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The ultimate goal of regenerative medicine is to replace damaged cells, tissues or whole organs, in order to restore 
their proper function. Stem cell related technologies promise to generate transplants from the patients’ own cells. Novel 
approaches such as blastocyst complementation combined with genome editing techniques open up new perspectives 
for organ replacement therapies. This review summarizes recent advances in the field and highlights the challenges 
that still remain to be addressed.
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Introduction 

  Thousands of people worldwide suffer from end-stage 
diseases, for which the last resort for survival is organ 
transplantation. As available transplants are limited, many 
patients are obliged to wait on long lists, surviving on 
medical procedures that undermine their quality of life 
and often dying of organ failure (1). Even patients who 
have undergone transplantation surgery risk severe com-
plications. Since the transplants originate from different 
donors, the recipients’ immune system attempts to reject 
them. The patients are typically put for the rest of their 
life on immunosuppressive drugs, which cause unwanted 
side effects such as increased likelihood of infections and 

Post-Transplantation Lymphoproliferative Disorders (2).

Stem cells and regenerative medicine
  Transplants generated from the patient’s own cells 
would not only solve the problem of organ shortage, but 
also bypass the complication of incompatibility and tissue 
rejection by the host immune system. Induced Pluripotent 
Stem Cells (iPSCs) hold great promise for regenerative 
medicine, including organ replacement therapies (3, 4). 
iPSCs were discovered only 15 years ago (5, 6) and they 
are now routinely produced from adult somatic cells by 
the forced transient expression of four transcription fac-
tors (OCT4, SOX2, KLF4 and cMYC). They constitute an 
unlimited source of autologous cells that can be differ-
entiated into virtually any cell type and provide im-
munocompatible tissues for transplantation. To this end, 
iPSCs have already been successfully used in animal mod-
els of diabetes, liver injury, myocardial infarction and 
Parkinson’s disease (7-10).
  However, despite the progress that has been made in 
use of iPSCs for cell therapies, generation of trans-
plantable organs has so far met with little success. Organs 
are complex three-dimensional structures, built during 
embryonic development thanks to a series of inductive in-
teractions between different tissues, followed by precisely 
regulated cell division, differentiation and migration. 
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These events cannot be easily recapitulated in vitro. 
Therefore, it is not surprising that efforts to populate syn-
thetic or decellularized organ scaffolds with differentiated 
stem cells have not so far succeeded in producing fully 
grown, fully functional organs, fit to be transplanted into 
host organisms (11). There is instead a growing belief that 
the best, if not the only, system that can recapitulate the 
sequence of events leading to their formation is the em-
bryo itself. Based on this idea over the last decade an in-
creasing number of investigators is trying to produce allo-
geneic (belonging to the same species) and ultimately xen-
ogeneic (belonging to different species) organs in the con-
text of developing intraspecies or interspecies chimeric 
embryos (embryos composed of a mixture of cells that de-
rive from at least two organisms belonging to the same 
or different species). The end goal is to generate personal-
ized human organs for transplantations, using as starting 
material the patient’s iPSCs, in large livestock animals.
  To this end, efforts are being made to use animals as 
hosts for the production of human transplants, by in-
structing their embryos to form the organ in question 
from human cells. Pigs are currently the favorite host due 
to similarities in organ size, anatomy and physiology to 
humans but also because of their easy breeding and rela-
tively large litter. To achieve this objective the method of 
choice is blastocyst complementation. 

Blastocyst Complementation: Advances

The first groundbreaking studies
  In blastocyst complementation a host blastocyst is ge-
netically engineered and lacks a gene that is indispensable 
for the development of the organ of interest. In the host 
embryo this “agenesis” phenotype creates an empty 
“developmental niche”. The mutant blastocysts are in-
jected with wild type pluripotent stem cells belonging to 
a donor from the same or different species. Donor cells 
complement the host embryo, occupy the empty niche and 
form the missing organ. The embryo develops into a chi-
mera composed of a mixture of mutant host and wild type 
donor cells, the organ in question however is formed ex-
clusively by donor cells (12). 
  Blastocyst complementation was first demonstrated 
when wild type mouse embryonic stem cells (mESCs) were 
injected into Rag2 mutant blastocysts that grew into mice 
unable to produce T and B lymphocytes. Donor ESCs de-
veloped successfully into lymphocytes - in fact all B and 
T lymphocytes of the chimeric mice were exclusively de-
rived from these cells (13). It was later shown that wild 
type ESCs injected into Id1/3- blastocysts rescue the car-

diac defect of the mutations by a cell non-autonomous 
mechanism. Indeed a small number of donor cells is suffi-
cient to revert the embryonic lethal phenotype. In this 
case however, since the id1/3 mutations did not produce 
an agenesis phenotype, the heart was chimeric, consisting 
of both host and donor cells (14). 
  In a groundbreaking study, Nakauchi and colleagues 
showed that blastocyst complementation could be applied 
to generate complex three-dimensional organs derived ex-
clusively from donor cells: wild type mouse ESCs or iPSCs 
were injected into Pdx1 mutant blastocysts that develop 
into pancreas-deficient mice. Both ESCs and iPSCs were 
able to colonize the empty developmental niche and pro-
duce a functional pancreas rescuing the lethal phenotype 
of the host mutants. The developed pancreas derived al-
most exclusively from the wild type donor cells. It was also 
shown that mouse Pdx1 mutant blastocysts could be com-
plemented by rat ESCs or iPSCs. The resulting chimeras 
had a functional pancreas consisting almost exclusively of 
rat cells. This confirmed that organs derived from donor 
iPSCs can be generated into a xenogeneic environment 
and paved the way for the production of human trans-
plants by a patient’s iPSCs in large animal embryos (15). 
Subsequently blastocyst complementation successfully 
produced allogeneic pancreases in apancreatic pigs, dem-
onstrating that this principle can also be applied to large 
animals (16). However nerves and vasculature in the allo-
geneic/xenogeneic pancreatic tissue were still composed 
largely of host cells, making these organs unfit for trans-
plantation. Nevertheless, mouse pancreas islets grown into 
a rat host and grafted under the renal capsule of diabetic 
mice, achieved long-term glycaemic control, demonstrat-
ing their suitability for transplantation (17). 

Generation of various tissues and organs via blastocyst 
complementation 
  Since then, numerous studies have been performed us-
ing blastocyst complementation to produce various organs 
with mixed results. Wild type rat ESCs colonize nu- 
mouse blastocysts that lack thymus and form the missing 
organ. The generated thymus is functional and consists 
entirely of rat cells (18). 
  Sall1- mouse blastocysts showing a kidney agenesis phe-
notype can be complemented by mouse ESCs or iPSCs 
and produce the absent organ in an intraspecies chimera. 
Rat stem cells are unable to do the same in an interspecies 
context, however, in the reverse experiment, mouse stem 
cells rescued the anephrogenesis phenotype of Sall1- rat 
embryos generating xenogeneic kidneys. Success was lim-
ited though, as chimeric embryos died upon birth. In a 
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separate study mouse or rat nephron progenitor cells were 
transplanted under the renal capsule of E13.5 mouse em-
bryos and formed kidneys both ex vivo and in vivo. 
However this approach is technically very demanding and 
has not been widely used. Moreover formation of the allo-
geneic/xenogeneic organ takes place ex situ raising ques-
tions about its transplantability. At all events, although 
the generated kidneys were almost exclusively composed 
of donor cells, the collecting tubes, ureter, bladder, blood 
vessels and nerves consisted largely of host cells (19-23). 
  Attempts have also been made to make hearts by blasto-
cyst complementation, however this organ proved even 
more averse to such manipulations. The process of cardio-
genesis is complex, involving several key genes such as 
Mesp1, Tbx5, Nkx2.5 and Gata4, none of which has an 
agenesis phenotype. As a result, efforts to produce a heart 
by complementing blastocysts mutant for the early cardiac 
marker Nkx2.5 led to chimeric organs consisting of both 
host and donor cells (24). 
  Eyes formed by complementing Pax6 mutant blastocysts 
were also chimeric (24). More recently Bama miniature 
pig embryos mutant for MITF and complemented with 
wild type blastomeres developed intact eyes enriched in 
donor cells. In fact almost all the retinal pigmented epi-
thelium cells and corneal epithelial cells of the chimeric 
piglets derived from wild type donor cells (25). 
  Wild type mouse ESCs can also complement Neurog1 
heterozygous mutant blastocysts that develop into mice 
with severe inner ear malformations. In the resulting chi-
meras spiral ganglion neurons of the inner ear consist 
mostly of donor cells. The few complemented Neurog1 ho-
mozygous mutant blastocysts obtained in this study 
showed very low chimerism and thus were not suitable for 
analysis of blastocyst complementation in a homozygous 
mutant context (26).
  More recently attempts were made to produce allogeneic 
mouse lungs by blastocyst complementation. Fgf receptor 
2 was the mutation of choice, however, as the gene is ex-
pressed in various tissues, a conditional knock-out ap-
proach was used in order to restrict deletion of the gene 
in the developing foregut. This approach resulted in the 
generation of allogeneic lung epithelium but not of other 
lung cell types. Conditional Ctnnb1- blastocysts were also 
complemented and formed both lung and trachea epi-
thelium but again no other lung cell types were produced 
(27). Subsequently Fgf10 mutant blastocysts were used 
and these produced allogeneic lungs, with all cell types ex-
cept for nerve cells being derived from donor cells. 
However few chimeras survived and lungs contained also 
host cells, presumably because Fgf10 is a signaling mole-

cule and consequently donor cells non-autonomously res-
cued host cells from the deleterious effect of the mutation. 
This study demonstrated the limitations in using mutated 
genes expressing secreted factors in blastocyst com-
plementation studies (28). Fgf10 mutant blastocysts were 
also used in another study to generate allogeneic thyroids 
that were largely, but not exclusively, derived from donor 
cells (29). An even more recent study used Nkx2-1 mutant 
embryos, which lack pulmonary and thyroid tissues. After 
ESC complementation pulmonary and thyroid structures 
were restored. Respiratory epithelial cell lineages in these 
chimeras were derived almost entirely from wild type do-
nor cells, whereas endothelial, immune, and stromal cells 
were mosaic (30).
  Wild type mouse and pig pluripotent stem cells success-
fully complemented HHEX- mouse and pig embryos re-
spectively to restore normal liver development, although 
it is not clear whether the generated allogeneic organs are 
exclusively derived from donor cells or from a mixture of 
host and donor cells (23, 31). 
  Mice mutant for Runx2, a master transcription factor 
for osteoblastogenesis, fail to form mineralized skeleton 
and bone marrow. Injection of wild type mouse ESCs and 
iPSCs rescues the mutant phenotype. In particular, donor 
cell derived osteoblasts can reconstitute the hematopoietic 
niche in vivo, and above a contribution threshold of ∼40% 
can restore near normal gross skeletal morphology. Similar 
results were obtained when blastocysts, genetically en-
gineered to ablate the osteoblast compartment, were in-
jected with wild type mouse ESCs and iPSCs (32).
  Pig embryos mutant for MYF5, MYOD and MYF6 lack 
native skeletal muscle. When such mutant blastocysts were 
injected with wild type porcine blastomeres, the generated 
intraspecies chimeras were viable and displayed normal 
histology, morphology and function. Human iPSCs also 
complemented the mutant blastocysts with considerable 
efficiency and the chimeric embryos contained humanized 
muscle (33).
  Wild type rat or mouse ESCs can complement rat 
Prdm14 mutant blastocysts (that grow into animals lack-
ing the germline) and generate chimeras producing alloge-
neic or xenogeneic gametes. Germ cells in these chimeric 
animals consist exclusively of donor cells. Interestingly 
these chimeras can be used to generate mutant offspring 
with high efficiency as exemplified in the case of Pax2/ 
Pax8 double mutants that lack both kidneys and ureters 
(as opposed to the Sall1 mutant animals described above, 
lacking only the kidneys). Production of such double 
knock-out animals with traditional Mendelian crosses is 
highly inefficient with only 1/16 of the progeny of double 
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heterozygous mutants being double homozygotes. Instead, 
chimeras produced by complementing Prdm14- blastocysts 
with Pax2/Pax8 double mutant ESCs, do have kidneys but 
all their gametes are Pax2/Pax8 -/-. When two such chi-
meric animals are crossed all their progeny are Pax2/Pax8 
double mutant and show the anephrogenic phenotype 
(34).

Vascularization of generated organs by blastocyst 
complementation
  As mentioned above, most organs produced by blasto-
cyst complementation are vascularized and innervated by 
host tissues, making them unfit for transplantation, since 
the blood vessels and nerves of the transplant will trigger 
an immune response in the recipient, resulting in its 
rejection. To address this issue, attempts have been made 
to generate vasculature in mutant embryos: wild type 
mouse or rat ESCs complemented Flk1- mouse blastocysts 
lacking hematoendothelial lineages and produced alloge-
neic endothelium and blood (but not blood vessel walls) 
(35, 36). Another study used Etv2 mutant mouse blasto-
cysts and generated allogeneic endothelium and blood 
(37). Remarkably Etv2- pig blastocysts were also success-
fully complemented by human iPSCs giving rise to endo-
thelium exclusively derived from donor human cells (23). 
There is now hope that the Etv2 mutation could be com-
bined with mutations in other genes to generate organs 
with reduced immunogenicity. In fact Pdx1/Kdr (Flk1) 
double mutant pig morulae have already been com-
plemented by wild type pig blastomeres to form an alloge-
neic vascularized pancreas (23).

Generation of mutant hosts by gene editing
  Blastocyst complementation in animals other than mice 
depends on fast, easy and reliable methods to knock out 
specific genes in their embryos. Recent advances in gene 
editing techniques have already made this possible. 
TALENs and CRISPR/Cas9 in conjunction with somatic 
cell nuclear transfer or directly in zygotes of rats, pigs and 
sheep are being used to knock out specific genes and gen-
erate the respective organ agenesis phenotypes, allowing 
complementation of the mutant embryos by wild type allo-
geneic or xenogeneic pluripotent stem cells (16, 17, 21-24, 
28, 38, 39). 

Blastocyst Complementation: Challenges

Ethical issues posed by interspecies chimeras 
  Blastocyst complementation studies have raised hopes 
for the generation of personalized human organs in live-

stock animals. Nevertheless, they have also revealed vari-
ous challenges that need to be addressed. One major prob-
lem with considerable ethical ramifications is that wild 
type cells colonize not only the empty developmental ni-
che but also all other body parts including the brain and 
the gonads. This suggested that interspecific chimeras cre-
ated using human PSCs, may exhibit human-like con-
sciousness if a significant number of donor cells end up 
in the host brain, posing serious ethical issues. Moreover, 
there is also the risk of the host animal producing human 
germ cells. In fact donor derived germ cells have been re-
ported in xenogeneic hosts (18). A third issue is the possi-
bility that interspecies chimeras may exhibit human-like 
appearance. Efforts have to be made, therefore, to restrict 
donor cells in tissues that will generate only the missing 
organs. It has been proposed to manipulate injected ESCs 
so as to harbor suicide genes that would kill them as soon 
as they differentiate into an undesired phenotype, however 
this idea has not been further investigated. Instead it has 
been shown that Mixl1-expressing mESCs, complement-
ing apancreatic mouse blastocysts are specifically guided 
to endodermal tissues circumventing the problem of em-
bryo-wide colonization of the host embryo (40). Alternatively 
while Prdm14-/Otx2- mESCs complement mouse Pdx1- 
blastocysts and form functional pancreases they do not 
contribute to either gametes or the brain of the chimeras 
(41). Furthermore mouse endoderm progenitors injected 
into blastocysts engraft preferably into the developing en-
doderm (42). 

Organs refractory to blastocyst complementation
  Another technical barrier is that mutations that inter-
fere with the development of specific organs could also af-
fect other aspects of the host physiology and even have 
deleterious effects, which make their use in blastocyst 
complementation assays impractical. This has been exem-
plified by the attempts to make allogeneic and xenogeneic 
kidneys by complementation of Sall1 mutant blastocysts. 
Newborn chimeric mice have normal-looking kidneys, al-
most exclusively derived from mouse ESCs or iPSCs but 
they die soon after birth. Although the reason is not clear, 
the absence of intragastric milk and the fact that Sall1 is 
expressed not only in nephrogenic tissues but also in the 
brain, suggests that the chimeric pups may not have devel-
oped properly the nerve pathways required for suckling 
function and hence are unable to nurse (19). Recent stud-
ies have used a conditional blastocyst complementation 
approach, which address such complications (20, 27). 
  Furthermore, organs such as the heart are not amenable 
to blastocyst complementation. As there is no single muta-
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tion resulting in an empty cardiac developmental niche, 
the chimera’s heart is a mixture of host and donor cells. 
When blastocysts mutant for the early cardiac marker 
Nkx2.5 were used as hosts, the generated hearts were not 
exclusively formed by, but rather enriched in rat cells (24). 
This happened because Nkx2.5 mutants do form a heart, 
albeit malformed and dysfunctional (43) and as a result 
complementation host cells were not excluded from the 
developing organ. Moreover, the chimeric embryos did not 
survive to term and this may be due to the expression of 
the gene in other tissues as well and therefore its probable 
involvement in other developmental and/or physiological 
processes indispensable for survival.

Inability of human stem cells to colonize blastocysts
  When interspecies chimeras are considered, additional 
challenges arise. In general, chimerism is lower in the in-
terspecies than in the intraspecies context. Its efficiency 
is tissue dependent, as it is different for different organs. 
Moreover, high interspecies chimerism causes abnormal-
ities or even death (44). Human PSCs injected into mouse 
blastocysts, initially localize in the ICM but in subsequent 
stages of the in vitro embryo development they are ex-
cluded from host tissues (45). It has been realized for 
quite some time that mouse and human ESCs derived 
from the Inner Cell Mass of embryos are different and cor-
respond to distinct phases of pluripotency (naive and 
primed respectively) (46-48). Human ESCs are similar 
both morphologically and physiologically to mouse Epiblast 
Stem Cells that are isolated from the post-implantation 
epiblast (49). Successful chimerism requires host and do-
nor cells to be synchronized. For this reason hESCs graft-
ed into the post-implantation mouse epiblast can in-
tegrate, proliferate, migrate and differentiate according to 
their transplantation position (50). Over the last few years, 
different culture conditions have been assessed and differ-
ent pluripotent states (naive, primed and intermediate) 
have been achieved for hESCs in order to maximize inter-
species chimera formation efficiency (51-59). However a 
recent report suggests that even naive human PSCs are in-
herently unfit for chimera formation as, upon dissociation 
and injection into host embryos, they stop dividing and 
undergo premature differentiation (60). On the other 
hand, it has been observed that pluripotent stem cells 
grafted heterochronically in embryos undergo apoptosis 
(61-63). Inhibiting apoptosis increases the efficiency of 
chimera formation in such cases. Indeed, both naïve and 
primed hPSCs overexpressing antiapoptotic genes, con-
tribute to all three germ lines and extraembryonic tissues 
of mouse, rabbit and pig embryos (42, 64, 65). Finally, a 

recent study showed that hESCs in culture are out-
competed by mESCs due to a mechanism involving genes 
related to the NF-κB signaling pathway, suggesting that 
targeting this pathway in human donor cells could over-
come this competition, thereby improving their survival 
and chimerism in xenogeneic embryos (66). 

Xenobarrier to interspecies chimera formation
  Notwithstanding the inherent capability of human stem 
cells to form chimeras, interspecies compared to intra-
species chimerism is much lower. As chimera formation 
between rats and mice is more efficient than between less 
related species but less efficient than intraspecies chimera 
formation, there seems to be an evolutionary aspect to the 
limitations observed in interspecies chimerism: the more 
distant phylogenetically the two species are, the more dif-
ficult it is to participate in chimera formation. Possible 
causes for this “xenobarrier” are different rates of cell pro-
liferation and differentiation, divergent developmental 
programs, varying signaling pathways, incompatibility be-
tween ligands and receptors, and differences in the affinity 
of adhering molecules (67). The fact that humans and pigs 
are in many respects more similar than humans and mice, 
suggests that the xenobarrier between the two former spe-
cies may prove easier to cross. Nevertheless, such an inter-
species barrier does exist and this is why active research 
is currently being conducted between different species in 
order to elucidate its mechanisms and propose possible 
strategies to overcome it (68-71). Interestingly, it was re-
cently reported that deletion of insulin-like growth factor 
1 receptor (Igf1r) in mouse blastocysts significantly facili-
tates their colonization by both mouse and rat donor cells 
resulting in highly chimeric animals (72). This manipu-
lation may also facilitate interspecies chimera formation 
between species evolutionary more divergent such as hu-
mans and pigs. At all events, in order to achieve high de-
grees of interspecies chimerism and adequate generation 
of xenogeneic organs, both optimization of donor pluri-
potent cells has to be accomplished and the interspecies 
barrier has to be overcome. 

Conclusions

  Over the last decade, significant progress has been made 
in the effort to generate xenogeneic organs for trans-
plantation by blastocyst complementation. Recent ad-
vances in genome editing techniques greatly facilitate this 
effort. Nevertheless, considerable challenges still remain 
and need to be addressed before such transplants can be 
routinely produced. Success in this endeavor would solve 
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the problem of transplant shortage and help thousands of 
patients worldwide in need of organ replacement therapies 
to receive the life-saving treatment. It would also provide 
them with autologous grafts resolving the complications of 
tissue incompatibility and rejection. Finally, it would ad-
dress serious social issues, such as organ trafficking, trans-
plant tourism, and transplant commercialism (73). Research 
with interspecies chimeras raises various ethical questions, 
however the benefits to public health are of such im-
portance, that the scientific community has to proceed in 
this new exciting field with transparency and within the 
limits set by reasonable ethical concerns.
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