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All xenografts from pigs impose infection risk by porcine endogenous retrovirus (PERV). The purpose of this study 
was to investigate the env constructs with the comparison of the ratio of the competent form to the defective one of env 

in subtypes, PERV-A, PERV-B and PERV-C in different pig breeds. The results of PCR amplification of env represented 

that all env subtypes had more than two defective forms which cannot bind to host cells due to the absence of binding 
regions of env in miniature pigs, SNU and PWG, and farm pig breeds, Duroc, Yorkshire and Landrace. In addition, 

comparing the full sequences with the defective ones in three subtypes demonstrated that the present percentages of env 

sequences in defective PERV-A, PERV-B and PERV-C were approximately 50%, 38~45% and 4~11%, respectively, in 
SNU and PWG pigs whereas PERV-A and PERV-B occupied around 40 to 60% but PERV-C was not detected in farm 

pigs. Quantitative real-time PCR assays with primers and probes targeted to proline-rich region (PRR) of each env subtype 

were done to measure the copy numbers of each env subtype. When the reference was set with copy number of PERV-A, 
the ratio of those of PERV-B and PERV-C to the reference were 1.5 to 6.0 folds high in SNU and PWG pigs while 1.0 

or less in farm pigs. These contradictory results of PERV-C constructs and copy numbers in SNU pigs suggests that 

many truncated or short defective sequences of PERV-C might be present in them. 
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INTRODUCTION 

 

The integrated virus has been regarded as a potential risk 

of infection in the field of xenotransplantation, since the 

existence of porcine endogenous retrovirus (PERV) was 

reported (1). It is still controversial whether PERV could 

impact on human recipient after transplantation (2, 3). 

PERV had the transmission ability to human cell line such 

as human embryonic kidney (HEK) 293 and HeLa and 

primary human cells in vitro (4~6). However, co-culture of 

human cell line and cells from SNU miniature pigs showed 

that the virus was non-replicable and non-productive in 

human cells (7). Also, PERV has not been reported the 

infection to human and non-human primates in vivo (6, 8, 9). 

Nevertheless, PERV could integrate into human genome 

(10) and no one expect the effect of virus after adaptation 

in human genome. 
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PERV can be classed into subtypes, PERV-A, PERV-B 

and PERV-C by their env sequences which determines 

human-tropism (11). Although PERV-C is not human tropic 

and not detected in PK15 cell line (12), the exclusion of 

PERV-C is recommended in xenotransplantation because 

the recombination between PERV-A and PERV-C can result 

in the modification to human tropism (13, 9). The ENV 

glycoprotein is composed of surface (SU) and trans- 

membrane (TM) subunit (14). The specificity among PERV 

types are determined by receptor binding domain (RBD) 

which includes variable region A (VRA), variable region B 

(VRB) and proline-rich region (PRR) (15, 16). This domain 

is important not only in binding to host cells but also in 

determining the characteristics of the types. 

The purpose of this study was to identify the various env 

constructs of PERV-A, PERV-B and PERV-C and compare 

their characteristics in different pig breeds. 

 

MATERIALS AND METHODS 

Animal samples 

Whole blood samples were obtained from 18 SNU 

miniature pigs bred in Centers for Animal Resource 

Development (CARD) in Seoul National University College 

of Medicine and 11 PWG miniature pigs supplied by PWG 

Genetics Pte Ltd. Semen samples from 3 pigs of each farm 

pig breed, Duroc, Yorkshire and Landrace, were taken from 

the Green Cross Corp. in Korea. All animal experiments 

were performed after receiving approval of the Animal 

Care and Use Committee (IACUC: 12-0374-C2A2 (0)) of 

Clinical Research Institute in Seoul National University 

Hospital AAALAC accredited facility and according to the 

National Institutes of Health guidelines. 

Isolation of genomic DNA 

Pig peripheral blood mononuclear cells (PBMCs) were 

isolated by Ficoll-Paque (GE healthcare, Little Chalfont, 

United Kingdom), density-gradient centrifugation of buffy 

coat preparation and stored at -80℃ prior to use. Genomic 

DNA (gDNA) was extracted from PBMCs of SNU and 

PWG pigs and semen of farm pigs using DNA extraction kit 

(Qiagen, Hilden, Germany) according to the manufacturer's 

instructions. The final concentration of all gDNA was from 

1 to 50 ng/μl for both PCR and quantitative real-time PCR 

(qPCR) amplification. 

Table 1. PERV env specific primers and probes used in this study. 

Primer/probe Sequence Amplicon size 
(bp) 

Reference 
(GenBank Acc.. No.)

ENV ABC F 5'-ATGCATCCCACGTTAAGCCG-3'   

ENV A R 5'-TTAGCTTGGAAGGCCTTGGTA-3' 1,965 HQ540592 

ENV B R 5'-CTAGAGGTCGATTTCTCCTTGGCT-3' 1,974 AJ293657 

ENV C R 5'-CTAGCGGCCAGCTTCCCTGC-3' 1,917 AF417227 

ENV A real-time F 5'-GATGGAACCTCCGGTTGCT-3' 

ENV A real-time R 5'-GTTCTTGGATTGGAGGTCCTTG-3' 

ENV A real-time probe JOE-5'-TAGGACCAAATAAGGGTTTG-3'-TAMRA 

68 HQ540592 

ENV B real-time F 5'-TGCCGGTGCCCCAAT-3' 

ENV B real-time R 5'-TGGTAGGAATCAATCCAGTGGTAC-3' 

ENV B real-time probe JOE-5'-ACCTCGCTGCGGCC-3'-TAMRA 

81 AJ293657 

ENV C real-time F 5'-ACCAGGCTCCATTCTAACTATTCG-3' 

ENV C real-time R 5'-CGTATTTGGTCCTATAGCCATTGG-3' 

ENV C real-time probe JOE-5'-CTCAAAATAAACCAGCTGGAG-3'-TAMRA

73 AF417227 
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Sequencing of env subtypes 

Primers for the detection of the whole sequences of 

PERV env were selected in both ends of the gene. The full 

length of env was amplified each type of primers with 

using AccuPower PCR premix (Bioneer, Seoul, Korea). The 

conditions of PCR were 95℃ for 3 min for pre-denaturation 

and then repeated 30 cycles of 95℃ for 30s, annealing at 

55℃ for 30s, and 72℃ for 2 min. The final elongation step 

was done at 72℃ for 5 min. All bands on agarose gel were 

purified using gel extraction kit (Qiagen, Hilden, Germany) 

and then directly sequenced with the respective primers in 

commercially available company). They were aligned by 

Blast and phylogenetically grouped by ProtDist on NCBI 

and NCBS, respectively. 

Primers and labeled probes 

Primer Express 3.0.1 (Applied Biosystems, Foster City, 

CA, USA) for real-time PCR was used to design primer 

and probe set within the consensus sequence of env gene 

from our previous data (GenBank access Nos. HM131061 

- HM131078) and other PERV sequences in Genbank 

database (Table 1). The probe carried a 5' reporter dye, 

4-5-Dichloro carboxyfluorescein (JOE), and a 3' quencher 

dye, 6-carboxytetramethyl-rhodamine (TAMRA). Primers 

and probes were designed not to amplify other subtype 

sequences among the subtypes for the prevention of cross 

amplification. The run method of real-time was 2 min at 

50℃ and 10 min at 95℃ for holding stages, followed by 

40 cycles of 15 sec at 95℃ and 1 min at 60℃. 

DNA standards 

PCR products of approximately 2 kb of PERV-A and 

PERV-B and 1.1 kb of PERV-C were cloned into pCR4-

Figure 1. Amplified profile of env subtypes in miniature pigs (SNU and PWG) and farm pig breeds (Duroc, Yorkshire and Landrace).
Gene amplification was done by PCR with the primers described in Table 1. All the experiments revealed the similar amplification 
patterns and the representative pictures were shown. (M) denotes molecular marker; (A), (B) and (C) denote PERV subtypes A, B and C, 
respectively. 

Figure 2. Schematic diagrams of constructs of PERV A, B and 
C env gene derived from SNU miniature pig. SU, surface; TM, 
transmembrane; RBD, receptor binding domain; VRA, variable 
region a; VRB, variable region b; PRR, proline-rich region; open 
triangle: stop codon. 
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TOPO vector using a TOPO TA cloning kit (Invitrogen, 

Calsbad, CA, USA) for positive target plasmid. To evaluate 

the positive plasmid, qPCR was performed on each positive 

clone using 3 types of primer and probe sets. To determine 

the linear range of amplification, a 10 fold serial dilution of 

env target plasmid ranging from 10 to 1 × 109 copies per 

reaction was examined with the respective primers and 

probe using the TaqMan universal PCR master mix (Applied 

Biosystems, Foster City, CA, USA). 

Quantitation of env subtypes 

To check the integrated PERV env gene, the quantitation 

of target DNA was performed by densitometry for the PCR 

amplicons and by real-time PCR for the absolute copy 

numbers. The density of PCR product of env full-length 

and defective forms on the agarose gel was calculated by 

Image Lap 3.0 (Bio-Rad, Hercules, CA, USA). Absolute 

copy number was calculated from the standard curve using 

primer and probe sets targeted specific region for each type. 

 

 

 

 

RESULTS 

Detection of PERV env subtypes in various pig breeds 

PCR assay was performed to verify the presence of 

subtype-specific sequences in gDNA isolated from PBMC 

of miniature pigs, SNU and PWG, and farm pigs, Duroc, 

Yorkshire and Landrace (Fig. 1). The results of amplification 

showed all pigs have more than two defective forms in 

each type. PERV-A and PERVB-B have similar amplified 

patterns in all pig breeds whereas PERV-C has diverse 

smaller sizes in individual pigs. 

Analysis of env constructs 

To confirm whether the smaller amplicons had genuine 

PERV sequences, nucleotide sequences were determined in 

each size of amplified products. The blast analyses revealed 

that they were defective forms of PERV env. The structure 

of construct contained stop codons in the middle of the 

open reading frame (ORF) and most of defective forms did 

not have some parts of RBD region (Fig. 2). Phylogenetic 

tree showed that PERV-A sequences were well grouped 

Figure 3. Pylogenetic relationship tree using neighbor-joining methods on the nucleotide sequences of complete and defective PERV 
env derived from SNU pigs. 
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irrespective of their sizes, but PERV-B and PERV-C 

sequences were not well demarcated. Smaller sizes of 

PERV-B, 1.3 and 1.0 kb, were grouped into PERV-A (Fig. 

3). Because their sequences were truncated where the place 

to distinguish the subtypes as shown in Fig. 2, grouping of 

sequences was different from expected subtypes. 

Quantitation of the complete and defective forms in 

PERV env 

Sizes of PERV-A constructs were 2.0, 1.3 and 1.0 kb, 

and PERV-B constructs had an additional size of 650 bp, 

while PERV-C constructs consisted of 9 sizes mainly under 

1 kb in SNU and PWG pigs (Fig. 4). The defective forms 

of env in PERV-A and PERV-B constituted over 50% 

compared to whole sequences in SNU and PWG pigs. 

PERV-C also represented almost all the defective forms 

and the full sequences were difficult to detect. PWG pig 

had less than 5% of PERV-C full sequence but less than 

1% in SNU pigs. Among the defective forms of PERV-C, 

construct with 500 bp occupied majority in SNU and PWG 

pigs. 

 

Linear range of amplification of real-time PCR for 

PERV env 

The linear range of real-time PCR assays was determined 

with absolute copy number of the serially diluted amount 

of the standard target env plasmid (Fig. 5). The standard 

curve of the PCR assay was derived from the logarithmic 

input template quantity (copies/μl) of each env subtype 

clones. The detection limits of PERV-A, PERV-B and 

PERV-C in the PRR domain by real-time PCR were 100, 

10 and 100 copies/μl, respectively. 

Quantitation of PERV env subtype 

The comparison of the amplification ratio of the full 

length sequences in three subtypes demonstrated that the 

proportion of PERV-A, PERV-B and PERV-C were approxi- 

mately 50%, 38~45% and 4~11%, respectively, in SNU 

and PWG pigs whereas PERV-A and PERV-B occupied over 

99% and PERV-C was detected below 1% in farm pigs 

(Fig. 6A). On the other hand, the ratio of the copy numbers 

of PERV-B and PERV-C to that of PERV-A was 1.5~1.6 

and 5.0~6.0, respectively, in SNU and PWG pigs while 

there was little amount of PERV-C in farm pigs (Fig. 6B). 

Figure 4. The proportion of the full length sequences and defective ones of env in 18 SNU and 11 PWG miniature pigs. The relative 
amount of each construct was measured by the densitometry of amplified PCR products on agarose gel. Results were shown with mean + 
standard deviation. 
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DISCUSSIONS 

 

These studies demonstrate the analysis of PERV-A, 

PERV-B and PERV-C in miniature and farm pigs. 

Occupations of complete sequences compared to defective 

forms were less than 50% and the defective constructs 

were deleted in the region of binding sites. Even though 

some defective forms have PRR, the coding transcript was 

ended in the binding domain due to many mutations. 

Previous studies of env RBD in C-terminus of SU subunit 

represent the importance of recognition and influence of 

infectivity to human (15) and of critical residues for human 

cell infection showed that the location was within PRR 

(16). These results mean that defective proviruses might 

have lower infectivity to host and not express functional 

proteins properly. 

Analysis of PCR products with densitometry show that 

there was little amount of PERV-C but ratios of individual 

subtypes based on copy numbers of the target genes 

indicate the conflictive outcomes to PCR assay. The ratios 

of PERV-C to all subtypes by PCR assay in this study were 

similar to the reported results of PERV quantitation by 

qPCR in DNA and RNA from transgenic Polish Landrace 

pigs (17). One of some possibilities of contradictory results 

is the inaccuracy of primer sequences used in this study. 

But we selected the conserved sequences in PERV env 

collected from our previous deposited sequence data of 

SNU miniature pigs and recent GenBank data and the 

construct results would be correct. The quantity of PERV-C 

full sequence in farm breeds was not found as the report 

that some pigs such as Landrace were free of PERV-C (18). 

Moreover, the supporting idea for the results was carried 

out that inbreeding compared to wild boar increased the 

Figure 5. Linearity of standard curve of the real-time PCR assays for each env subtype. 
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copy number of PERV integration (19). However, another 

data suggests copy numbers were not related to pig in- 

breeding (20) and according to consensus statement (21), 

inbreeding in SPF strains is indispensable to prevent other 

infectious risks. When the results of genome structure above 

(Fig. 2) were applied to the results of real-time PCR assays 

targeted to env PRR, the defective forms might have not 

been amplified or other defective forms which do not have 

at the end part of env gene could have been amplified in the 

assays. Therefore, we assume that the presence of various 

forms of defective PERV env result in these consequences 

because of the truncated chromosomal mutations in the host. 

To confirm this assumption the further sequence information 

such as the whole genome sequencing should be done in 

the future. 

Nevertheless, defective transcripts need to be examined 

if they have ability to cause oncogenesis especially in 

melanoma and leukemia. Human endogenous retrovirus 

(HERV) is similar to PERV in the terms of its structure and 

property that integrated long times ago to its own host. Rec 

and Np9 of the viral proteins which are derived from the 

deleted sequences in the middle of env gene of HERV type 

K were expressed in host cells and have hazardous potential 

like tumor (22~25). Therefore, the short transcripts of 

PERV env should be examined to exclude a significant risk 

factor as xenotransplantation donor in the future. 

In conclusion, the contradictory results of PERV-C 

constructs and copy numbers in SNU pigs suggests that 

many truncated or short defective sequences of PERV-C 

might be present in them. Further characterization of PERV 

subtypes would give insight in the selection of suitable 

breeds as pig donors for xenotransplantation. 
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