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Calcineurin inhibitors, such as cyclosporine and tacrolimus (FK506) are broadly used in organ transplantations as 
immune suppressants. As the calcineurin/NFAT signaling pathway has been identified as critical pathway in the 
interleukin-2 (IL-2) production of T cells, inhibition of T-cell derived IL-2 has been considered the major mechanism of 
calcineurin inhibitors. However, there is increasing evidence that NFAT transcription factor is involved in multiple 
functions of dendritic cells and innate immune cells as well. NFAT expression is not restricted to T cells, and IL-2 can be 
produced in dendritic cells and macrophages through the calcineurin/NFAT pathway. Furthermore, it has been discovered 
that NFAT regulates expressions of several inflammatory mediators, including TNF-α and cyclooxygenase-2 in innate 
immune cells. Therefore, calcineurin inhibitors may have much broader effects in the transplant recipients than previously 
being considered. In this review, we reviewed recently discovered roles of NFAT pathway in dendritic cells and innate 
immune cells, and discussed positive and negative implications of calcineurin inhibitors' broader effects with a focus on 
islet xenotransplantation. 
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I. INTRODUCTION 

 
Nuclear factor of activated T cells (NFAT) was originally 

identified in nuclear extracts of activated T cells as a 
DNA-binding factor which binds to the interleukin-2 (Il2) 
promoter (1). Later, it was shown that inhibition of NFAT 
is the primary mechanism of calcineurin inhibitors, including 
cyclosporine and FK506 (tacrolimus) (2, 3). These potent 
immune suppressants revolutionized allogeneic organ trans- 

plantations, dramatically raising 5-year survival rates of 
allografts since the introduction of cyclosporine into clinical 
practice. Before recent discoveries, inhibition of NFAT-
mediated IL-2 production in T cells had been considered 
the principal mechanism of action for the calcineurin in- 
hibitors. However, despite its name, the expression of NFAT 
is not limited to T cells. It has been shown that NFAT is 
expressed by almost every cell type, including other cells 
of the immune system (4~8). Due to the recent discoveries, 
it is now clear that NFAT has important functions in cells 
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of the innate immune system (9). 
During the past two decades, significant progress has 

been made in the field of xenotransplantation. Especially, 
successful long-term survival results have been achieved in 
pre-clinical pig-to-non-human primate islet xenotransplan- 
tation (10). Due to successful results in pre-clinical studies, 
it seems that clinical trials of islet xenotransplantation may 
take place within a few years (11, 12). Therefore, trans- 
plantation of islets is likely to be the first introduction of 
xenotransplantation into clinic, thereby providing an ultimate 
solution to the problem of donor organ supply for curing 
Type I diabetes. 

Though the acute rejection of xenogeneic islets is pri- 
marily a T cell-dependent process (13), regulations of the 
innate immunity may bring beneficial effects for achieving 
long-term graft acceptance in islet xenotransplantation. In 
this review we overview the actions of calcineurin/NFAT 
inhibitors in T cells and innate immune cells, and discuss 
its implications in islet xenotransplantation. 

 

 
II. The Classical Calcineurin/NFAT Signaling 

Pathway in T Cells 
 
The classical calcineurin/NFAT signaling pathway in T 

cells and its inhibition by calcineurin inhibitors can be 
summarized as follows (Fig. 1). Upon antigen binding to a 
T cell receptor (TCR), cytosolic phospholipase C-γ (PLC- 
γ) is recruited to the plasma membrane and becomes 
activated. Activated PLC-γ catalyzes the hydrolysis of the 
plasma membrane phospholipid phosphatidylinositol 4,5-
bisphosphate (PIP2) into inositol-1,4,5-triphosphate (IP3) 
and diacylglycerol (DAG). IP3 then binds to specific IP3 
receptors on endoplasmic reticulum and results in Ca2+ 
release from endoplasmic reticulum Ca2+ stores into the 
cytoplasm. The depletion of endoplasmic reticulum Ca2+ is 
sensed by an endoplasmic reticulum membrane protein called 
stromal interacting molecule 1 (STIM1), which triggers 
opening of plasma membrane Ca2+ release-activated Ca2+ 
(CRAC) channels. Subsequently, influx of extracellular Ca2+ 

Figure 1. The classical calcienruin/NFAT signaling pathway in T cells 
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further increases the cytosolic Ca2+ concentration. Cytosolic 
free Ca2+ then binds to a Ca2+-dependent regulatory protein 
called calmodulin, and these Ca2+-calmodulin complexes can 
activate a protein serine/threonine phosphatase called calci- 
neurin. The activated calcineurin dephoshorylates phosho-
serines in NFAT, thereby exposing a nuclear localization 
signal that permits NFAT to translocate from the cytoplasm 
into the nucleus. Inside the nucleus, NFAT proteins interact 
with multiple transcriptional partners to assemble active 
transcription complexes. In TCR signaling, NFAT cooperates 
with AP-1 and induces transcription of IL-2 and other cyto- 
kine genes (7, 8). 

In fact, the mechanism of NFAT activation was discovered 
indirectly by mechanism studies of the calcineurin inhibi- 
tors, cyclosporine and tacrolimus (2, 3). Cyclosporine binds 
to a cellular protein called cyclophilin. The cyclosporine-
cyclophilin complex binds to inhibit the enzymatic activity 
of the calcineurin, thereby disrupting the dephosphorylation 
and nuclear translocation of NFAT. Tacrolimus (FK506) is 
a widely used calcineurin inhibitor, which binds to its binding 
protein (FKBP), and then the tacrolimus-FKBP complex 
binds calcineurin and inhibits its activities, including the 
NFAT-mediated transcription of IL-2 in T cells, thereby in- 
hibiting T cell proliferation. 

The NFAT family consists of five members: NFAT1, 
NFAT2, NFAT3, NFAT4, and NFAT5 (8). Four of these 
(NFAT1~4) are regulated by intracellular Ca2+ signaling 
and calcineurin. On the other hand, NFAT5 is a tonicity-
responsive protein, and is activated in response to osmotic 
stress (9). 

 
III. Calcineurin/NFAT Signaling Pathway in 

Dendritic Cells and Innate Immune Cells 

1. NFAT-mediated IL-2 production in dendritic cells 
and innate immune cells 

As described above, calcineurin/NFAT signaling induces 
IL-2 production in T cells. Recently, this pathway has also 
been reported to induce IL-2 production in dendritic cells 
(DCs) and innate immune cells. Similar to the pathway 
downstream of the TCR, two signal transduction pathways 

downstream of pattern recognition receptors (PRRs) have 
been characterized in terms of their capacity to induce 
NFAT-mediated IL-2 production in innate immune cells. 
These are the pathways initiated by dectin-1 and TLR4/ 
CD14 in DCs and macrophages. 

Dectin-1 is a carbohydrate receptor which belongs to the 
C-type lectin family, and recognizes β-glucan. Since β-
glucan is a fungal cell wall component, dectin-1 mediates 
the anti-fungal immune response. Goodridge et al. (14) had 
reported the first evidence for NFAT activation, with dectin-1 
stimulation, which is in addition to the previously known 
function of activating NF-κB. Upon β-glucan binding, Src-
family kinase phosphorylates immunoreceptor tyrosin-based 
activation motif (ITAM)-like motif at the intracellular tail 
of dectin-1, thereby creating a docking site for Syk. Recruited 
tyrosine kinase Syk phosphorylates and activates PLC-γ. 
Activated PLC-γ then hydrolyzes PIP2 into IP3 and DAG. 
IP3 induces the endoplasmic reticulum Ca2+ release and 
subsequent calcineurin/NFAT activation, which results in 
IL-2 production in DCs and macrophages (Fig. 2). 

Besides dectin-1, Toll-like receptor 4 (TLR4) and its co-
receptor CD14 had been reported to induce NFAT-mediated 
IL-2 production independently to the canonical MyD88/ 
TRIF pathway (15, 16). Lipopolysaccharide (LPS) engage- 
ment of TLR4/CD14 activates Src-family kinase and PLC-γ. 
Activated PLC-γ then hydrolyzes PIP2 into IP3 and DAG. 
IP3 induces influx of extracellular Ca2+ and subsequent 
calcineurin/NFAT activation, which results in IL-2 production 
in DCs (Fig. 2). 

Although adjacent T cells of adaptive immunity can 
utilize the DC-derived IL-2 as a growth factor, interferon-
γ-producing activity of natural killer (NK) cells and NKT 
cells can also be enhanced by DC-derived IL-2 (17~19). 
Therefore, when calcineurin inhibitors are administered, 
inhibition of NFAT-mediated IL-2 production not only affects 
T-cell mediated adaptive immunity, but also downregulates 
innate immune responses. 

2. NFAT-mediated production of inflammatory medi- 
ators and prolongation of innate immune cells' survival 

There have been reports revealing the role of NFAT in 
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regulating several key modulators of innate immunity, and 
calcineurin inhibitors may suppress innate immune responses 
with IL-2-independent mechanisms. 

Tumor necrosis factor-α (TNF-α) is a prototypic pro-
inflammatory cytokine, and NFAT1 and NFAT2 are critically 
involved in the expression of TNF-α in mast cells and NK 
cells (20, 21). IL-3 and granulocyte-macrophage colony-
stimulating factor (GM-CSF) are required for differentiations 
of myeloid lineage innate immune cells. Furthermore, GM-
CSF regulates the release of neutrophils from the bone 
marrow (22). It had been revealed that NFAT contribute to 
the transcriptions of IL-3 and GM-CSF (21, 23, 24). In 
addition, it has been discovered that NFAT activation 
regulates the induction of cyclooxygenase-2 (COX-2) (14), 
which is required for the production of key inflammatory 
mediators including prostaglandins. Besides, NFAT trans- 
criptionally controls Ptges1 that codes a protein called 
microsomal prostaglandin E synthase 1 (mPGES-1), a key 

enzyme in PGE2 biosynthesis (25). Indeed, it had been 
proven that cyclosporine abolished COX-2 upregulation and 
PGE2 release in human neutrophils (26). Taken as a whole, 
inflammatory response can be profoundly decreased by the 
calcineurin inhibitor, and thus has considerable implications 
for the clinic (27). 

Recently, the mechanism of mast cells' prolonged survival 
had been proven to be linked to the NFAT-dependent trans- 
criptional induction of anti-apoptotic Bcl-2 family protein 
A1 (28). Previously reported A1-mediated prolonged survival 
of mast cells on IgE crosslinking (29) was abrogated by 
inhibition of calcineurin/NFAT by cyclosporine (28). In 
addition, anti-apoptotic functions of A1 had previously been 
reported in macrophages and neutrophils (30~32). There- 
fore, additional immune suppressive function of calcineurin 
inhibitors by inhibiting prolonged survival of innate immune 
cells is anticipated in organ transplant recipients. 
  

Figure 2. NFAT-mediated IL-2 production in dendritic cells and macrophages 
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IV. Positive Implications in Clinical Islet 

Transplantation 

1. NFAT-mediated cytokines targeted in clinical islet 
transplantation (IL-2 and TNF-α) 

In 2000, Shapiro et al. (33) reported successful clinical 
islet allotransplantation with the Edmonton protocol, and it 
became a standard immune suppression regimen. Tacrolimus 
was included as the calcineurin inhibitor, and daclizumab 
was used as an IL-2 receptor antagonist. In addition to the 
well-known suppression of T cell-derived IL-2, suppression 
of DC-mediated IL-2 by tacrolimus might have contributed 
to the potent immune suppression. Recently, several groups 
are conducting clinical trials of islet transplantation to 
improve the immune suppression regimen (34~36). They 
additionally used etanercept, which is a recombinant fusion 
protein of TNF receptor and IgG1 Fc domain (37), and 
functions as a decoy receptor that binds to and sequesters 
TNF-α (38). In addition, most of successful pre-clinical 
islet xenotransplantations targeted TNF-α with etanercept 
or adalimumab, an anti-TNF-α monoclonal antibody (39~ 
45). Therefore, aforementioned NFAT-mediated expression 
of TNF-α and its inhibition by calcineurin inhibitors have 

additional positive implication to the importance of TNF-α 
blockade in clinical islet transplantation. 

2. Alleviation of Instant Blood-Mediated Inflammatory 
Reaction (IBMIR) 

Clinical islet transplantation is performed to the liver 
through the portal vein. In this situation, the infused islets 
have direct contact with the blood stream, and results in 
Instant Blood-Mediated Inflammatory Reaction (IBMIR) 
which causes a considerable amount of early islet loss. The 
IBMIR is a multifaceted phenomenon comprising activa- 
tion of the coagulation pathway, complement system, and 
platelets quickly followed by the recruitment and infiltration 
of neutrophils and monocytes (46~48) (Fig. 3). Since 
calcineurin inhibitors suppress NFAT-mediated development 
and release of inflammatory cells, they can reduce the 
recruitment of neutrophils and monocytes and alleviate the 
IBMIR. In addition, suppression of NFAT-mediated TNF-α 
can further decrease the recruitment and activation of neutro- 
phils and monocytes. In other arms of IBMIR, activated 
platelets release a soluble form of CD40 ligand (sCD40L), 
and activate CD40-expressing neutrophils (49). Crist et al. 
had reported that NFAT1 is a key transcriptional regulator 
of CD40L expression in megakaryocytes, the precursors of 

Figure 3. Instant Blood-Mediated Inflammatory Reaction (IBMIR) and NFAT-mediated targets 
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blood platelets, and that biochemical inhibition of NFAT 
activity in megakaryocytes diminishes platelet CD40L (50, 
51). Additionally, since calcineurin inhibitors suppress 
NFAT-mediated expression of COX-2, thromboxane A2 
production and subsequent platelet aggregation can be 
diminished. Furthermore, calcineurin inhibitors including 
cyclosporine inhibit NFAT-mediated expression of tissue 
factor (52), which interacts with coagulation factor VII and 
initiates the coagulation pathway (53). To summarize, calci- 
neurin inhibitors may contribute to alleviation of IBMIR 
by suppressing activations of coagulation pathway, platelets, 
neutrophils and monocytes, thereby minimizing early islet 
loss in clinical islet transplantation. 

 
V. Negative implications of Innate Immune 

Regulation by calcineurin inhibitors 

1. Increased susceptibility to opportunistic infections 

Since calcineurin inhibitors suppress not only T cells 
but also dendritic cells and innate immune cells, potent 
suppression of immune rejection in transplantation could 
be anticipated. However, additional suppression of innate 
immune cells may elevate susceptibility to opportunistic in- 
fections in the recipients. Indeed, correlation between intense 
NFAT suppression and recurrent infections in cyclosporine-
treated patients has been reported (54). Recent discoveries 
of calicineurin/NFAT signaling pathway activation down- 
stream of pattern recognition receptors (PRRs) may explain 
the greater susceptibility of opportunistic infections (27, 
55). The fact that conditional deletion of calcineurin in 
neutrophils decreased resistance to infection with Candida 
albicans in mice suggests the importance of NFAT-mediated 
innate immune responses (56). In addition to aforemen- 
tioned dectin-1 and CD14/TLR4, expression of another 
PRR nucleotide-binding oligomerization domain 1 (Nod1) 
and neutrophil phagocytic killing activity was significantly 
reduced in cyclosporine-treated mice (57). These interactions 
between calcineurin/NFAT signaling pathway and PRRs 
may explain the increased susceptibility to opportunistic 
fungal or bacterial infections in transplant recipients treated 
with calicneurin inhibitors. 

2. Homeostasis dysregulation with interruption of 
innate immunity 

It is well-known that NFAT is involved in the devel- 
opment of T cell and B cells (58~61). Though the role of 
NFAT in the regulation of hematopoiesis of innate immune 
cells is largely unknown, members of the NFAT family are 
expressed in CD34+ hematopoietic stem cells and their 
differentially regulated expression during the lineage-specific 
differentiation of myeloid cells have been reported (62, 63). 
Recently, Fric et al. revealed that NFAT is a potent negative 
regulator of myeloid cell development (64). Therefore, 
calcineurin inhibitors may disrupt the hematopoiesis and 
homeostasis of the innate immune cells. 

Since soluble mediators of innate immunity do not dis- 
criminate between the host and the graft, immune responses 
against transplanted grafts may provoke host tissue damage. 
Anti-inflammatory cytokine IL-10 has a role in regenerative 
healing, and its expression can be upregulated through 
calcineurin/NFAT pathway (14, 56, 65). Therefore, calci- 
neurin inhibitors may interrupt homeostatic healing of host 
tissue damage in the graft recipients. 

3. Unfavorable effects of calcineurin inhibitors on 
regulatory T cells 

Recently, Shin et al. reported long term survival (167 ~ 
>603 days) of pig islet xenografts in non-human primates 
with infusion of autologous regulatory T cells in conjunction 
with other immune suppressants (44). Regulatory T cells 
can suppress diverse immune responses, and have physio- 
logical functions in self-tolerance. Notably, the induction of 
regulatory T cells may induce graft-specific tolerance in 
transplant recipients (66). 

Regulatory T cells have higher dependence on IL-2 than 
effector T cells for their maintenance (67~69). As men- 
tioned earlier, calcineurin/NFAT signaling is required for 
the expression of not only T cell-derived IL-2 but also DC-
derived IL-2. Therefore, calcineurin inhibitors may not be 
beneficial in terms of regulatory T cell maintenance. Foxp3 
is a lineage-defining transcription factor of CD4+ regulatory 
T cells, and has crucial roles for the suppressive function of 
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these cells. NFAT interact with Foxp3 as a transcriptional 
partner (70~73), and NFAT-Foxp3 transcriptional complex 
induces the expression of IL-2 receptor α chain (CD25) 
and cytotoxic T lymphocyte antigen 4 (CTLA-4) (71), which 
are involved in the suppressive function. In addition, it has 
been reported that NFAT was essential for the peripheral 
conversion of CD4+Foxp3- T cells to CD4+Foxp3+ regu- 
latory T cells (74), and the Foxp3 induction was completely 
blocked by cyclosporine (75). 

4. Unfavorable effects of calcineurin inhibitors on 
neovascularization 

In contrast to transplantation of vascularized solid organs, 
transplantation of islets requires neovascularization to the 
islet cells for engraftment. It has recently been shown that 
NFAT regulates the expression of hypoxia-inducible factor 1α 
(HIF-1α) in mast cells (76). HIF-1α is critical for adaptation 
to oxygen deficit and it regulates angiogenesis (77). PGE2 
and vascular endothelial growth factor (VEGF) stimulate 
endothelial cell proliferation, migration and, eventually, neo- 
vascularization. However, this angiogenesis had been shown 
to be inhibited by cyclosporine (78). As described earlier, 
NFAT regulates PGE2 biosynthesis. In addition, engagement 
of VEGF receptors on endothelial cell by VEGF induces 
the expression of additional VEGF and VEGF receptors 
through the calcineurin/NFAT signaling pathway (79). In 
other words, calcineurin inhibitors may have unfavorable 
effects on the neovascularization and engraftment of the 
transplanted islets. 

 
VI. Effects on Beta-cell Function 

 
Islet transplantation aims to supply insulin-producing 

β-cells and normalize blood glucose levels in Type 1 
diabetes patients. To achieve this goal, transplanted β-cells 
have to maintain viability, and produce and secrete insulin. 
In addition, insulin has to be utilized by the target cells, 
including muscle cells. Although the molecular mechanisms 
are not completely understood, calcineurin is involved in 
regulation of replication and survival of β-cells (80), and 
production and secretion of insulin (81, 82). Skeletal muscle 

is the primary site for glucose uptake in response to insulin 
(83), and is composed of a mixture of three myofiber types 
which have variable insulin sensitivity. NFAT has been 
reported to be responsible for the transcriptional activation 
and repression of distinct myosin fibers, thereby increasing 
insulin-sensitive myofibers and decreasing insulin-resistant 
myofibers in the skeletal muscle (84~86). 

New-onset diabetes mellitus after transplantation (NODAT) 
occurs in 15~30% of recipients after renal transplantation 
with immunosuppressive drugs (87~89), and use of calci- 
neurin inhibitor is one of its risk factors (90). Since calcineurin 
/NFAT is involved in above-mentioned functions of β-cells, 
calcineurin inhibitors may induce β-cell death (91), dimin- 
ished insulin production and secretion (81, 92), and impaired 
insulin sensitivity (93, 94). Considering the reversibility 
after withdrawal of the drug (95), impaired insulin secretion 
and insulin resistance seems to be the major mechanisms. 

 
VII. CONCLUSION 

 
Activation of adaptive immunity with T cell-derived 

IL-2 production had been thought as the principal role of 
calcineurin/NFAT. However, it has become evident that 
calcineurin/NFAT has multiple roles in the regulation of 
dendritic cells and innate immune cells. Although calci- 
neurin inhibitors are widely used in clinical transplantations, 
our attention on calcineurin inhibitors has not been extended 
to the recently discovered roles in innate immune system. 
In islet xenotransplantation, intense immune suppression 
covering innate immunity and possible alleviation of IBMIR 
may be beneficial. However, long-term use of calcineurin 
inhibitors may not be favorable due to the possible effects on 
opportunistic infections, disruption of homeostasis, regulatory 
T cells, neovascularization, and β-cell functions. 

The complicated functions of NFAT in various cell 
types are not fully understood. Various cell types do not 
homogenously express the five NFAT isomers, thereby 
varying the effects of calcineurin inhibitors. In addition, the 
NFAT's transcriptional partners such as AP-1 and Foxp3 
are differentially expressed in various cell types, and the 
balance of these cofactors present may result in the different 
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outcomes (27). Although it is complicated, thorough research 
and understanding of the roles of NFAT in diverse immune 
cells is required. Through the improvement in the under- 
standing on the roles of calcineurin/NFAT, calcineurin in- 
hibitors can be utilized more effectively and safely in the 
transplant recipients. 
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