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Autophagy in Mycobacterium abscessus Infection 
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Autophagy is a self-degradative process that removes misfolded or aggregated proteins, clears damaged organelles, as 
well as eliminates intracellular pathogens playing a role in innate immunity. Mycobacterium abscessus (M. abscessus) has 
been reported as a causative organism in nearly 80% of the rapid growing mycobacteria (RGM) pulmonary disease. The 
strain exhibits two different colony types: the smooth (S) one which is considered wild-type and the rough (R) one which 
is the mutated strain. In accordance to the colony morphology, the S and R types display varying autophagic responses in 
the host cells with the R type inducing elevated autophagy compared to the S type. The major difference in the autophagy 
could be based on the bioactive molecules exposed on the surface of the S and R types. Though autophagy has a vital role 
to play in the clearance of intracellular pathogens, very little is known on the autophagy induced by M. abscessus. It has been 
known that the intracellular pathogens employ different strategies to evade the autophagic pathway and to survive within 
the host cells. This review summarizes the most up-to-date findings on autophagy induced by M. abscessus morphotypes 
and how M. abscessus evades the autophagic machinery to divide and thrive inside the host cells. In addition, the prospects 
of autophagic machinery in devising new anti-infective strategies against mycobacterial infection is also been discussed. 
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I. INTRODUCTION 

 
Autophagy is a conserved catabolic process that delivers 

cytoplasmic contents to lysosomes for degradation via auto- 
phagosomes (1~5). Autophagy plays an important role in 
removing damaged organelles (mitochondria, endoplasmic 
reticulum, peroxisomes etc.), clearing misfolded or aggregate-
prone proteins, as well as eliminating intracellular pathogens. 
Though autophagy was initially studied as a cellular process 
in response to starvation-induced stress, now it is clear that 
it is a critical regulator of cellular homeostasis (6). In addition 
to starvation, autophagy is induced by many other perturb- 

ations including hypoxia, metabolic, osmotic and oxidative 
stresses (7~9). Autophagy appears to be relevant in cell 
metabolism, growth control, the balance between cell sur- 
vival and cell death as well as ageing (6). Autophagy plays 
a pivotal role in human health and disease by taking part in 
inflammation, immunity, neurodegeneration, tumor suppres- 
sion and genome stability (10~14). 

 
II. CELLULAR AND MOLECULAR 
MECHANISMS OF AUTOPHAGY 

 
The classical autophagy pathway proceeds through a 

number of well-defined steps. In response to various stimuli, 
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autophagy is induced by the formation of phagophore, an 
isolation membrane (IM) which is a lipid bilayer derived 
from the endoplasmic reticulum (ER) and/or the trans-Golgi 
and endosomes (15, 16). Although the importance of auto- 
phagy is well studied in mammalian systems, many of the 
molecular mechanism studies revealing how autophagy is 
regulated and executed at the molecular level have been 
conducted in yeast (Saccharomyces cerevisiae) (17, 18). 
Thirty two different autophagy-related genes (Atg) have 
been identified so far by the genetic screening in yeast and 
many of which are later found to be conserved in mammals. 
In yeast, the phagophore membrane is formed around a 
cytosolic structure known as the pre-autophagosomal struc- 
ture (PAS) (18). However, there is no report for PAS in 
mammals. The yeast serine/threonine kinase Atg1 along with 
other Atg proteins, including Atg13 and Atg17 are known 
to be important for the expansion of phagophore (16, 18, 19). 
This step is regulated by TOR kinase which is responsible 
for the phosphorylation of Atg13 leading to the initiation of 
autophagy sensitive to growth factor and nutrient availability. 
The mammalian homologue of Atg1, ULK1 along with the 
closely associated protein ULK2 (a second Atg1 homologue) 
is reported to have a role in the induction of autophagy. 
There are two ubiquitin-like systems that are key to the 
formation of autophagosomes (20, 21). In the first system, 
Atg7 acts like a ubiquitin activating enzyme and activates 
Atg12 eventually contributing to the conjugation of Atg12 
with Atg5. The Atg5-Atg12 conjugate along with Atg16L 
dimers forms a multimeric Atg5-Atg12-Atg16L complex 
that associates with the extending phagophore. The second 
ubiquitin-like system in autophagy is involved in the proces- 
sing of microtubule-associated protein light chain 3 (LC3B). 
Upon induction of autophagy, LC3B is proteolytically clea- 
ved by Atg5, a cysteine protease, to generate LC3B-I. LC3B- 
I is then conjugated to the phosphatidylethanolamine (PE) 
by the carboxyl glycine to form the processed LC3B-II. The 
LC3B-II is later on recruited and integrated into the growing 
phagophore depending on the presence of Atg5-Atg12 com- 
plex. The generation and processing of LC3 is elevated 
during autophagy, making it a key molecule for checking 
the autophagy levels in cells (22). LC3B-II is found on both 

internal and external surfaces of the phagophore and acting 
as a 'receptor', it interacts with 'adaptor' molecules on targets 
(e.g. protein aggregates, mitochondria) to boost their selective 
uptake and degradation. One such adaptor molecule is p62/ 
SQSTM1 that promotes the degradation of ubiquitinated 
protein aggregates. p62 is able to bind to ubiquitin and LC3 
at the same time, targeting the proteins to phagophore and 
facilitating their clearance. The fusion of the expanding 
phagophore membrane forms a double-membrane vesicle 
known as the autophagosome, which eventually fuses with 
the specialized endosomal compartment, lysosome to form 
autolysosome (20) where the captured material along with the 
inner membrane is degraded. Within the lysosome, cathepsin 
protease B, cathepsin protease D, Lamp-1 and Lamp-2 are 
critical for the maturation of autolysosome (23, 24). 

Normal proteins are routinely turned over by different 
protein degradation systems including autophagy. It has been 
reported that diverse neurodegenerative diseases, including 
Alzheimer's diseases, transmissible spongiform encephalo- 
pathies, Parkinson's disease, and Huntington's disease are 
associated with impaired autophagy where the proteins are 
aggregated leading to neurodegeneration (25, 26). Tissue-
specific knock out studies in mice have indicated the role of 
basal hepatocyte autophagy in preventing the most common 
genetic human liver disease, α1-antitrypsin deficiency which 
is linked carcinogenesis and chronic inflammation (27). The 
pathogenesis of myodegenerative diseases involves either 
the impairment of autolysosome formation or the aggregation 
of misfolded proteins that exceed the autophagic clearance 
capacity of the cells. Danon disease, a genetic disease is the 
result of a mutation in the lysosomal protein, LAMP-2 and 
is associated with enhanced accumulation of autophago- 
somes in the muscles (28). The accumulation of autophago- 
somes (due to the impaired autophagosome-lysosome fusion) 
has been noticed in cardiac biopsy tissues of patients with 
coronary artery disease, hypertension, aortic valvular disease, 
and congestive heart failure (29). The fact that the autophagy 
defects are closely associated with tumorigenesis provides 
increasing support for the concept that autophagy is a bona- 
fide tumor suppressor pathway (30, 31). The tumor sup- 
pressor genes in the autophagy machinery include beclin 1, 
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atg4c, atg5, UVRAG, ambra1, bif-1 (required for autophagy), 
P53 (regulates autophagy) etc. (32~37). 

 
III. AUTOPHAGY IN INFECTION AND 

IMMUNITY 
 
Autophagic machinery plays a central role in the clearance 

of invading intracellular pathogens through a process called 
xenophagy (38, 39). In this process, the phagophores engulf 
the invading microbes forming autophagosomes and guiding 
them toward lysosomal degradation. Thus, xenophagy is an 
important host defense mechanism in the elimination of 
intracellular pathogens, indicating that autophagy does have 
a role to play in innate immunity. Autophagy restricts the 
growth of diverse species of bacteria, including Group A 
Streptococcus (GAS), Mycobacterium tuberculosis, Rickettsia 
conorii, Salmonella Typhimurium, and Shigella flexneri (40, 
41). In the autophagic pathway, the intracellular bacteria 
are targeted within phagosomes, (e.g. M. tuberculosis), in 
damaged vacuoles (e.g. S. enterica serovar Typhimurium), 
or in the cytosol (e.g. GAS), and kill them via the autolyso- 
some. Once internalized, M. tuberculosis resides in early 
phagocytic compartments which avoid maturation and fusion 
with lysosomes (42). Induction of autophagy facilitates 
autophagosome-lysosome fusion and clearance of the patho- 
gen (43). Furthermore, M. tuberculosis infection of autophagy 
-gene-deficient mice displayed increased bacterial burden 
and tissue inflammation compared to autophagy-proficient 
mice (44). Thus, autophagy seems to play a critical role not 
only in bacterial clearance but also in preventing host tissue 
destruction. S. enterica serovar Typhimurium is a facultative 
intracellular pathogen which is seen localized inside the 
host cells within membrane-bound compartments called the 
Salmonella-containing vacuoles (SCV) where it replicates, 
protected from the immune system (45). The damage of 
the SCV membrane later on causes the recognition of these 
vesicles by the autophagy pathway (46). GAS enters the 
cytosol of host cells when internalized into endosomes, which 
are then captured by autophagosomes. The GAS-containing 
phagosomes eventually fuse with lysosomes killing most 
intracellular GAS and preventing GAS replication (47). 

Intracellular pathogens have evolved mechanisms to evade 
(e.g. Shigella flexneri, Listeria monocytogenes) (48, 49), 
inhibit (e.g. M. tuberculosis, Legionella pneumophila) (50, 
51), and subvert (Coxiella burnetii, Staphylococcus aureus) 
autophagy (52, 53). Shigella secretes factors, IcsB and IcsA 
which helps them to escape from phagosome into the cyto- 
plasm where they can multiply and induce the formation of 
actin tails (54). These actin tails aid the bacteria to actively 
move and invade neighboring cells. L. monocytogenes like 
Shigella also escapes the autophagic machinery and replicates 
in the cytoplasm of host cells. This phagosomal escape is 
accomplished by a pore-forming toxin, listeriolysin O (LLO) 
and two bacterial phospholipase Cs (49). Once in the cyto- 
plasm, the bacteria induce the generation of actin tails to 
assist them to invade the neighboring cells. It has been 
reported that M. tuberculosis is capable of persisting within 
the phagosomes by interfering with the stereotypical pha- 
gosomal maturation process by means of inhibition of 
phagosome-lysosome fusion (42). The varied expression of 
Rab5 on the phagosomes containing M. tuberculosis causes 
the phagosome maturation arrest at the early endosomal 
stage. Sulfatides and ammonium chloride (produced in high 
abundance) of M. tuberculosis are reported to have an anti- 
fusion effect (55, 56). In addition, it has been revealed that 
M. tuberculosis disrupts the delivery of V0H+-ATPase sub- 
units and lysosomal hydrolases to Mycobacterium-containing 
phagosomal compartments preventing acidification of the 
same (57, 58). After internalization, L. pneumophilia evades 
fusion with lysosomes and interacts with ER-like structures 
to establish a replicative niche where it multiplies, before it 
eventually merges with the lysosomes after a delay of several 
hours (51, 59). Upon internalization into the host cells, C. 
burnetii is localized in early phagosomes which fuse with 
other vacuoles to form large and spacious parasitophorous 
vacuoles (PV) where the bacteria replicate (52, 60). This bac- 
terium has the ability to withstand the harsh acidic environ- 
ment of the phagolysosome-like vacuoles though the exact 
mechanism of resistance is not known (61, 62). 

Autophagy can be considered as a form of innate im- 
munity against invading microorganisms due to its role in 
intracellular killing of pathogens by means of phagosome-
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lysosome fusion, pattern recognition receptor (PRR) recog- 
nition of pathogen components and in regulation of type I 
interferon (IFN) induction pathways (63, 64). Autophagy 
enhances delivery of pathogen-associated molecular patterns 
(PAMPS) to the PRR, triggering the production of cytokines 
(63, 64). In addition, a number of autophagy factors nega- 
tively regulate type I IFN induction. Besides, studies have 
shown that autophagy aids in the induction and execution 
of adaptive immune responses by governing MHC class II 
processing and presentation of various intracellular antigens 
to CD4+ T cells and also by facilitating processing and 
loading of lysosomally processed viral proteins to MHC-I 
complexes and subsequent presentation to CD8+ T cells 
(65, 66). 

 
IV. AUTOPHAGY INDUCTION BY 

M. ABSCESSUS 
 
M. abscessus is one of the predominant pathogens be- 

longing to non-tuberculosis Mycobacterium (NTM) causing 
approximately 80% of the pulmonary disease caused by 
rapidly growing mycobacteria (RGM) (67~69). M. abscessus 
infection occurs in individuals with no previous lung disease 
and the multidrug resistant nature of the strain makes it 
difficult to treat (68, 70). Like the M. smegmatis or M. avium 
(71), M. abscessus displays two colony morphologies on 
solid agar media; the rough type (R type) and the smooth 
type (S type) (72). The S type is non-cording, motile and 
biofilm forming while the R variant is coding, non-motile 
and non-biofilm forming. The major difference between R 
type and S type is that the S type expresses glycopepti- 
dolipids (GPLs) which are componenets of cell wall (73, 
74). GPLs are surface-glycolipids produced by NTM strains 
such as M. avium complex, M. smegmatis, and M. abscessus 
(72, 75). It is reported that the colony morphotype plays a 
role in virulence as the R type causes more severe infections 
in mice (76). A rough type of M. abscessus (UC22) isolated 
from patients with upper lobe fibrocavity form of pulmonary 
disease induced severe lung inflmmation in mice and ele- 
vated production of cytokines in macrophages (77). The 
GPL in the S type facilitates the initial colonization of M. 

abscessus strains but masks the underlying bioactive cell 
wall lipids involved in virulence (78). The ability of M. 
abscessus to transform between R and S types brings 
particular attention in terms of lung infection and the R 
type is reported to arise during the course of infection in 
the host organisms (76, 79). It has been suggested that the S 
type initially colonizes the airways and forms biofilms, with 
subsequent transition to R form leading to severe infections 
(72). However, the exact trigger by which the S type trans- 
forms into R type in vivo and the factors for the increased 
virulence in the R type is currently not known. 

Since the R and S variants of M. abscessus displays 
different morphotypes and induce different cellular response, 
it can be hypothesized that these variants differentially affect 
the phagocytic pathway. The S variant is efficiently phago- 
cytized by macrophages than the R variant and the majority 
of the phagosomes harbouring the S variant contain single 
bacterium in contrast to the R variant (80). In the case of the 
R variant, majority of the phgosomes were social phago- 
somes with at least 2 bacilli. The number of phagosomes 
formed within 24 hr of infection was high in the case of S 
variant. Meanwhile the R variant displayed less number of 
phagosomes and it could be very well connected to the 
aggreagative nature of the R variant. The cording of the R 
variants contributes to gathering of long chains of bacteria 
at the close vicinity of the cell surface or in phagocytic cups. 
This makes it difficult for the tips of the pseudopods to fuse 
together to give rise to nascent phagosomes. It has been 
reported that the R varaint displays increased virulence due 
to the massive production of serpentine cords that grow too 
large to be phagocytized by macrophages or neutrophils (81). 
As the cords cannot be phagocytized, uncontrolled bacterial 
replication leads to abscess formation, tissue damage and 
death. Thus, cording has a crucial role in the pathophys- 
iology of M. abscessus infection as it is a mechanism of 
immune evasion. The intraphagosomal R and S strains dis- 
play distinct morphology as the S strain exhibits a thick 
outermost electron transluscent zone (ETZ) which is apposed 
to the phagosome membrane all around while the R form 
produces a very thin ETZ (80). 

It has been known that once inside the host cells, the R 
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and S types are present in morphologically distinct phago- 
somes (Fig. 1). However, there is not much information on 
the machanisms by which R and S types induce distinct 
autophagosome formation. Recently, it was demonstrated 
that the R type induces more autophagy than the S variant, 
as evidenced by the increased percentage of LC3 formation 
in infected cells (80). This was in accordance with the study 
conducted in our lab using the R type clinical isolate, UC22 
where the R type induced high level of autophagy response 

compared to the S type, ATCC 19977 (unpublished data). It 
has been reported that p62 is required for the autophagic 
clearance of bacteria even though it doesn't play a role in 
autophagosome-lysosome fusion (82). Since, p62 is degraded 
along with LC3 through the autophagy-lysosomal pathway 
(83), the enhanced p62 level in UC22-infected macrophages 
indicated that high autophagy induction didn't cause in- 
creased lysosomal degradation and elimination of bacteria 
(unpublished data). The increased level of p62 due to block 

Figure 1. Proposed model of the autophagic pathway in response to S and R type M. abscessus infiltration. After invasion, the bacteria
are contained in endosomes. The R type endosomes are characterized by the presence of multiple bacterial cells in contrast to the S type.
The endosomes fuse with early autophagosomes which later matures into late autophagosomes. The late autophagosomes eventually fuse
with the lysosomes to become autolysosomes in which the bacteria are killed. The R type M. abscessus inhibits lysosomal fusion and
replicate within replicating vacuoles that resemble late autophagosomes. 
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in autophagic pathway was further confirmed by transfecting 
cells with siRNA targeting autophagy-related gene Atg5 
(siAtg), an inhibitor of the autophagic pathway. Thus, it was 
concluded that the R type induces autophagy and inhibits 
autophagy flux in murine macrophages. The decreased co-
localization of LC3 or bacteria with lysosomal markers 
pointed out that the virulent UC22 is not delivered into 
acidified lysosomal compartments where the bacteria can 
be eliminated (unpublished data). Moreover, the intracellular 
survival of UC22 was significantly increased compared to 
the S type suggesting that autophagy plays a crucial role in 
the intracellular survival of UC22 by inducing autophago- 
some formation and preventing autophagy flux thereby 
evading the clearance from host cells. It was reported that 
the the rapamycin-induced autophagy increased intracellular 
survival of M. smegmatis in macrophages (84). However, 
the autophagy induction via starvation or treatment with the 
drug rapamycin contributed to significant killing of intra- 
cellular bacteria in M. bovis bacillus Calmette-Guérin- and 
M. tuberculosis-infected macrophages (43). The virulent 
Brucella abortus was seen distributed within the autophago- 
some by preventing the lysosome-phagosome fusion (85). 
The high virulence of the R type could be considered for 
the elevated autophagy and intracellular survival implying 
interesting links between virulence, autophagy and intra- 
cellular survival. 

Known that the R type M. abscessus induces potent auto- 
phagy response, it would be better to understand whether 
any of the individual molecules of R type has the ability to 
induce autophagy. Lipids are major structural component 
of Mycobacteria (86) and induce autophagy response (84). 
Lipids isolated from UC22 induced elevated level of auto- 
phagy response compared to that from ATCC 1977, which 
was evidenced by significant increase in LC3 formation in 
UC22 lipid-treated cells (unpublished data). Recently, it has 
been reported that autophagy plays a role in the clearance of 
lipid droplets, thus regulating lipid metabolism in host cells 
(87). The surface-exposed lipids of mycobacteria differ from 
species to species and has a crucial part to play in the patho- 
genesis of M. tuberculosis (88). These lipids are accounted 
as important virulence factors of mycobacteria and they 

play relevant roles during infection via diverse mechanisms. 
Thus, it is possible that the loss of GPLs in UC22 could 
unmask the lipids which are capable of inducing autophagy, 
thereby allowing elevated response to be observed with intact 
mycobacteria. Further investigation on fractionated lipids 
from UC22 would help in comparing autophagy induction 
with respect to different classes of lipids. In addition, the 
surface-exposed lipids might be inhibiting the autophagy 
response in the S type (80). 

It has been reported that some pathogens induce elevated 
autophagy response as a strategy to evade the immune 
response of the host cells (89). Once inside the cells, the 
pathogens survive and thrive within the replicating vacuoles 
that resemble late autophagosomes by inhibiting lysosomal 
fusion. In contrast, the GPL in the S type M. abscessus in- 
hibits autophagy (80) and the failure to enter the autophagic 
pathway dooms these bacateia to the phagocytic/endocytic 
pathway, resulting in their deposition into phagolysosomes 
for certain death while the R type enters the autophagic 
pathway. The R type phagosomes contain mulple bacteria 
compared to the S type (80) and the R type strain has shown 
increased replication ability at the cellular level (81). It can 
be proposed that the R type might be thriving inside the 
replicating vacuoles which is evidenced by the decreased 
co-localization of LC3 or bacteria and lysosomal markers, 
and the increased intracellular survival in the infected macro- 
phages (unpublished data). However, further studies need to 
be carried out in order to understand the exact mechanisms 
by which the rough type depicts increased autophagy re- 
sponse and intracellular survival. 

 
V. CONCLUSION 

 
Autophagy plays a central role in the clearance of invading 

intracellular pathogens and thus has a part to play in innate 
immunity. The current review discusses autophagy in terms 
of infection and immunity with special emphasis on auto- 
phagy response by M. abscessus. Autophagy has been 
described as a protective mechanism employed by some 
pathogenic bacteria including M. abscessus to evade the 
host cell defences, especially the lysosome. The present 
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knowledge of autophagy in M. abscessus is still in its in- 
fancy and many interesting questions remain unsolved. In 
this review, we have discoursed the current understanding 
of the autophagy response induced by M. abscessus with 
respect to different morphotypes, particularly based on the 
study conducted by our group. M. abscessus depicts varying 
autophagy response and intracellular fate depending on the 
morphotype, with the R type inducing increased autophagic 
response with higher intracellular survival. It seems like 
GPL is a determining factor in the fate of bacteria inside the 
host cells. However, the underlying mechanisms by which 
the rough type favours the autophagic pathway remains to be 
elucidated. Additional studies understanding the interactions 
between mycobacteria and specific molecules with the host 
autophagic machinery would help in devising new anti-
infective strategies against mycobacterial infection and con- 
sequently improving immune response. 
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