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Pseudomonas aeruginosa, as an opportunistic pathogen, establishes a chronic infection in the respiratory track of 
patients suffering from pneumonia and bronchiectasis, including cystic fibrosis. Biofilm formation inside the oversecreted 

mucus layer lining the patient airway and production of virulence factors, a process controlled by quorum sensing, are 

considered to be the major virulence determinants in P. aeruginosa pathogenesis. Recently, an abnormally thickened 
mucus layer was proven to be anaerobic. Given the fact that currently used antibiotics are less effective under anaerobic 

environments, these new findings lead us to change the way we confront P. aeruginosa infection. This article reviews 

pathological features of patient airways that become susceptible to P. aeruginosa infection and bacterial adaptation that 
contributes to the prolonged survival inside the patient airway. 
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I. Pseudomonas aeruginosa 

 

P. aeruginosa has long been considered to be a classic 

example of an opportunistic pathogen (1). The organism 

does not normally cause infections in individuals with 

intact immune systems, but immunocompromised patients 

are particularly at risk for P. aeruginosa infection. 

P. aeruginosa, a gram-negative bacterium, is remarkably 

versatile in terms of the metabolism, and thus, can maximize 

its survival fitness in various environments including human 

hosts (2). The organism, however, is strictly dependent on 

respiration to generate energy and is often classified as a 

non-fermenting bacterium (3, 4). 

In nature, this gram-negative bacterium is found in highly 

organized communities called biofilms and has been 

served as a model organism to explore bacterial biofilm 

formation (5). Biofilm is defined as a microbial "living" 

biomass grown on an aggregate or on a surface with distinct 

architecture (6, 7). Compared to its free living counterpart 

(i.e. planktonic cells), bacteria grown as biofilm are 

refractory to a variety of antimicrobial reagents including 

H2O2 (8), a range of antibiotics (9, 10), and various heavy 

metals (11). Moreover, bacterial biofilm is more resistant to 

host immune clearance (12). 

P. aeruginosa has been notorious for its high level 

antibiotic-resistance, arguably one of the most important 

virulence features of clinically isolated P. aeruginosa. 

Recently, we reported that over 76% of the Korean 

pneumonia patients isolates showed resistance to more than 

one antimicrobial agent, currently employed to combat P. 

aeruginosa infection (Yoon et al., in press). Mechanisms 

by which P. aeruginosa acquires antibiotic-resistance have 

been extensively studied and reviewed in detail elsewhere 

(13~16). 
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Bacterial virulence factors are (i) molecules produced by 

microbial pathogens that induce specific disease symptoms 

in the host and (ii) mechanisms by which pathogens deliver 

(or secrete) those molecules. But, in broad terms, virulence 

factors include any factors that contribute to the successful 

colonization of host tissues. As an extracellular pathogen, 

P. aeruginosa secretes an array of virulence factors, whose 

production is controlled by quorum sensing, a cell-density 

dependent gene regulatory pathway. Effectors to be secreted 

include elastase (17, 18), alkaline protease (19, 20), 

exotoxins (21, 22), phospholipase (23, 24), and pyocyanin 

(25). These molecules exert toxic effects on human hosts 

by directly degrading host tissues or eliciting oxidative 

stress. 

 

II. Abnormal mucus environments in 

airway diseases 

 

Under normal airway environments, invading micro- 

organisms are usually expelled and/or cleared by the upper 

airway innate immune defense system that includes the 

mucociliary clearance (26~28). P. aeruginosa being an 

opportunistic pathogen, however, can cause persistent 

infection in patients with abnormal airway mucus secretion. 

Patients suffering from cystic fibrosis (CF) (1, 29), 

bronchiectasis (30, 31), and pneumonia (32) are especially 

vulnerable to P. aeruginosa infection. Among many 

pathological symptoms, aforementioned airway diseases 

are characterized with the noticeable oversecretion of 

mucus on top of the airway epithelium that debilitates the 

mucociliary clearance activity (1, 33). As depicted in 

Figure 1, mucus hypersecretion is often accompanied with 

the depletion of the periciliary liquid layer (PLL) and 

subsequent loss of mucociliary clearance activity. 

CF is a genetic disorder caused by mutations in the cystic 

fibrosis transmembrane conductance regulator (CFTR) 

gene coding for Cl- transport channel across the apical 

surface of secretory cells (34). In CF, hyperactivation of 

epithelial Na+ channel (ENaC), an event that occurs due to 

the mutation in the CFTR gene (35), drives the isotonic 

absorption of H2O and ions into the airway epithelium 

resulting in the dehydration of PLL and thus the formation 

of a stagnant mucus layer (1). Bronchiectasis (BE) is a 

disease state where the bronchial tree is irreversibly dilated. 

BE is caused by early childhood bacterial infections or 

pulmonary tuberculosis and patients with BE are highly 

susceptible to secondary infection by microbial pathogens 

including P. aeruginosa. BE is also featured with mucus 

hypersecretion and impaired mucociliary clearance activity 

(33). A recent report demonstrated that neutrophil protease 

present in large quantity in sputum samples from the BE 

patients stimulates the secretory response in tracheal 

submucosal glands (33). 

Much evidence indicated that the oversecreted and 

stationary mucus layer provides a nice "habitat" for P. 

aeruginosa to colonize and proliferate (1, 36). Importantly, 

this abnormally altered mucus layer (Fig. 1B) also renders 

the host immune system ineffective against P. aeruginosa 

Figure 1. Schematic comparison between normal (A) and 
diseased (B) airway mucus environments. Maintenance of 
periciliary liquid layer (PLL) with constant depth and appropriate 
movement of the mucus layer on top of the PLL, which mediates 
the mucociliary clearance, is achieved in normal airways. In 
diseased states, however, PLL is depleted and an abnormally 
oversecreted (and thus, highly viscous) mucus layer is formed. 
This mucus layer is highly susceptible to bacterial colonization. 
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infection. Despite a vigorous and rapid influx of neutrophils 

into the infected airways (37), accompanied by production 

of high titers of specific antibodies (38), P. aeruginosa 

infection persists and lung function progressively declines. 

Recently, the stagnant mucus layer lining the airway of 

chronic CF patients was reported to be anaerobic (3, 36). 

The lack of oxygen potential is ascribed to (i) the limited 

oxygen transport into the mucus layer due to its increased 

viscosity and (ii) a high rate of oxygen consumption by 

immune-related and airway epithelial cells. This new 

observation provides a new insight into the establishment 

of P. aeruginosa infection under anaerobic condition. 

 

 

III. Anaerobic growth of P. aeruginosa 

 

Being an obligate respirer, P. aeruginosa is also capable 

of generating energy even in the absence of oxygen using 

NO3
- (nitrate) or NO2

- (nitrite) as alternative electron 

acceptors (1, 4). The P. aeruginosa genome harbors clusters 

of genes encoding enzymes for anaerobic respiration. 

Figure 2 compares the electron transport pathway between 

aerobic and anaerobic growth conditions. NADH, produced 

by the glycolysis and TCA cycle, feeds an electron to the 

inner-membrane bound NADH dehydrogenase (39) to 

initiate the electron transport pathway. During the sequential 

electron transports to cytochrome bc1 complex (40) and 

Figure 2. Aerobic (A) vs. anaerobic (B) respiratory pathways in P. aeruginosa. P. aeruginosa can use either oxygen or nitrate/nitrite 
as electron acceptors in the electron transport chain. NADH DH, NADH dehydrogenase; Cyt bc1, cytochrome bc1 complex; Cyt oxidase, 
cytochrome oxidase; NAR, nitrate (NO3

-) reductase; NIR, nitrite (NO2
-) reductase; NOR, nitric oxide reductase; N2OR, nitrous oxide 

(N2O) reductase. 
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cytochrome oxidase (41), H+ ions are pumped out across 

the inner membrane generating pH gradient. Then, H+ ions 

re-enter the cytoplasm via ATP synthase (42) to produce 

ATP. 

As shown in Figure 2B, pH gradient across the inner 

membrane can still be generated when NO3
- or NO2

- is 

supplemented even under the anaerobic condition. Anaerobic 

respiration, often called denitrification (4) involves four 

reduction steps from NO3
- to N2. Each step is mediated by 

respiratory enzymes; nitrate reductase (NAR), nitrite 

reductase (NIR), nitric oxide reductase (NOR), and nitrous 

oxide reductase (N2OR). It is of interest to note that NO, a 

toxic chemical to microorganisms (4), is produced as a 

byproduct during the denitrification process. This is 

analogous to the unavoidable production of reactive oxygen 

species in aerobically respiring cells. P. aeruginosa, however, 

can minimize the accumulation of the toxic NO during the 

anaerobic growth by the activity of NOR (4). 

Importantly, NO3
- and NO2

- were detected in larger 

quantity in sputum or exhaled condensate of patients with 

pulmonary exacerbation of CF than those obtained from 

normal individuals (43, 44). This result suggests that P. 

aeruginosa proliferates well inside the anaerobic mucus 

layer exploiting the compounds produced by the host and 

may provide an insight into why P. aeruginosa has been 

such a competitive colonizer in the patient airways. 

 

IV. P. aeruginosa biofilm and a new emerged 

concept on the enhanced biofilm formation 

during anaerobic respiration 

 

Biofilm formation is often described as a process by 

which bacterial cells develop into a sessile community (45). 

Steps that can be clearly distinguished during this process 

include (i) initial attachment of free living bacteria to 

abiotic or biotic surface (46), (ii) microcolony formation 

with ensuing cell division (47), (iii) secretion of matrix 

molecules and growth of microcolonies into macrocolony 

(48), and (iv) differentiation into mature biofilm with 

3-dimensional architecture (5). 

Biofilm formation has been a major problem due to its 

resistance to a variety of antimicrobial treatments. Molecular 

basis that accounts for such a high-level resistance has 

been extensively studied. Recently, a role of periplasmic 

glucan encoded by the ndvB gene has been proposed to 

explain the antibiotic resistance of P. aeruginosa biofilm 

(49, 50). While a mutant defective in ndvB can form biofilms 

with normal structural features, the mutant exhibited 

enhanced sensitivity to tobramycin, an aminoglycoside-

type antibiotic. It was also found that the mutant strains 

showed decreased binding to tobramycin, suggesting that 

periplasmic glucan may provide a physical barrier to prevent 

tobramycin from penetrating into the cytoplasm. 

Recently, it was revealed that P. aeruginosa forms more 

robust biofilm during anaerobic respiration than they do 

when they respire aerobically (3). Since oxygen transfer to 

the depth of biofilm can be significantly limited (51), it has 

been postulated that "anaerobic" local regions may exist 

within mature biofilms. This result, however, shows that 

P. aeruginosa is actively responding to the anaerobic 

respiration in order to form more robust biofilm, a resistant 

mode of growth. This result further suggests that P. 

aeruginosa airway infection is clearly associated with the 

biofilm formation under anaerobic conditions. Understanding 

the molecular basis behind this anaerobiosis-induced robust 

biofilm formation will provide better insight into the P. 

aeruginosa pathogenic mechanisms leading us to come up 

with novel strategies to treat the infection. 

 

V. P. aeruginosa quorum sensing and the 

future direction 

 

P. aeruginosa fine-tunes its virulence by a process of 

inter-cellular communication known as quorum sensing 

(QS). In QS, P. aeruginosa produces, secretes, and responds 

to extracellular signal molecules, called autoinducers, to 

regulate the expression of genes involved in biofilm 

formation (52) and production of diverse virulence factors 

including exotoxin A (53), elastase (54), alkaline protease 

(55), rhamnolipid (54), and pyocyanin (25). Expression of 

genes encoding superoxide dismutase and catalase, which 

mediate oxidative stress responses, is also controlled by QS 
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(56). The role of QS in P. aeruginosa virulence was clearly 

demonstrated in studies using infection models with a 

range of different living hosts (57~59) and cultured host 

cells (60, 61). 

There are three well-characterized QS systems in P. 

aeruginosa: las, rhl, and pqs. The las and rhl systems were 

initially identified to be essential for elastase and 

rhamnolipid production, respectively (62, 63). Each system 

is composed of its own transcriptional activator protein 

(LasR or RhlR) and cognate autoinducer synthase, LasI or 

RhlI, that produces N-(3-oxododecanoyl)-L-homoserine 

lactone and N-butyryl-L-homoserine, respectively. Each 

autoinducer molecule binds to its cognate transcriptional 

activator, LasR or RhlR, and this complex then apparently 

binds to RNA polymerase, which results in transcriptional 

activation of QS regulated genes. 

Another arm of P. aeruginosa QS is a system where the 

DNA-binding affinity of MvfR (PqsR), an important 

virulence-associated transcriptional regulator, is enhanced 

upon binding with pseudomonas quinolone signal (PQS) 

(64, 65). Mounting evidence indicated that PQS is also a 

major player in the complex intertwined P. aeruginosa QS 

network and PQS-mediated QS is therefore required for the 

uninterrupted production of elastase (66) and rhamnolipid 

(67, 68). 

Recently, many CF isolates were recovered that harbor 

mutations in lasR gene (69, 70). This fining is contradictory 

to the established knowledge that lasR-associated QS plays 

an essential role in P. aeruginosa virulence. Subsequent 

study, however, reported that mutations in lasR confer 

increased survival fitness in CF airways, where bacteria 

shift its energy metabolism to anaerobic respiration (71). 

This result further suggests that infection dynamics inside 

the patient airway are highly complicated and roles of QS in 

P. aeruginosa pathogenesis in vivo have to be re-evaluated. 

Interestingly, QS mutants, in which lasR gene or rhlR 

gene is disrupted, lost viability during in vitro biofilm 

formation under anaerobic respiration, a phenomenon due 

to the overproduction of toxic nitric oxide (NO), a byproduct 

of anaerobic respiration (3). This suggests that QS is 

required to maintain viability during anaerobic biofilm 

formation supporting the presence of a novel function of P. 

aeruginosa QS. Further investigation is warranted to better 

understand the QS operation during anaerobic growth, a 

mode of proliferation that occurs in the patient airway. 

 

VI. Conclusions 

 

Although patient airways are equally exposed to diverse 

bacterial pathogens, P. aeruginosa has been a major 

microorganism that successfully colonizes and establishes 

persistent infection in the airway. P. aeruginosa airway 

infection should now be approached as an anaerobic disease 

of lung and this new idea necessitates further research 

directed on identifying new targets, inhibition of which will 

decrease bacterial virulence or survival under anaerobic 

condition. Because biofilm and QS are two major arms of 

virulence mechanisms of this clinically important pathogen, 

future therapeutic strategies for the treatment of airway 

infection should include molecular-level understanding of 

anaerobiosis-induced biofilm and QS. 
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