
INTRODUCTION 

The development of next-generation sequencing technologies has 
enabled the study of the gut microbiome. The gut microbiome 
comprises all living organisms that inhabit the human gut. When 
a human being is healthy, the host and microbiome live symbioti-
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Since the times of Rokitansky and Cushing, we have been fascinated by the connections between the gut and the brain. Recent ad-
vances in next-generation sequencing techniques have shown that this relationship is even more complex and integral to our sense of 
self than previously imagined. As these techniques refine our understanding of the abundance and diversity of the gut bacterial micro-
biome, the relationship between the gut and the brain has been redefined. Now, this is understood as a complex symbiotic network 
with bidirectional communication, the gut-brain axis. The implication of this communication involves an intense focus of research on 
a variety of chronic psychiatric, neurological, neurodegenerative, and neuro-oncological diseases. Recently, the gut-brain axis has been 
studied in neurologically ill patients requiring intensive care. Preliminary studies have shown that acute brain injury changes the bac-
terial phenotype from one that is symbiotic with the host human to one that is pathologic, termed the “pathobiome.” This can con-
tribute to nosocomial pneumonia and sepsis. The first studies in neurologically ill patients in the neurointensive care unit (neuroICU) 
demonstrated changes in the gut microbiome between neuroICU patients and healthy matched subjects. Specifically, a decrease in 
short-chain fatty acid-producing bacteria and increase in harmful gut microbes have been associated with mortality and decreased 
function at discharge. Although these preliminary findings are exciting and have opened a new field of research in the complex  neu-
roICU population, there are several limitations and challenges. Further investigation is needed to confirm these correlations and un-
derstand their implications on patients in a complex intensive care environment. 
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cally. In this scenario, the host provides nutrients and an environ-
ment for the bacteria to thrive, and the bacteria supply necessary 
nutrients back to the host [1-3]. This relationship is forged be-
tween the brain via the gut-brain axis: a bidirectional communica-
tion through fecal metabolites such as neurotransmitters and 
short-chain fatty acids (SCFAs), the autonomic nervous system 
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(ANS; vagus nerve), and neuroendocrine pathways [4]. 
Although studies have examined the role of microbiota in a va-

riety of chronic neurological diseases [1-3,5-11], studies on the 
role of the microbiome in patients with acute brain injury are in 
their infancy. Recent studies on the gut microbiome in neurocriti-
cally ill patients needing care in the neurointensive care unit (neu-
roICU) have revealed that the gut microbiome is an important 
factor in disease processes and prognosis of these patients [12-
14]. In this review article, we summarize and introduce the con-
cept of the gut microbiome and disease, the gut-brain axis, and its 
relationship with neurologic diseases in critically ill patients. We 
highlight the possible implications of the gut-brain axis on pa-
tients in the intensive care unit (ICU) and neuroICU and com-
ment on future research areas and their challenges. 

GUT MICROBIOME 

The gut microbiome, often referred to as the forgotten organ, 
comprises the microbes that inhabit the gastrointestinal tract. 
These microbes are more than 10 times as common as the human 
cells in our bodies and constitute over 150 of the genes of our hu-
man genome [4,15]. It is estimated that the adult gut microbiome 
comprises up to 1,000 species, of which Bacteroidetes and Firmic-
utes are the two predominant phylotypes [16,17]. The gut micro-
biome is established early in life and is susceptible to multiple fac-
tors, including diet, ethnicity, and age [18-20]. The gut microbi-
ome and its associated genes and products coexist in a homeostat-
ic ecosystem within their host [20]. 

The functions of the gut microbiome include immune activa-
tion and response modulation, epithelial barrier integrity, nutrient 
absorption and storage, conversion of luminal compounds to me-
tabolites, host-bacterial interactions on the mucosal surface, and 
long-term behaviors and brain process modulation [5,20-24]. 
Since the microbiome plays a critical role in the normal physio-
logical function of the gut, multiple studies have pursued the es-
tablishment of the taxonomic composition and structure of this 
microbiome’s constituents in healthy individuals. However, the 
definition of a “normal” gut microbiome remains inconclusive 
given the high compositional variability of the microbial taxa, 
even within healthy individuals and their family members 
[18,25,26]. However, the genes encoding specific metabolic func-
tions and regulatory pathways are largely conserved [18,20,25, 
27]. 

The disruption of the composition and, therefore, the normal 
function of the microbiome is called dysbiosis. This dysbiosis can 
be the product of many pathological states, but is usually the 
product of antibiotics, dietary changes, or a lack of bacterial diver-

sity [20,28]. Dysbiosis is a crucial aspect of the gut microbiome, 
given that this state increases the host’s susceptibility to the dis-
ease owing to its inability to effectively respond to environmental 
changes [29]. However, whether dysbiosis is a response to or the 
cause of a particular disease state remains uncertain [20,29]. 

Microbiome sequencing 
The development of two specific techniques, 16S ribosomal RNA 
(16S rRNA or 16S rRNA) and whole-genome shotgun sequenc-
ing (WGS) have enabled us to study the microbiome in greater 
detail. Both the techniques are similar and provide complementa-
ry information. The 16S gene sequencing is mostly used in identi-
fying the microbiome’s bacterial composition. The 16S rRNA has 
nine variable regions (V1-V9), which distinguish individual bac-
terial taxa from extracted bacterial DNA. When processed, the 
DNA sample is amplified by polymerase chain reaction and com-
pared to a known bacterial library to identify the lowest taxonom-
ic levels [30]. While WGS is more expensive and demanding, it 
provides data on strain-level resolution and functional capacity, 
characteristics that cannot be obtained with 16S sequencing. In 
WGS, all DNA in a sample are sequenced using next-generation 
sequencing. WGS has some advantages over 16S, including the 
lack of polymerase chain reaction amplification, entire genome 
sequencing, and strain resolution, which allows greater inference 
of the gut microbiome [31]. Conversely, the advantages of 16S in-
clude a lower cost, the avoidance of host DNA contamination, 
and the capability to sequence with lower quantities of genetic 
material [30,31]. After taxonomic assignment, the bacterial com-
position is frequently evaluated in terms of alpha diversity (with-
in-sample) and beta diversity (between-sample). Alpha diversity 
is a measure of the species diversity within a sample. This summa-
rizes its richness and uniformity [32]. Beta diversity describes the 
species diversity between two or more microbial communities in 
different samples. Bioinformatic tools for visualizing and compar-
ing the diversity and abundance of the microbiome are being de-
veloped. Some methodologies can also predict the biological 
functions of specific microbiome taxa [33].  

Metabolomic analysis  
Metabolomic analysis, also known as metabolite or metabolomic 
analysis, refers to the evaluation of metabolites (vitamins, fatty ac-
ids, amino acids, and bile acids) produced or regulated by the gut 
microbiome. In contrast to classic biochemical approaches that 
evaluate single compounds, metabolomic analysis evaluates a 
broader series of metabolites to obtain a holistic understanding of 
the interactions between the microbiome and the condition stud-
ied [34]. Different instruments and software exist for metabolom-

https://doi.org/10.18700/jnc.2200582

Antonio Dono, et al. • Microbiome in the neurocritical care unit



ic analysis, depending on the goal of the study, including liquid 
chromatography with colorimetric array detection, gas chroma-
tography with mass spectrometry, and liquid chromatography-
mass spectrometry. The latter is commonly used because of its 
large biochemical profile in biological samples, especially in gut 
microbiome studies [34,35]. In gut microbiome metabolomic 
analysis, the samples are collected, and small molecules are isolat-
ed from the sample and analyzed using one of the previously 
mentioned techniques. After the collection of data, they have to 
be curated and analyzed using the appropriate software to discov-
er relevant biochemical pathways involved in the gut microbiome 
brain axis [10]. 

GUT MICROBIOME BRAIN AXIS 

Bidirectional communication between the enteric nervous system 
and the central nervous system (CNS) forms a network called the 
gut-brain axis, which is a relatively new but increasingly accepted 
concept [4]. Gut microbiome dysbiosis was initially studied in 
diseases related to the gastrointestinal tract, such as irritable bowel 
syndrome [24]. However, a growing body of evidence reveals that 
gut microbiome dysbiosis has pathophysiological effects on the 
CNS [4,24,36]. Preclinical studies have shown that by using gut 
microbiome manipulation with germ-free, antibiotic-induced de-
pleted, prebiotic/probiotic supplementation, and fecal microbiota 
transplant animal models, changes in the gut microbiome can al-
ter brain signaling and function including neurotransmitter recep-
tor expression, memory dysfunction, alterations in neuron excit-
ability, and others [36-39]. The translation of these preclinical 
studies to human populations has been challenging, given the 
complexity of changes in the human gut microbiome and inter-in-
dividual gut microbiome differences. One approach to studying 
the effects of the gut microbiome on the brain has been to utilize 
brain imaging to correlate microbial ecology with various neural 
networks [5,24]. Manipulation of the gut microbiome using anti-
biotics has shown increased subcortical and frontoparietal brain 
connectivity, as well as improved cognitive function in a small co-
hort of minimal hepatic encephalopathic patients [40]. Although 
preliminary, this suggests that changes in the gut microbiome af-
fect networks in the diseased brain. 

The gut microbiome affects neurological function via multiple 
pathways, including neuroendocrine and immunological path-
ways, whereas the brain affects the composition of the gut micro-
biome via the ANS [24]. The ANS has both central and peripher-
al neurons, which create a brain-gut loop with constant feedback 
from afferent and efferent fibers. In association with the enteric 
nervous system, the ANS can induce changes in the gut that affect 

the gut microbiome, such as gut motility and mucus secretion 
[5,24]. Most communication depends on the vagus nerve. The 
vagus nerve afferent neurons provide signals from several gut lay-
ers to the nucleus tractus solitaries of the brain, which then act as 
an emissary of these gut-derived signals to the brain. On the other 
end, the integrated parasympathetic response is then conducted 
back through the vagus nerve, producing physical and behavioral 
changes [5,41]. Sympathetic innervation through less direct path-
ways primarily serves as the intestinal mucus layer integrity main-
tenance [42]. The sympathetic ANS is affected by bacterial me-
tabolites in germ-free and antibiotic-treated mice. In this scenario, 
the SCFA-producing bacteria have a suppressive effect on sympa-
thetic ascending signaling [43]. 

Another important route through which the gut-brain axis 
communicates is through gut bacteria-derived metabolites. The 
gut microbiome regulates metabolite levels by modulating metab-
olites reactions [23]. SCFA levels have been identified in the cere-
brospinal fluid and brain tissue, and these have been associated 
with numerous CNS diseases [5,10]. SCFAs broadly impact the 
immune response through the regulation of antigen-presenting 
cells and production of interleukin-10, TH-1, and TH-17 produc-
tion [44]. The microbiome also produces and reacts with several 
neurotransmitters including serotonin, norepinephrine, and other 
catecholamines. CNS diseases significantly distort fecal neu-
rotransmitter levels outside the physiological range, creating sys-
temic neurotransmitter change [10]. 

GUT MICROBIOME AND BLOOD-BRAIN 
BARRIER 

The blood-brain barrier (BBB) comprises an endothelial cell tight 
junction network that contributes to maintaining CNS homeosta-
sis [45]. The BBB prevents the diffusion of pathogens and hydro-
philic molecules from the systemic circulation while permitting 
the passage of critical gases (O2 and CO2) and lipid-soluble sub-
stances (glucose) [45]. BBB disruption is a key mechanism of 
worsening neurological disease in acute neurological diseases, in-
cluding traumatic brain injury (TBI) and stroke [46,47]. After the 
initial brain injury, subsequent breakdown of the BBB leads to the 
propagation of injury, secondary brain injury, and worsening of 
clinical outcomes. In both preclinical and clinical settings, in-
creased BBB permeability is a marker of disease progression and a 
therapeutic target [48]. 

Studies have shown that the gut microbiome influences the de-
velopment and maintenance of the BBB tight junctions. Germ-
free mice (mice without normal gut microbiome flora) have re-
duced occludin and claudin-5 expression, key BBB tight junction 
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regulators, resulting in increased BBB permeability [49]. These 
changes started intrauterine and were maintained after birth, 
demonstrating the importance of the gut microbiome in BBB for-
mation and maintenance. Furthermore, gut colonization of germ-
free mice with microbiomes reverses the effects seen in the BBB 
due to the lack of gut microbiome [49]. Recent studies have fur-
ther confirmed the relationship between the BBB and the gut mi-
crobiome, Wen et al. [50] showed that postoperative cognitive 
deficits in mice can be aggravated by the administration of antibi-
otics. Mice that were administered antibiotics showed decreased 
expression of tight junctions, consequently increasing the BBB 
permeability. The BBB alterations could be overturned by the ad-
ministration of Lactobacillus and sodium butyrate [50]. The ef-
fects of gut microbiome composition and the function and per-
meability of the BBB were further tested in adult mammals by Wu 
et al. [51]. Rhesus monkeys treated with oral amoxycillin-clavu-
lanic acid had increased permeability of the BBB, as measured by 
the albumin ratio in the cerebrospinal fluid/serum. This was at-

tributed to the detrimental effect of oral antibiotics on acetic ac-
id-and propionic acid-producing microbiome [51]. Although 
these preclinical findings are exciting given the possibility of BBB 
modulation in several CNS diseases, their translation remains un-
tested. Fig. 1 shows the gut microbiome and BBB modulation ac-
cording to the studies presented. 

GUT-BRAIN MICROBIOME AND CNS 
DISEASES 

Accumulating evidence implicates the gut microbiome in various 
psychiatric, neurological, neurodegenerative, and neuro-oncologi-
cal diseases [1-3,5-11]. However, the level of evidence varies de-
pending on the disease. Some are still in the preliminary stage, 
with limited correlational observations, while others provide 
stronger evidence for a causal role in the disease [5]. The relation-
ship between multiple sclerosis and autism spectrum disorder 
(ASD) and the gut microbiome has been thoroughly investigated 

Fig. 1. Gut microbiome affects the blood-brain barrier. Animal (mice and monkey) studies have shown that the alteration or absence of the 
gut microbiome (germ-free or antibiotic-induced) decreased tight junction (occludin and claudin) expression in the blood-brain barrier by 
an unknown mechanism. This figure was created by authors using BioRender (https://www.BioRender.com).
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in both animals and humans [3,8,52,53]. In ASD, recent studies 
have demonstrated that fecal microbiome transplantation is effec-
tive in improving gastrointestinal and behavioral symptoms [54]. 
Moreover, a placebo-controlled study showed that a casein/glu-
ten-free diet combination, along with prebiotic B-GOS, led to be-
havioral improvement in children with ASD. This was accompa-
nied by a relative increase in the abundance of Bifidobacterium 
longum [55]. A recent study showed a higher abundance of Akker-
mansia muciniphila and Acinetobacter calcoaceticus in fecal samples 
of multiple sclerosis patients [56]. Another recent study showed 
that A. muciniphila and its associated nicotinamide improved 
amyotrophic lateral sclerosis symptoms and gene expression pat-
terns, while Ruminococcus torques and Parabacteroides distasonis 
worsened the amyotrophic lateral sclerosis symptoms [2]. In Alz-
heimer disease, the gut microbiome is related to β-amyloid 
plaques and the pathophysiology of the disease [57]. Other inter-
esting findings have correlated epilepsy and Parkinson disease 
outcomes due to specific microbial-derived metabolites or drug 
metabolism from bacteria [58,59]. Moreover, psychiatric diseases 
as well as neuro-oncological entities have been associated with the 
gut microbiome [5,10,11,60]. In animal models of stroke, several 
studies have shown the role of the gut microbiome through the 
modulation of SCFAs [1,61]. Recent studies have shown that the 
gut microbiome directly impacts the risk of thrombotic events, in-
cluding strokes, through the production of trimethylamine N-ox-
ide (TMAO), a gut microbe-dependent metabolite produced 
from precursors known in Western diets (e.g., choline, phosphati-
dylcholine, carnitine) [62]. TMAO exposure augments intracel-
lular calcium in platelets, with a subsequent increase in thrombo-
sis. This process is dependent on the metabolism of dietary cho-
line and other precursors [62]. Although these studies have 
shown a strong correlation between multiple CNS diseases and 
the gut microbiome, much remains to be discovered, especially 
the causality of the observed changes. 

GUT MICROBIOME IN NEUROCRITICAL 
CARE 

The gut microbiome profile of severely ill patients requiring ICU 
care has only been studied in the last decade. Patients with sys-
temic inflammatory response syndrome with decreased obligate 
anaerobes and increased pathogenic bacteria showed correlation 
with septic complications and mortality [63]. Further research 
has demonstrated that even though the gut microbiome of septic 
and non-septic critically ill patients is highly heterogeneous, it suf-
fers from low diversity, and is typically colonized by pathogenic 
microbes (e.g., Enterobacterales, Staphylococcus, Enterococcus, or 

yeasts) in contrast to a more physiologic gut microbiome [64-66]. 
This loss of the “normal” gut microbiome generates the absence 
of important host metabolism functions [65]. Moreover, an in-
creased dysbiosis, measured by the relationship between the two 
more abundant gut microbiome phyla, Firmicutes and Bacteroides, 
and the Firmicutes: Bacteroides ratio has been observed in a small 
prospective cohort of ICU patients [67]. Another potential bio-
marker of dysbiosis, the gut colonization with Enterococcus [68], 
has been shown to be closely associated with survival when this 
bacterium is identified upon admission to the ICU [68,69]. 

Healthcare-associated infections are one of the many prognos-
tic factors in critically ill patients, including neuroICU patients. 
This can occur in up to 25% of ICU patients and have significant 
effects on morbidity and mortality [70]. Rectal or throat coloni-
zation by pathogenic bacteria increases the risk of further infec-
tion (e.g., pneumonia) with the same pathogen [69,71,72]. In this 
context, the role of the gut microbiome in the development of 
pneumonia has been investigated in animal models [73] as well as 
in the pathogenesis of ICU patients with ventilator-associated 
pneumonia [74]. Dickson et al. [12] showed that the lung micro-
biome is enriched with gut microbes in both mouse models and 
patients with established acute respiratory distress syndrome 
(ARDS). Additionally, their experiments established that lower 
gastrointestinal tract bacteria, rather than the upper respiratory 
tract bacteria, were the culprit of post-sepsis lung infection. Fur-
thermore, Bacteroides were frequently detected in ARDS patients 
and are associated with the intensity of systemic inflammation 
[12]. 

Sepsis, a term used since the time of Hippocrates, has been de-
fined as an infection that provokes life-threatening organ dysfunc-
tion [75] and is a common disease worldwide with major reper-
cussions in morbidity, mortality, quality of life, and medical costs 
for both inpatients and outpatients [76]. The incidence of sepsis 
is estimated to be 288 per 100,000 person-years in hospital-treat-
ed sepsis, whereas hospital mortality is estimated to be 17% for 
sepsis and 26% for severe sepsis [77]. In the neuroICU, sepsis is a 
leading cause of morbidity and mortality [78,79]. Although pop-
ulation studies are scarce, some studies estimate it as 1.4%–12.6% 
of patients admitted to the neuroICU, and it is invariably associat-
ed with worsening prognosis [78,79]. A provocative recent study 
showed that increased bacterial DNA can be identified in the 
brain after sepsis in both murine models and human patients. 
These brain-associated bacteria correlate with neuroinflammation 
and are likely associated with acute brain dysfunction in sepsis 
[13].  

The importance of the gastrointestinal tract in neurological in-
tensive care has been known since the observation of Carl Roki-
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tansky in 1841 and the later classic work of Harvey Cushing re-
garding the relationship between intracranial pressure and gastric 
and proximal duodenal ulcers [80,81]. Other known gastrointes-
tinal syndromes that commonly affect neuroICU patients include 
acute colonic pseudo-obstruction and other motility problems, 
given the severity of neurological illnesses and the use of medica-
tions with gastrointestinal side effects such as opioids and other 
anticholinergic drugs [82]. Despite the known relationship be-
tween neurocritically ill patients and gastrointestinal diseases and 
the well-known gut microbiome brain axis studies in multiple 
neurological diseases, little is known about the gut microbiome in 
the neuroICU population. The first dedicated studies evaluating 
the microbiome of neurocritically ill patients are the initial steps 
toward understanding the role of the gut microbiome in the dis-
ease process and the mechanisms of neurological patients requir-
ing ICU treatment. This understanding is the first step toward the 

identification of possible microbiome modulation that affects 
prognosis. Xu et al. [14] observed a distinct gut microbiome be-
tween neuroICU patients and healthy controls. Alpha diversity 
and the abundance of known SCFA producer bacteria like Rumi-
nococcaceae and Lachnospiraceae were significantly reduced during 
the hospital stay in neurocritically ill patients. Similar to other 
studies on critically ill patients [68], Xu et al. [14] showed that 
neuroICU patients with increased Enterobacteriaceae (family En-
terococcus) during their first week of hospital stay had increased 
6-month mortality after adjustment for multiple factors. More-
over, an association between Enterobacteriaceae and the modified 
Rankin scale score at discharge was noted [14]. Although this 
study represents an important effort to understand the relation-
ship between the gut microbiome and outcomes in neuroICU pa-
tients, it has several limitations, including the lack of data regard-
ing antibiotic utilization as well as the heterogeneity of the patient 

Fig. 2. Gut-brain axis in neurocritically ill patients. We hypothesize that patients with severe brain injury (e.g., traumatic brain injury or 
intraparenchymal hemorrhage), may have dysregulation of the autonomic nervous system (ANS) and hypothalamic-pituitary-adrenal 
(HPA) axis which could lead to immune system depression, increased gut permeability, and decreased motility. These changes result in 
gut microbiome dysbiosis, which facilitates infection and bacterial gut translocation, as well as immunosuppression, thereby predisposing 
individuals to infections and sepsis. An infectious state produces systemic inflammation that promotes blood-brain barrier (BBB) disruption 
and additional brain injury, secondary to inflammation. Additionally, antibiotic treatment against previously mentioned infections promotes 
gut dysbiosis. Another mechanism of BBB disruption leading to additional brain injury are gut-derived metabolite changes that are 
secondary to gut microbiome dysbiosis. IL-10, interleukin-10. This figure was created by authors using BioRender (https://www.BioRender.
com).
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population. A summary of the gut-brain axis relationship in brain 
injury is shown in Fig. 2. 

FUTURE DIRECTION AND CHALLENGES 

The gut microbiome in neuroICU patients is an emerging topic 
of research that requires further investigation. Since research ef-
forts have been performed to elucidate the gut microbiome rela-
tionship in multiple CNS diseases (e.g., stroke, brain tumors, epi-
lepsy, or TBI) and a growing body of evidence has shown that the 
gut microbiome influences common neuroICU comorbidities 
such as ventilator associated pneumonia and sepsis, we foresee 
that this topic will become more relevant with the continuity of 
research efforts. To date, the few published studies have been lim-
ited to assessing correlations, for example, Enterobacteria and 
pneumonia/sepsis; however, future studies should seek to answer 
more questions pertaining to causality, such as whether the eradi-
cation of the pathobiome or restoration of a healthy microbiome 
through gut manipulation (probiotics, prebiotics, fecal trans-
plants) improves morbidity or mortality. 

Addressing these questions can open innovative therapeutic av-
enues for neurocritically ill patients, as established in other diseas-
es such as Clostridium difficile infections [83], or enhance known 
therapies, as shown in the first human clinical trials of fecal trans-
plant to overcome anti-PD-1 (programmed death-ligand 1) resis-
tance in melanoma [84,85]. These and other gut microbiome 

therapeutic strategies have revolutionized our understanding of 
our interactions with the microbiome that inhabits us. 

Some challenges of studying the gut microbiome in neuroICU 
patients are common to gut microbiome studies, such as the lack 
of a “normal” gut microbiome and differences in the gut microbi-
ome associated with diet and customs. However, other challenges 
are specific to the neuroICU population, which include a hetero-
geneous population (TBI, stroke, brain tumors, subarachnoid 
hemorrhages), high usage of antibiotics, different ICU biomes, 
and the difficulty of assessing whether the microbiome changes 
are due to the disease itself, the ICU environment, or medications 
(Fig. 3). 

CONCLUSIONS 

The gut-brain axis is a bidirectional communication through sev-
eral pathways, a symbiotic relationship that can be affected by 
both microbiome changes to pathogens and CNS diseases. The 
role of the gut microbiome in CNS diseases has been actively 
studied, but remains an area of limited knowledge.  
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