the OKS.119 The participants were not to bisect the line 
but only to observe the line. The results showed that 
fixations occurred in the opposite direction to the 
background movement-i.e., in the same direction as the 
IM. Normally, people look at (foveate) the area of the 
environment to which they are attending. In the presence 
of IM, their attention is therefore directed toward the 
portion of the line that appears to be on the leading side. 
More recently, we published another study in which 
normal subjects performed bisection under the influence 
of illusory motion.120 This study replicated and extended 
the results of Na et al.118 such that leftward MB induced 
a rightward bias, and vice versa in healthy volunteers. 
This study also found that there is a relationship between 
the magnitude of IM and the degree of bias. Future 
studies are needed to investigate whether older healthy 
subjects and patients with neglect are also affected by 
IM. 
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4. Mechanisms underlying treatment effect of 

OKS

It has been repeatedly confirmed that OKS has treat-
ment effect for hemispatial neglect. Dependent variables 
in these studies were line bisection performances, 
position sense, and even motor weakness of left hand. 
However, underlying mechanisms for this treatment 
effect has not been fully elucidated. 

Results of many studies suggested that normally three 
sensory inputs (visual, proprioceptive, and vestibular 
input) are integrated at a central level to generate spatial 
coordinates necessary for personal and extrapersonal 
space explorations.99,100 In hemispatial neglect, errors 
occur at this coordinate generation systems, resulting in 
deviation of the spatial reference frame to the 
ipsilesional side. Pizzamiglio et al.109 suggested that the 

OKS such as a large moving background produces 
nystagmus characterized with a slow phase coherent 
with the movement and a quick phase going back to the 
initial fixation. The vestibular stimulation produces an 
attentional bias coherent with the direction of the slow 
phase of the nystagmus. Alternatively, OKS may have a 
treatment effect by transiently restoring this distorted 
spatial reference frame.111-114,116 More specifically, the 
positive effect of OKS in patients with spatial neglect is 
interpreted with a “correction” of the neural coordinate 
transformation process by producing asymmetric input at 
the sensory organs of the contributing channels.113 

However, some behaviors shown by patients during 
OKS are not consistent with this hypothesis. When 
asked to bisect lines superimposed on a leftward moving 
background, patients with left neglect often place the 
bisection marks far too the left from the veridical 
midpoint rather than placing the marks accurately. If the 
distorted spatial reference frame is corrected by OKS, 
leftward OKS would make patients place the bisection 
marks accurately. Thus, it appears that leftward OKS 
does not correct the distorted reference frame but just 
shift the reference frame with the reference frame being 
distorted. In the same context, Bisiach et al.108 posit that 
OKS does not restore the distorted mental representation 
but “temporarily rectify the representational medium, or 
modulate attentional process within the disordered 
medium”.

It has been suggested that the modulating effect of 
OKS on normal subjects and patients with neglect is 
associated with eye movement: slow phase of nystagmus. 
However, in Jeong et al’s study,119 while watching 
stationary lines with the OKS background, no significant 
nystagmus was produced. Furthermore, if affected by the 
nystagmus, attentional bias of normal subjects occurred 
in the direction of rapid phase of the nystagmus. 
Therefore, attentional bias of subjects may be more 
associated with motion illusion rather than eye 
movements per se. 

CONCLUSION

Since hemispatial neglect is a poor prognostic factor 

Figure 7. (A) Stimuli consist of stationary line superimposed on
OKS. (B) The stimuli were projected on a large screen by a 
beam projector.
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of functional outcome, any measures alleviating 
hemispatial neglect may have an important clinical 
implication from the patient’s rehabilitation perspective. 
Lateralized or direction-specific stimulation of peripheral 
sensory systems such as left cold caloric stimulation and 
OKS with its slow component leftward can temporarily 
improve hemispatial neglect. According to recent 
functional MRI and PET studies, this improvement 
might result from the partial (re)activation of a distri-
buted, multisensory vestibular network in the lesioned 
hemisphere, which is part of a system that codes ego- 
centered space. However, exact signal timing and 
directional selectivity of the network, especially in cases 
of OKS remains unknown. Left cold caloric stimulation 
basically activates bilateral distributed multisensory 
network, but preferentially activate the right hemisphere 
more than the left hemisphere. This hemispheric 
difference can explain why left cold caloric stimulation 
improves left-spaced neglect. However, functional 
activation studies on OKS have failed to show consistent 
results for hemispheric difference between leftward and 
rightward OKS. Therefore, future studies are needed to 
learn what processes participate in improving hemispatial 
neglect by OKS. 
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