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Toll-like receptors (TLR) are well-characterized pattern recognition receptors that can
recognize and respond to diverse pathogen-associated or danger-associated molecular
patterns during infection. TLR signaling in macrophages triggers in the intracellular
signaling pathways through the recruitment of various adaptor and signaling proteins, and
results in the activation of effector mechanisms and pathways that are important for host
defense to intracellular bacteria. Effector mechanisms include inflammatory responses,
cytokine generation, production of reactive oxygen species, and antimicrobial proteins.
Accumulating studies showed that autophagy is a key pathway in the maintenance of
homeostasis and housekeeping functions during infection and inflammation. In this review,
we summarize the major effector pathways and mechanisms in the activation of
TLR-inducible innate immune responses in macrophages. In addition, we focus the
emerging evidence of crosstalk between autophagy and TLR-mediated signaling in terms of
effector function of innate immune responses. A better understanding of effector functions
by the activation of TLR-mediated signaling cascades contributes to the development of
new therapeutics and vaccines against various intracellular pathogenic infections.

Key Words: TLR, Cytokine, Antimicrobial Protein, Effectors, Autophagy, Innate
Immunity

INTRODUCTION

The innate immune response is a crucial component of the first-line defense
system against a variety of invading pathogens (1, 2). Macrophages are principal
innate immune cell types that participate in recognition, signaling, digestion,
antigen presentation, and effector functions in the infections to a variety of
pathogens (2, 3). Toll-like receptors (TLRs) are one of the best characterized
innate immune receptors that can sense a variety of pathogen-associated
molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs)
during bacterial and viral infections (1, 4, 5). In macrophages, TLR engagement by
various PAMPs and DAMPs is importantly involved in the activation of intracellular
signaling cascades that result in the activation of effector mechanisms and
pathways to eradicate the invading pathogens (6, 7). The activation of TLR
responses triggers the sequential activation of signaling proteins and adaptors,
effector enzymes through cooperative assembly mechanisms that elicit the innate

Copyright © 2019 Journal of Bacteriology and Virology



Effector Pathways of Innate Immunity E-K Jo, et al.

immune responses (4, 5, 7, 8). The effector pathways of innate immune system consist of the expression of
proinflammatory cytokines and chemokines, generation of reactive oxygen species (ROS) and nitrogen species, and
production of antimicrobial proteins (7, 9).

Autophagy is an intracellular catabolic process that can promote the destruction of invading pathogens in the autolysosomes
(10). Accumulating evidence suggest that autophagy acts as a critical effector system in the host cells when they are invaded
by pathogens (11-13). Therefore, numerous bacteria and virus have evolved multiple strategies to exploit or evade from host
defensive autophagy (10, 11, 13). Indeed, TLR signaling can activate autophagy and lysosomal function, and LC3-associated
phagocytosis (LAP) when combined with phagocytosis during infection, which contribute to innate effector function (14,
15). Since there are numerous studies for the role of autophagy in the regulation of inflammation (16-18), it may contribute
to control excessive inflammatory responses during pathogenic infection. We summarize the TLR-mediated activation of
innate effector mechanisms and particularly focus on the role of autophagy during intracellular bacterial infection.

Overview of TLR-mediated Intracellular Signaling in Macrophages

TLRs are the distinct pattern recognition receptor (PRR) members that include 10 and 12 family members in human and mice,
respectively (8). TLR has a three-domain structure, leucine-rich repeats (LRRs) for the recognition of PAMPs, a
transmembrane region, and an intracellular Toll/IL-1 receptor (TIR) domain for the signaling activation. In addition, TLRs are
localized either in the plasma membrane (TLR1, TLR2, TLR4-6, and TLR10) or endosomal membranes (TLR3, TLR7-9,
TLR11-13) (19). In addition, recent studies identified the molecules, such as uncoordinated 93 homolog B1 (UNC93B1) and
leucine-rich repeat containing protein (LRRC) 59, for mediating endosomal TLR trafficking from ER to intracellular
compartments (20, 21).

Upon the LRR engagement of TLRs by various PAMPs or DAMPs, TLRs trigger the recruitment of TIR domain-containing
adaptors such as myeloid differentiation primary response protein 88 (MyD88) and TIR domain-containing adaptor protein
inducing IFNB (TRIF), TIR domain-containing adaptor protein (TIRAP)/MyD88 adapter-like protein (Mal), or TRIF-related
adaptor molecule (TRAM). MyD88 is recruited by all TLR molecules, whereas TRIF is utilized by TLR3 and 4. The recruitment
of MyD88 leads to the phosphorylation and activation of IL-1 receptor-associated kinase (IRAK) kinase family members
including IRAK4 and IRAK1, which associates with E3 ubiquitin ligase TNF receptor associated factor (TRAF) 6 to activate the
“master” TAK1 protein kinase complex (22, 23). Upon activation, TAK1 induces the activation of both NF-xB and
mitogen-activated protein kinase (MAPK) pathways (ERK1/2, p38, and JNK) for further activation of transcriptional factors
including AP-1 family members to produce proinflammatory cytokines including tumor necrosis factor (TNF)-a, interleukin
(IL)-6, and various chemokines (8, 24). In addition, the other adaptor TRIF interacts with TRAF6 and TRAF3, to facilitate the
activation of TAK1 complex and TBK1 pathways, respectively. TRIF-dependent TRAF3 activation leads to the activation of
type | interferon responses through phosphorylation of transcriptional factor IRF3 (8, 24, 25).

During this sophisticated signaling activation, ubiquitination plays a key orchestrating role for controlling innate immune
responses and inflammation through post-translational modification of target proteins (26). Both TRAF6 and TRAF3 are
well-known and essential ubiquitin ligases that induce polyubiquitylation of target proteins to recruit for the activation or
degradation during TLR signaling. Numerous studies identified crucial E3 ubiquitin ligases that play key regulatory roles in TLR
signaling (27). For example, the Pellino family E3 ubiquitin ligases are involved in K63-linked polyubiquitylation of K63-linked
polyubiquitination of IRAK1, TBK1, TAK1, receptor-interacting protein 1 (RIP1; also known as RIPK1) in TLR signaling
pathways (27-29). A recent study showed that the ubiquitin ligase RNF19A is importantly involved in the K48-linked
ubiquitination and degradation of TRAF6, thereby attenuating TLR signaling (30). Figure 1 summarizes an overview of
TLR-induced intracellular signaling pathways in innate immune cells. Deciphering the detailed mechanisms by which TLR
signaling is regulated in macrophages may suggest future strategies to enhance host innate defense and prevent excessive
inflammation.
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Figure 1. An overview of TLR-induced intracellular signaling pathways in innate immune cells. Upon TLR signaling, the
intracellular signaling cascades involve the actions of numerous adaptors MyD88, TRIF, MAL/TIRAP, or TRAM, and multiple
signaling molecules. In particular, MyD88 is recruited by all TLR molecules, whereas TRIF is utilized by TLR3 and 4. The
recruitment of MyD88 activates IRAK kinase family members, which associates with E3 ubiquitin ligase TRAF6 to activate
TAK1 protein kinase complex. This leads to the activation of both NF-xB and mitogen-activated protein kinase (MAPK)
pathways (ERK1/2, p38, and JNK) for proinflammatory cytokine generation. The other adaptor TRIF interacts with both
TRAF6 and TRAF3, to facilitate the activation of TAK1 complex and TBK1 pathways, leading to the activation of type |
interferon responses. In the sophisticated process, uncoordinated 93 homolog B1 (UNC93B1) and leucine-rich repeat
containing protein (LRRC) 59, are required for the endosomal TLR trafficking from ER to endosomal structures.

Effector molecules in TLR-mediated innate immune responses

Upon TLR activation, the intracellular signal transduction via numerous adaptors/enzymes leads to the activation of multiple
effector mechanisms and pathways. Here we will review three major innate immune pathways, antimicrobial proteins,
mitochondrial ROS, and autophagy, in terms of TLR activation.

Antimicrobial proteins in TLR responses

TLR-mediated innate immune signaling ultimately activates the expression of numerous antimicrobial peptides (AMPs) which
are multifunctional molecules that kill pathogens, play immunomodulatory roles, and inflammation, in various settings of
infection and inflammation (31-33). Here we discuss two major types of AMPs, defensins and cathelicidins, in terms of TLR
signaling.

Both defensins and cathelicidins are principal AMPs that can be synthesized in verious cell types including innate immune
cells, such as epithelial cells and macrophages. Previous studies suggest that TLR signaling leads to the differential profiling of
AMP production depending on the specific cell or tissue types. Recent studies showed that the TLR4-mediated increase of
B-defensin 2 expression in mesenchymal stem cells elicited antibacterial effects and down-regulated inflammatory responses
during Escherichia colfinduced pneumonia (34). TLR stimulation contributed to the enhancement of host defense through
the induction of nondefensin proteins, but not defensin-family proteins, to increase antibacterial activity in the intestinal
mucosa after antibiotics treatment (35). In addition, there is a synergistic activation of antimicrobial peptide production when
both TLRs and nucleotide-binding oligomerization domain 1 and 2 (NOD1 and NOD2) are stimulated together (36).
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Recent studies provided the evidence for the opposite regulation of AMP in TLR-mediated immune responses that reshape
the host defense and inflammation (31). For example, cathelicidins negatively regulate macrophage activation and
inflammation through binding lipoproteins and LPS (37). LL-37, a C-terminal portion of human cathelicidin antimicrobial
protein (hCAP18) (38), is known to decrease TLR4 signaling, but enhance TLR3 signaling (39, 40). Indeed, LL-37 can bind to
various agonists of TLRs, and affect TLR-mediated signaling and bacterial phagocytosis (39-41). In addition, there is a
synergistic interaction between AMP and TLR signaling in the activation of cytokine production. Previous studies showed that
human B-defensin-2 and -3 led to a synergistically increased production of inflammatory cytokines and chemokines in
response to TLR ligands, through ATP release (42). Another study showed that human B-defensin 3 had an inhibitory
function in the TLR4-mediated transcriptional activation of proinflammatory genes in macrophages (43). Although it is not
clear in terms of TLR signaling, the function of cathelicidins has been reported in the modulation of angiogenesis, presumably
linked to tumorigenesis and inflammation (44, 45). The interaction of cathelicidins and defensins with microenvironment
results in multifunctional roles in infection and inflammation (Fig. 2).
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Figure 2. Multiple functions of antimicrobial proteins in innate immune responses. TLR-induced intracellular signaling
pathways culminate into the activation of innate effector pathways including the generation of antimicrobial proteins. Two
important antimicrobial peptides, cathelicidins and defensins, function in various aspects of biological responses, i.e., the
regulation of inflammation, phagocytosis, autophagy, as well as antimicrobial effects, in innate immune cells.

Importantly, TLR2/1 activation led to an induction of vitamin D signaling pathway and LL-37 production to enhance
intracellular killing effects in human monocytes/macrophages against infection with Mycobacterium tuberculosis (Mtb), a
major pathogen of human tuberculosis (TB) (46). In addition, TLR2/1 activation stimulated the induction of defensin-p4,
which depends on IL-18 production in human monocytes (47). Moreover, TLR2-mediated hippo (mammalian sterile 20-like 1
and 2 kinases, MST1/2, in mammals) signaling is required for the paracrine activation of antimicrobial peptide B-defensins
through CXCL1 and CXCL2 secretion during Mtb infection (48). These data suggest that TLR signaling cooperates with other
signaling pathways for the induction of AMP to contribute to TLR-mediated antimicrobial host defense.

TLR and mitochondrial ROS

Recent studies provided evidence that mitochondria are crucial organelles to regulate innate immune responses to various
DAMP and PAMP signals (49). In macrophages, activation of TLR1, 2, and 4 are associated with the increased production of
mitochondrial ROS, which are critically involved in bactericidal activities and the recruitment of mitochondria to bacterial
phagosomes (50). This response is mediated by the translocation of the TRAF6 to the mitochondria, and the TRAF6
interaction with ECSIT (evolutionary conserved signaling intermediate in Toll pathways), a protein that is essential for the
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respiratory chain assembly and increased mitochondrial ROS generation (50). A more recent paper revealed the mechanisms
for mitochondrial trafficking and juxtaposition to bacterial phagosomes are mediated by the kinases Mst1 and Mst2 via the
activation of the Rho family GTPase Rac (51). The GTPase Rac activation is required for the TLR-mediated interaction of
TRAF6-ECSIT, thereby recruiting mitochondria to phagosomes and subsequent killing of microbes (51). Interestingly,
peroxiredoxin-6, an antioxidant enzyme of peroxiredoxin family, is required for the inhibition of mitochondrial ROS
production through interruption of the TRAF6-ECSIT complex formation in response to TLR4 (52). In addition, a recent paper
showed another function of mitochondrial ROS production that is required for the antigen cross-presentation capacity of
plasmacytoid dendritic cells after TLR stimulation (53).

Autophagy: Effector Pathway in innate immune responses by TLR signaling

Autophagy is a lysosomal degradation pathway and acts as an innate immune effector because it mediates the clearance of
intracellular microbes (54, 55). In addition, autophagy plays an important role in various aspects of immune responses,
including antigen presentation, regulation of cytokine production, and lymphocyte homeostasis (55). Here we briefly discuss
the overview of autophagy, TLR-induced autophagy and its consequences during infection, and the mechanisms for crosstalk
between TLR signaling and autophagy process.

Overview of autophagy and xenophagy

Autophagy process is required for intracellular maintenance of homeostasis during various stress signals including nutrient
starvation and pathogenic invasion (56, 57). The autophagic process is divided at least three steps: initiation, elongation, and
maturation. In the initiation step, cargos are surrounded by a cup-shaped double-membrane structure, phagophore, through
the action of ULK1/2 complex (ULK1/2-Atg13-Atg101-FIP200) and Class Il PI3K-Beclin-1 complex (Beclin
1-ATG14L-Vps34-p150). The phagophore structure expands to autophagosomes, through two ubiquitin-like conjugation
systems containing core autophagy proteins including Atg8/LC3 and Atg5-Atg12-Atg16L1 (56). In the autophagosome
maturation step, the autophagosomal structures can be fused with endolysosomal vesicles to form degradative
autolysosomes through several proteins including SNAREs, ATG8 family members, and Rab GTPases (58). Since autophagy is
essential in the maintenance of house-keeping function and homeostasis, its dysfunction and altered regulation are
associated with numerous diseases (59).

Although autophagy was considered to be a nonspecific response, it is now being clear that autophagy can target specific
organelles or substances including pathogens, i.e., xenophagy (57). Numerous autophagic adaptors including p62, NDP52,
and optineurin, play an important role in the activation of selective autophagy activation (60-62). Since the autophagic
adaptors have both domains, i.e., LC3-interacting region and ubiquitin-binding domains, to connect ubiquitinylated cargos
to autophagic machinery (60, 61). Numerous pathogens have evolved different mechanisms to escape or exploit
autophagy/xenophagy to get an advantage for the survival of pathogens (63). Here we briefly introduce xenophagy against
Mtb infection, because xenophagy has been widely studied in Mtb infection.

Mtb can reside in the phagosomes in macrophages, but access into the cytosols through ESX-1 system (64). Mtb and their
DNA can be recognized by cytosolic sensor c-GAS, and subsequently ubiquinylated by Parkin and Smurf1 (65-67).
Xenophagy against Mtb is mediated through autophagic adaptors including p62 and NDP52 (64). In addition, TRIM and
Galectin family proteins cooperate the recognition of damaged phagosomes, thereby the core autophagy proteins can be
targeted to activate xenophagy process (68, 69). In this process, the mycobactericidal activity is presumably due to the
formation of neo-antimicrobial peptides, which are delivered from numerous bulk ubiquitinated proteins during autophagic
process, through the action of p62 (70, 71). In human monocytes/macrophages, vitamin D3-induced autophagy activation
was essentially required for antimicrobial responses through induction of cathelicidins (72-74). In addition, IRGM, a human
immunity-related GTPase, induces xenophagy through interaction with ULK1 and Beclin 1, to enhance the formation of
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autophagy initiation complex and antimicrobial functions (75). Figure 3 summarizes a brief overview of autophagy and
xenophagy during Mtb infection.
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Figure 3. A schematic overview of macroautophagy and xenophagy in mycobacterial infection. Macroautophagy
process include three steps: initiation (formation of phagophore), elongation into double-membraned autophagosomal
structure, and its maturation by lysosomal fusion. Xenophagy process is well-characterized in mycobacterial infection. During
Mtb infection, xenophagy is activated by cytoplasmic release of Mtb, which can be ubiquitinated by E3 ligases Parkin and
Smurf1. Then ubiquitinated Mtb phagosomes are recognized by autophagic receptors p62 and NDP52, which contain
domains for interaction with ubiquitinated cargos and LC3-containing autophagic machinery. It is also well-known that,
several innate immune signals including TLR, vitamin D receptor signaling, IFN-y, can activate antibacterial autophagy
through distinct mechanisms involving IRGM (for IFN-y), cathelicidins (for vitamin D receptor signaling), and TBK1 (for TLR) in
monocytes/macrophages.

Although there are a large body of evidence that autophagy/xenophagy promotes antimicrobial responses to Mtb infection,
recent studies argued about the function of autophagy in vivo. Genetic deletion models of autophagy genes in myeloid
lineage of the mice did not exhibit protective effects against Mtb infection in vivo, except Atg5 that showed an
autophagy-independent, and controlling neutrophil-mediated harmful inflammation to the host (76). Despite this,
autophagy may contribute to the protective immune responses and improvement of antigen-presentation, thus being a
promising target for the development of new vaccines and therapeutics (77).

TLR-mediated autophagy regulation

TLR signaling activation in innate immune cells results in various effector mechanisms/pathways including autophagy process,
during pathogenic infection (78). Previous studies showed that TLR signaling activation led to the induction of autophagy in
macrophages (79, 80). Among TLRs, TLR7 activation showed strong effects upon the enhancement of autophagy leading to
the elimination of intracellular microbes in macrophages (79). TLR7-mediated autophagy depended on MyD88 expression
(79). In addition, TLR4-induced autophagy was mediated through TRIF-dependent, but MyD88-independent, pathway (81).
Interestingly, both TLR4- and TLR7-mediated autophagy activation resulted in the increased colocalization of mycobacterial
phagosomes and autophagosomes, indicating a promotion of phagosomal maturation (80, 81).
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In human monocytes/macrophages, TLR2/1 activation activated AMPK-dependent functional vitamin D signaling activation,
which leads to the induction of autophagy activation and antimicrobial responses (82). Another study showed that
treatment of murine macrophages with TLR4/LPS or TLR3/poly(I:C) resulted in the elimination of intracellular mycobacteria
through autophagy activation (83). Either stimulation of TLR2 or TLR4 enhanced the expression of a serine protease inhibitor
plasminogen activator inhibitor type 2 (PAI-2), which stabilized Beclin 1 to activate autophagy pathway to suppress NLRP3
activation (84). Thus TLR-mediated autophagy activation may contribute to celFautonomous antimicrobial defense and
controlling excessive inflammation. In other aspect, TLR signaling plays a negative regulatory role in autophagy activation in
different context. Recent studies showed that TLR4/LPS stimulation inhibited autophagy in microglial cells through negative
regulation of FOXO3 at downstream of PI3K pathway (85). In Leishmania infection, TLR3, 7, 9, as well as UNC93B1, a
chaperone for trafficking of nucleic-sensing TLRs to endolysosomes, are importantly required for the activation of
anti-microbial autophagy and controlling parasite replication (86).

TLR8 stimulation robustly activated the expression of genes involved in vitamin D signaling, which promoted vitamin
D-cathelicidin-dependent autophagy and antimicrobial responses against human immunodeficiency virus infection in human
macrophages (87). Thus TLR signaling may adopt distinct mechanisms and effects upon autophagy in the different context
of manner. A brief overview that TLR signaling regulates antibacterial autophagy is shown in Figure 4. In addition, TLR4
stimulation led to an induction of LC3-positive structures, which are independent of canonical macroautophagy and contain
p62 as a component (88). The formation of p62-positive selective autophagosome was mediated through Nrf2 and
TLR4-MyD88 signaling pathways (88). These data suggest that TLR-mediated innate immune and ROS pathways converge to
autophagy activation that contribute to promote host defense during infection.
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Figure 4. TLR-mediated regulation of antibacterial autophagy. TLR signaling activation in innate immune cells results in the
activation of antibacterial autophagy. TLR7 signaling activates autophagy through MyD88; TLR4 stimulation induces
autophagy through a TRIF-dependent pathway. TLR2/1 stimulation activates AMPK-dependent functional vitamin D
signaling activation, leading to the induction of autophagy activation and antimicrobial responses. Either TLR2 or TLR4
stimulation activates autophagy through a serine protease inhibitor PAI-2 via stabilization of Beclin 1. In addition, TLR3, 7, 9,
and UNC93B1, are required for the activation of antibacterial autophagy. TLRS8 stimulation activates the expression of genes
involved in vitamin D signaling and cathelicidin-dependent autophagy in human macrophages.
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Crosstalk between TLR signaling molecules and autophagy proteins

There are several evidence that the autophagy pathway regulates TLR-mediated innate immune responses, suggesting there
is a complex link between TLR responses and autophagy. For instance the formation of immunoamphisome in plasmacytoid
dendritic cells enhanced TLR7-mediated responses and antigen presentation on both MHC class | and class Il molecules (89).
In intestinal epithelial cells, TLR-induced autophagy and Atg7 expression are required for IL-8 production, suggesting a role
for autophagy in intestinal innate immune responses (90). In contrast, suppression of autophagy pathway by either
pharmacological inhibitors of autophagy or RNA interference amplified the IL-23 production in macrophages and dendritic
cells in response to TLR activation (91).

A large body of evidence showed that there is intimate connection between TLR signaling-related molecules and
autophagy-related proteins. Earlier studies showed that TLR family adaptors MyD88 and TRIF were associated with Beclin-1,
a key autophagy-related protein in the autophagosome formation (92). It was also reported that TRAF6 was essentially
involved in the K63-linked polyubiquitination of Beclin-1 to induce TLR4-mediated autophagy in macrophages (93, 94). In
addition, a well-known deubiqutinase A20 suppressed the K63-linked polyubiquitination of Beclin-1 to inhibit the
autophagosome formation (93, 94). During Pseudomonas aeruginosa infection, NLRC4 inflammasome-dependent
caspase-1 activation led to a cleavage of TRIF, thus attenuating autophagy activation and type | interferon expression (95). In
vivo infection model with 2. aeruginosa showed that TRIF was required for the enhancement of antibacterial autophagy and
clearance of bacteria (95). A recent study showed that the TLR adaptor molecule Mal (encoded by TIRAP) through IFN-y
receptor signaling, which in turn activated autophagy and increased the protection from M. tuberculosis infection (96). This
study is important for the potential explanation of genetic variant of Mal (S180L polymorphism; murine equivalent S200L) in
the increased susceptibility to TB (96). Another recent study revealed that TRIF degradation, which was mediated through
selective autophagic pathway via the E3 ligase TRIM32 and the autophagic adaptor TAX1BP1, negatively regulated
TLR3/4-induced type | interferon and proinflammatory immune responses (97).

There are several reports that autophagy proteins are involved in innate immune responses associated with TLR signaling. In
mycobacterial infection models, the autophagy protein DNA damage-regulated autophagy modulator (DRAM) 1 expression
was dependent on MyD88- and NF-kB-mediated innate immune signaling in human macrophages and zebrafish embryos
(98). Moreover, the autophagy inhibitor Rubicon played a role as a feedback regulator of CARD9, BCL10, and MALT1 (CBM
complex)-mediated innate immune signaling (99). Rubicon functioned in the disassembly of CBM complex formation and
inhibited cytokine production (99). In addition, TLR2 activation led to an interaction of Rubicon with the p22phox of
NADPH-oxidase complex for the enhancement of antimicrobial effects through induction of ROS and inflammatory cytokine
generation (100). A recent study showed that Rubicon plays an essential role for antiviral type | interferon responses through
interaction with interferon regulatory factor (IRF) 3 and inhibition of IRF3 dimerization (101). Together, these studies indicate
an essential role for TLR signaling adaptors in the regulation of the autophagy protein function or vice versa.

Concluding remarks

Considerable progress has been made in elucidating the mechanisms for TLR-induced signaling in innate immunity. For
innate immune cells such as macrophages, the activation of TLR-mediated innate immune signaling leads to the effector
pathways including cytokine generation, reactive nitrogen and oxygen species, production of antimicrobial proteins,
autophagy, etc. Although a great advance has been done in the unveiling the signaling mechanisms by which TLR activation
leads to the innate immune responses, many questions remained in the functional identification of positive and negative
regulators in TLR-mediated signaling pathways.

In addition to providing a signaling map of TLR pathway, future studies are warranted to investigate the immunomodulatory
functions of diverse antimicrobial proteins in innate immune responses. Numerous efforts support a role for mitochondrial
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ROS in the antimicrobial responses against pathogens. However, dysregulation of ROS generation could amplify chronic
inflammation during infection. Thus it remains to be seen whether TLR-mediated autophagy or other cellular pathway is
required for the coordinated regulation of innate effector responses.

The information on the function of autophagy/xenophagy is emerging in a variety of infection; one example would be
Mtb-induced host defensive responses. Accumulating evidence suggests that TLR signaling activates autophagy, which
affects TLR-mediated innate immune responses during infection. Understanding the molecular mechanisms for biological

connections between autophagy and TLR signaling is a challenge for the possibility of novel therapeutics against infection
and inflammation.
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