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 Toll-like receptors (TLR) are well-characterized pattern recognition receptors that can 

recognize and respond to diverse pathogen-associated or danger-associated molecular 

patterns during infection. TLR signaling in macrophages triggers in the intracellular 

signaling pathways through the recruitment of various adaptor and signaling proteins, and 

results in the activation of effector mechanisms and pathways that are important for host 

defense to intracellular bacteria. Effector mechanisms include inflammatory responses, 

cytokine generation, production of reactive oxygen species, and antimicrobial proteins. 

Accumulating studies showed that autophagy is a key pathway in the maintenance of 

homeostasis and housekeeping functions during infection and inflammation. In this review, 

we summarize the major effector pathways and mechanisms in the activation of 

TLR-inducible innate immune responses in macrophages. In addition, we focus the 

emerging evidence of crosstalk between autophagy and TLR-mediated signaling in terms of 

effector function of innate immune responses. A better understanding of effector functions 

by the activation of TLR-mediated signaling cascades contributes to the development of 

new therapeutics and vaccines against various intracellular pathogenic infections.  

Key Words: TLR, Cytokine, Antimicrobial Protein, Effectors, Autophagy, Innate 
Immunity 

INTRODUCTION

The innate immune response is a crucial component of the first-line defense 

system against a variety of invading pathogens (1, 2). Macrophages are principal 

innate immune cell types that participate in recognition, signaling, digestion, 

antigen presentation, and effector functions in the infections to a variety of 

pathogens (2, 3). Toll-like receptors (TLRs) are one of the best characterized 

innate immune receptors that can sense a variety of pathogen-associated 

molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) 

during bacterial and viral infections (1, 4, 5). In macrophages, TLR engagement by 

various PAMPs and DAMPs is importantly involved in the activation of intracellular 

signaling cascades that result in the activation of effector mechanisms and 

pathways to eradicate the invading pathogens (6, 7). The activation of TLR 

responses triggers the sequential activation of signaling proteins and adaptors, 

effector enzymes through cooperative assembly mechanisms that elicit the innate 
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immune responses (4, 5, 7, 8). The effector pathways of innate immune system consist of the expression of 

proinflammatory cytokines and chemokines, generation of reactive oxygen species (ROS) and nitrogen species, and 

production of antimicrobial proteins (7, 9).  

 

Autophagy is an intracellular catabolic process that can promote the destruction of invading pathogens in the autolysosomes 

(10). Accumulating evidence suggest that autophagy acts as a critical effector system in the host cells when they are invaded 

by pathogens (11-13). Therefore, numerous bacteria and virus have evolved multiple strategies to exploit or evade from host 

defensive autophagy (10, 11, 13). Indeed, TLR signaling can activate autophagy and lysosomal function, and LC3-associated 

phagocytosis (LAP) when combined with phagocytosis during infection, which contribute to innate effector function (14, 

15). Since there are numerous studies for the role of autophagy in the regulation of inflammation (16-18), it may contribute 

to control excessive inflammatory responses during pathogenic infection. We summarize the TLR-mediated activation of 

innate effector mechanisms and particularly focus on the role of autophagy during intracellular bacterial infection.  

Overview of TLR-mediated Intracellular Signaling in Macrophages 

TLRs are the distinct pattern recognition receptor (PRR) members that include 10 and 12 family members in human and mice, 

respectively (8). TLR has a three-domain structure, leucine-rich repeats (LRRs) for the recognition of PAMPs, a 

transmembrane region, and an intracellular Toll/IL-1 receptor (TIR) domain for the signaling activation. In addition, TLRs are 

localized either in the plasma membrane (TLR1, TLR2, TLR4-6, and TLR10) or endosomal membranes (TLR3, TLR7-9, 

TLR11-13) (19). In addition, recent studies identified the molecules, such as uncoordinated 93 homolog B1 (UNC93B1) and 

leucine-rich repeat containing protein (LRRC) 59, for mediating endosomal TLR trafficking from ER to intracellular 

compartments (20, 21).  

 
Upon the LRR engagement of TLRs by various PAMPs or DAMPs, TLRs trigger the recruitment of TIR domain-containing 

adaptors such as myeloid differentiation primary response protein 88 (MyD88) and TIR domain-containing adaptor protein 

inducing IFNβ (TRIF), TIR domain-containing adaptor protein (TIRAP)/MyD88 adapter-like protein (Mal), or TRIF-related 

adaptor molecule (TRAM). MyD88 is recruited by all TLR molecules, whereas TRIF is utilized by TLR3 and 4. The recruitment 

of MyD88 leads to the phosphorylation and activation of IL-1 receptor-associated kinase (IRAK) kinase family members 

including IRAK4 and IRAK1, which associates with E3 ubiquitin ligase TNF receptor associated factor (TRAF) 6 to activate the 

“master” TAK1 protein kinase complex (22, 23). Upon activation, TAK1 induces the activation of both NF-κB and 

mitogen-activated protein kinase (MAPK) pathways (ERK1/2, p38, and JNK) for further activation of transcriptional factors 

including AP-1 family members to produce proinflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin 

(IL)-6, and various chemokines (8, 24). In addition, the other adaptor TRIF interacts with TRAF6 and TRAF3, to facilitate the 

activation of TAK1 complex and TBK1 pathways, respectively. TRIF-dependent TRAF3 activation leads to the activation of 

type I interferon responses through phosphorylation of transcriptional factor IRF3 (8, 24, 25).  

 

During this sophisticated signaling activation, ubiquitination plays a key orchestrating role for controlling innate immune 

responses and inflammation through post-translational modification of target proteins (26). Both TRAF6 and TRAF3 are 

well-known and essential ubiquitin ligases that induce polyubiquitylation of target proteins to recruit for the activation or 

degradation during TLR signaling. Numerous studies identified crucial E3 ubiquitin ligases that play key regulatory roles in TLR 

signaling (27). For example, the Pellino family E3 ubiquitin ligases are involved in K63-linked polyubiquitylation of K63-linked 

polyubiquitination of IRAK1, TBK1, TAK1, receptor-interacting protein 1 (RIP1; also known as RIPK1) in TLR signaling 

pathways (27-29). A recent study showed that the ubiquitin ligase RNF19A is importantly involved in the K48-linked 

ubiquitination and degradation of TRAF6, thereby attenuating TLR signaling (30). Figure 1 summarizes an overview of 

TLR-induced intracellular signaling pathways in innate immune cells. Deciphering the detailed mechanisms by which TLR 

signaling is regulated in macrophages may suggest future strategies to enhance host innate defense and prevent excessive 

inflammation. 
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respiratory chain assembly and increased mitochondrial ROS generation (50). A more recent paper revealed the mechanisms 

for mitochondrial trafficking and juxtaposition to bacterial phagosomes are mediated by the kinases Mst1 and Mst2 via the 

activation of the Rho family GTPase Rac (51). The GTPase Rac activation is required for the TLR-mediated interaction of 

TRAF6-ECSIT, thereby recruiting mitochondria to phagosomes and subsequent killing of microbes (51). Interestingly, 

peroxiredoxin-6, an antioxidant enzyme of peroxiredoxin family, is required for the inhibition of mitochondrial ROS 

production through interruption of the TRAF6-ECSIT complex formation in response to TLR4 (52). In addition, a recent paper 

showed another function of mitochondrial ROS production that is required for the antigen cross-presentation capacity of 

plasmacytoid dendritic cells after TLR stimulation (53).  

Autophagy: Effector Pathway in innate immune responses by TLR signaling 

Autophagy is a lysosomal degradation pathway and acts as an innate immune effector because it mediates the clearance of 

intracellular microbes (54, 55). In addition, autophagy plays an important role in various aspects of immune responses, 

including antigen presentation, regulation of cytokine production, and lymphocyte homeostasis (55). Here we briefly discuss 

the overview of autophagy, TLR-induced autophagy and its consequences during infection, and the mechanisms for crosstalk 

between TLR signaling and autophagy process.  

Overview of autophagy and xenophagy 

Autophagy process is required for intracellular maintenance of homeostasis during various stress signals including nutrient 

starvation and pathogenic invasion (56, 57). The autophagic process is divided at least three steps: initiation, elongation, and 

maturation. In the initiation step, cargos are surrounded by a cup-shaped double-membrane structure, phagophore, through 

the action of ULK1/2 complex (ULK1/2-Atg13-Atg101-FIP200) and Class III PI3K-Beclin-1 complex (Beclin 

1-ATG14L-Vps34-p150). The phagophore structure expands to autophagosomes, through two ubiquitin-like conjugation 

systems containing core autophagy proteins including Atg8/LC3 and Atg5-Atg12-Atg16L1 (56). In the autophagosome 

maturation step, the autophagosomal structures can be fused with endolysosomal vesicles to form degradative 

autolysosomes through several proteins including SNAREs, ATG8 family members, and Rab GTPases (58). Since autophagy is 

essential in the maintenance of house-keeping function and homeostasis, its dysfunction and altered regulation are 

associated with numerous diseases (59).  

 

Although autophagy was considered to be a nonspecific response, it is now being clear that autophagy can target specific 

organelles or substances including pathogens, i.e., xenophagy (57). Numerous autophagic adaptors including p62, NDP52, 

and optineurin, play an important role in the activation of selective autophagy activation (60-62). Since the autophagic 

adaptors have both domains, i.e., LC3-interacting region and ubiquitin-binding domains, to connect ubiquitinylated cargos 

to autophagic machinery (60, 61). Numerous pathogens have evolved different mechanisms to escape or exploit 

autophagy/xenophagy to get an advantage for the survival of pathogens (63). Here we briefly introduce xenophagy against 

Mtb infection, because xenophagy has been widely studied in Mtb infection.  

 

Mtb can reside in the phagosomes in macrophages, but access into the cytosols through ESX-1 system (64). Mtb and their 

DNA can be recognized by cytosolic sensor c-GAS, and subsequently ubiquinylated by Parkin and Smurf1 (65-67). 

Xenophagy against Mtb is mediated through autophagic adaptors including p62 and NDP52 (64). In addition, TRIM and 

Galectin family proteins cooperate the recognition of damaged phagosomes, thereby the core autophagy proteins can be 

targeted to activate xenophagy process (68, 69). In this process, the mycobactericidal activity is presumably due to the 

formation of neo-antimicrobial peptides, which are delivered from numerous bulk ubiquitinated proteins during autophagic 

process, through the action of p62 (70, 71). In human monocytes/macrophages, vitamin D3-induced autophagy activation 

was essentially required for antimicrobial responses through induction of cathelicidins (72-74). In addition, IRGM, a human 

immunity-related GTPase, induces xenophagy through interaction with ULK1 and Beclin 1, to enhance the formation of 
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Crosstalk between TLR signaling molecules and autophagy proteins 

There are several evidence that the autophagy pathway regulates TLR-mediated innate immune responses, suggesting there 

is a complex link between TLR responses and autophagy. For instance the formation of immunoamphisome in plasmacytoid 

dendritic cells enhanced TLR7-mediated responses and antigen presentation on both MHC class I and class II molecules (89). 

In intestinal epithelial cells, TLR-induced autophagy and Atg7 expression are required for IL-8 production, suggesting a role 

for autophagy in intestinal innate immune responses (90). In contrast, suppression of autophagy pathway by either 

pharmacological inhibitors of autophagy or RNA interference amplified the IL-23 production in macrophages and dendritic 

cells in response to TLR activation (91).  

 

A large body of evidence showed that there is intimate connection between TLR signaling-related molecules and 

autophagy-related proteins. Earlier studies showed that TLR family adaptors MyD88 and TRIF were associated with Beclin-1, 

a key autophagy-related protein in the autophagosome formation (92). It was also reported that TRAF6 was essentially 

involved in the K63-linked polyubiquitination of Beclin-1 to induce TLR4-mediated autophagy in macrophages (93, 94). In 

addition, a well-known deubiqutinase A20 suppressed the K63-linked polyubiquitination of Beclin-1 to inhibit the 

autophagosome formation (93, 94). During Pseudomonas aeruginosa infection, NLRC4 inflammasome-dependent 

caspase-1 activation led to a cleavage of TRIF, thus attenuating autophagy activation and type I interferon expression (95). In 

vivo infection model with P. aeruginosa showed that TRIF was required for the enhancement of antibacterial autophagy and 

clearance of bacteria (95). A recent study showed that the TLR adaptor molecule Mal (encoded by TIRAP) through IFN-γ 
receptor signaling, which in turn activated autophagy and increased the protection from M. tuberculosis infection (96). This 

study is important for the potential explanation of genetic variant of Mal (S180L polymorphism; murine equivalent S200L) in 

the increased susceptibility to TB (96). Another recent study revealed that TRIF degradation, which was mediated through 

selective autophagic pathway via the E3 ligase TRIM32 and the autophagic adaptor TAX1BP1, negatively regulated 

TLR3/4-induced type I interferon and proinflammatory immune responses (97).  

 

There are several reports that autophagy proteins are involved in innate immune responses associated with TLR signaling. In 

mycobacterial infection models, the autophagy protein DNA damage-regulated autophagy modulator (DRAM) 1 expression 

was dependent on MyD88- and NF-B-mediated innate immune signaling in human macrophages and zebrafish embryos 

(98). Moreover, the autophagy inhibitor Rubicon played a role as a feedback regulator of CARD9, BCL10, and MALT1 (CBM 

complex)-mediated innate immune signaling (99). Rubicon functioned in the disassembly of CBM complex formation and 

inhibited cytokine production (99). In addition, TLR2 activation led to an interaction of Rubicon with the p22phox of 

NADPH-oxidase complex for the enhancement of antimicrobial effects through induction of ROS and inflammatory cytokine 

generation (100). A recent study showed that Rubicon plays an essential role for antiviral type I interferon responses through 

interaction with interferon regulatory factor (IRF) 3 and inhibition of IRF3 dimerization (101). Together, these studies indicate 
an essential role for TLR signaling adaptors in the regulation of the autophagy protein function or vice versa.  

Concluding remarks 

Considerable progress has been made in elucidating the mechanisms for TLR-induced signaling in innate immunity. For 

innate immune cells such as macrophages, the activation of TLR-mediated innate immune signaling leads to the effector 

pathways including cytokine generation, reactive nitrogen and oxygen species, production of antimicrobial proteins, 

autophagy, etc. Although a great advance has been done in the unveiling the signaling mechanisms by which TLR activation 

leads to the innate immune responses, many questions remained in the functional identification of positive and negative 

regulators in TLR-mediated signaling pathways.  

 

In addition to providing a signaling map of TLR pathway, future studies are warranted to investigate the immunomodulatory 

functions of diverse antimicrobial proteins in innate immune responses. Numerous efforts support a role for mitochondrial 
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ROS in the antimicrobial responses against pathogens. However, dysregulation of ROS generation could amplify chronic 

inflammation during infection. Thus it remains to be seen whether TLR-mediated autophagy or other cellular pathway is 

required for the coordinated regulation of innate effector responses.  

 

The information on the function of autophagy/xenophagy is emerging in a variety of infection; one example would be 

Mtb-induced host defensive responses. Accumulating evidence suggests that TLR signaling activates autophagy, which 

affects TLR-mediated innate immune responses during infection. Understanding the molecular mechanisms for biological 

connections between autophagy and TLR signaling is a challenge for the possibility of novel therapeutics against infection 

and inflammation.  
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