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Natural killer (NK) cells play key roles in innate and adaptive 
immune defenses.  NK cell responses are mediated by two 
major mechanisms: the direct cytolysis of target cells, and 
immune regulation by production of various cytokines.  Many 
previous reports show that the complex NK cell activation 
process requires de novo gene expression regulated at both 
transcriptional and post-transcriptional levels.  Specialized 
un-translated regions (UTR) of mRNAs are the main mecha-
nisms of post-transcriptional regulation. Analysis of post- 
transcriptional regulation is needed to clearly understand NK 
cell biology and, furthermore, harness the power of NK cells 
for therapeutic aims.  This review summarizes the current un-
derstanding of mRNA metabolism during NK cell activation, 
focusing primarily on post-transcriptional regulation.
[Immune Network 2009;9(4):115-121]

INTRODUCTION

NK cells are large granular lymphocytes involved in pro-

tection against infectious microbial pathogens and tumors. 

They are found throughout the body in both non-lymphoid 

peripheral tissues and lymphoid organs. Unlike B and T lym-

phocytes which express somatically rearranged antigen-spe-

cific receptors, NK cells express receptors to recognize and 

respond to an array of infected or tumorigenic cells (1). 

Decades of work have resulted in a substantial gain in under-

standing of what and how NK cells are regulated before they 

kill target cells, lending important insights into their gene reg-

ulation mechanisms for immune regulation and cytotoxicity 

(Fig. 1).

  NK cells actively respond to environmental changes by reg-

ulating de novo gene expression, which is strictly controlled 

by four-step-expression. Four-step-expression is synthesis and 

degradation of mRNA together with synthesis and degradation 

of the corresponding proteins (2). Fine tuning of synthesis 

and degradation rates is not only essential for maintaining 

protein levels, but also allows for fast and sensitive responses 

to target cells. In contrast to B and T cells, the post-transcrip-

tional mechanisms governing NK cell activation remain poorly 

understood. However, there are some examples of post-tran-

scriptional gene regulation during the trafficking, immune 

synapse formation, cytokine production, and cytolysis steps 

of NK cell responses (Table I). This review focuses on possi-

ble regulatory mechanisms of mRNA stability and translation 

during NK cell activation. 

Urokinase plasminogen activator (uPA) and uPA 
receptor (uPAR)
The uPA system has been shown to play a major role in the 

extravasation and migration of leukocytes into areas of 

inflammation. One unique feature of the uPA system is the 

presence of a specific cellular receptor for uPA, the uPA re-

ceptor (uPAR), which is involved in cell migration and in-

vasion, independent of its role in the proteolytic pathways. 

uPAR has been shown to be involved in cellular adhesion 

by its ability to bind to the extracellular matrix protein 

vitronectin. uPAR also has the capacity to initiate secondary 

signaling pathways through its interactions with integrins, 

thereby promoting cellular movement and migration (3). 

  The regulation of uPA and uPAR expression occurs at a 

post-transcriptional level through mRNABPs that bind to the 

3’-UTR. Heterogeneous nuclear ribonuclear protein C1 

(hnRNP C1) and HuR bind to the uPA 3’-UTR, which leads 

to uPA mRNA stabilization (4). Similarly, hnRNP C1 binds to 

a 110-nucleotide sequence of the uPAR mRNA 3’-UTR, there-

by preventing its degradation (5). Conversely, p53 decreased 
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Table I. Post-transcriptional gene regulation during NK cell activation

Process mRNA Cis-acting element Trans-acting factor Function

Trafficking uPA and uPAR 3'-UTR hnRNP C1/HuR Increase mRNA stability (4)
p53 Decrease mRNA stability (6,7)

Immune synapse MICA and MICB 3'-UTR Viral miRNA Decrease mRNA translation (10)
Cellular miRNAs Decrease mRNA translation (11)

Cytotoxicity Prf1 and GzmB Unknown Unknown Translational control (14)
Cytokine production IFN-γ ARE TTP Decrease mRNA stability (17,18)

GM-CSF ARE hnRNP D and TTP Decrease mRNA stability (23)
HuR Increase mRNA stability (26)

5'- UTR unknown Increase mRNA translation (29,30)
IL-10 ARE P40 hnRNP D Increase mRNA stability (33,34)

hnRNP D Decrease mRNA stability (35)
3'- UTR miR-106a Decrease mRNA translation (35)

TNF-α ARE TTP Decrease mRNA stability (38-41)
HuR Increase mRNA stability (38-41)
TIA-1 and TIAR Decrease mRNA translation (42,43)

MIP-1α 3'- UTR Unknown Decrease mRNA stability (44)

ARE: AU-rich element in the 3'- UTR, miRNA: microRNA, UTR: Un-translated region, uPA: urokinase plasminogen activator, uPAR: uPA 
receptor, hnRNP: heterogeneous nuclear ribonuclear protein, MIP-1α: Macrophage inflammatory protein-1α, TNF: Tumor necrosis 
factor, GM-CSF: Granulocyte-macrophage colony-stimulating factor, TIAR: TIA-related protein, TIA: T-cell restricted intracellular 
antigen, TTP: Tristetraprolin, Prf1: Perforin, GzmB: Granzyme B

Figure 1. The NK cell immune response.
NK cells play a role in the direct 
cytolysis of target cells and immune 
regulation by cytokine production. NK 
cell activation requires de novo gene 
expression regulated at both transcrip-
tional and post-transcriptional levels, 
which are governed by four-step-expres-
sion, specifically the synthesis and 
degradation of mRNA together with 
synthesis and degradation of the 
corresponding proteins. NA: Nucleic 
acids, AA: Amino acids.

both uPA and uPAR mRNA stability by binding to a 

35-nucleotide sequence in the uPA 3’-UTR and a 

37-nucleotide sequence in the uPAR 3’-UTR, resulting in de-

creased cellular expression. p53-deficient (p53−/−) lung car-

cinoma cells express robust levels of cell surface uPA and 

uPAR mRNA, thereby contributing to human airway epithelial 

or lung carcinoma cell viability (6,7).

  A recent study showed that NK cells expressed both uPA 
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and uPAR and that in vitro NK cells employ the uPA system 

following stimulation with IL-2. uPA and uPAR mRNA binding 

proteins (mRNABPs) were also detected in NK cells. Increases 

in uPA and uPAR following IL-2 stimulation, correspond to 

changes in uPA and uPAR mRNA-mRNABP interactions. The 

upregulation of uPA and uPAR may partially explain the in-

creased NK cell invasiveness following IL-2 treatment (8).

NKG2D ligands
An encounter between an immune cell and another host cell 

may result in the generation of an immune synapse, a speci-

alized interface at the cell-cell contact point. Immunological 

synapses (IS), as described by Davis, are contacts between 

two cells, at least one of them being a cell of the immune 

system, such as NK cells, that results in segregation of pro-

teins at the cell-cell interface into micrometer-scale three-di-

mensional domains (9). NK cell activation is controlled by a 

dynamic balance between stimulatory and inhibitory path-

ways that are initiated upon interactions with potential target 

cells (1). NKG2D is one of the best characterized activating 

receptors found on NK and CD8
＋

 T cells. This receptor rec-

ognizes several different ligands (MHC class 1 polypep-

tide-related sequence A/b [MICA/B] and UL16-binding pro-

teins [ULBPs]) induced by cellular stress and infection. 

NKG2D-ligand engagement activates NK cells and drives cyto-

toxicity against the target cells (9).

  MICA and MICB are stress-induced ligands recognized by 

the activating receptor NKG2D. Recently, Mandelboim and 

colleagues reported MICA/B-targeting of viral and cellular 

microRNAs (miRNAs). The miRNA hcmv-miR-UL112 encoded 

by human cytomegalovirus down-regulates MICB expression 

by targeting a specific site in the MICA and MICB 3’-UTRs 

during viral infection. The down-regulation of MICB leads to 

decreased binding of NKG2D and reduced killing by NK 

cells. Notably, this is a novel viral immunoevasion mecha-

nism based on miRNA regulation (10). Furthermore, a group 

of endogenous cellular miRNAs (miR-106b, -20a, -373, -520d, 

and -93) that bound to the MICA and MICB 3’-UTR sequences 

was identified. These miRNAs share the mRNA target site with 

the viral miRNA hcmv-miR-UL112. These miRNAs repress 

MICA/B under normal conditions to maintain their expression 

under a certain threshold and they facilitate acute upregula-

tion of MICA/B during cellular stress (11).

Granzyme B and perforin
When a fully primed NK cell recognizes a target cell, an IS 

is formed between the two cells. Cytotoxic granules within 

the NK cells move toward the synapse, fuse with the plasma 

membrane, and release their contents into the synaptic cleft. 

Perforin then facilitates the delivery of granzymes into the cy-

tosol of the target cell, where a variety of substrates are 

cleaved to initiate cell death (12). Serine protease granzymes 

are key NK cell effector molecules, but their regulation remains 

largely undefined. Granzyme B, the most thoroughly charac-

terized of the granzymes, cleaves a variety of procaspases, BID, 

inhibitor of caspase-activated DNase, and other intracellular 

substrates to initiate classical apoptotic pathways (13). 

  Resting NK cells are minimally cytotoxic against tumor tar-

get cells in vitro. Cytokine-induced in vitro activation of NK 

cells results in potent killing associated with a dramatic in-

crease in granzyme B and perforin, with minimal changes in 

corresponding mRNA abundance. This suggests that resting 

NK cells are “pre-armed” with high amounts of granzyme B 

and perforin mRNA. Both mRNAs are repressed during nor-

mal mRNA translation, but are released by cellular activation 

[14]. Furthermore, it is thought that this unknown mechanism 

is an efficient arming process for cytolytic immune cells, and 

allows for fast and sensitive responses to target cells during 

NK cell activation.

Interferon-γ
IFN-γ has been extensively studied and has been found to 

profoundly affect a variety of immune responses. These in-

clude upregulation of major histocompatibility complex class 

I and II expression, proliferation and differentiation of lym-

phocyte populations, and induction of genes that code for im-

munomodulatory proteins, such as tumor necrosis factor al-

pha (TNFα) and nitric oxide synthase. T and NK cells are 

the primary cellular producers of IFN-γ. In NK cells, IFN-γ 

production is triggered by interactions with target cells, such 

as tumor or virally infected cells, or by a variety of cytokines, 

such as interleukin-2 (IL-2) and IL-12. These cytokines can act 

independently to induce IFN-γ expression. However, togeth-

er they act synergistically to induce large amounts of IFN-γ. 

The kinetics of IFN-γ expression results from both tran-

scription and rapid degradation of IFN-γ mRNA (15). 

  As with many cytokine mRNAs, IFN-γ mRNA contains an 

AU-rich element (ARE) in its 3’-UTR. AREs have been identi-

fied in the 3’-UTR of a variety of labile mRNAs, and are well 

known to lead to decreases in the half-life of corresponding 

target genes. ARE-binding proteins as trans-acting factors in-

clude members of the Hu protein family HuR, hnRNP D 
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(AUF1), tristetraprolin (TTP), the K homology-type splicing 

regulatory protein (KSRP), the T-cell restricted intracellular 

antigen (TIA)-1, and TIA-related protein (TIAR) (16). IFN-γ 

mRNA degradation is mediated by TTP and a 70-nucleotide 

AU-rich sequence in its 3’-UTR. TTP knock-out mice showed 

overexpression of IFN-γ due to stabilization of the IFN-γ 

mRNA, suggesting that TTP plays an important role in turning 

off IFN-γ expression at the appropriated time during an im-

mune response (17,18). Likewise, IFN-α and -β mRNAs 

contain AREs and are subject to mRNA destabilization (19,20).

Granulocyte-macrophage colony-stimulating factor 
(GM-CSF)
Granulocyte-macrophage colony-stimulating factor (GM-CSF) 

is a multifunctional cytokine currently used for the reversal 

of neutropenia associated with bone marrow and haemo-

poietic stem cell transplantation and chemotherapy. GM-CSF 

also modulates the function of differentiated white blood 

cells. In local inflammatory responses, GM-CSF stimulates an-

timicrobial and antitumor effects of macrophages. GM-CSF 

further enhances healing by its actions on fibroblasts and epi-

dermal cells. GM-CSF may enhance antibody dependent cel-

lular cytotoxicity (ADCC) in several cell types and cytotoxicity 

of NK cells. GM-CSF may be useful for inducing or augment-

ing antibody responses to antimicrobial vaccines, to enhance 

killing of intracellular microorganisms, to accelerate epidermal 

and mucosal wound healing, and to stimulate protective im-

munity against tumors (21). In multiple murine models, 

GM-CSF proved to be the most potent immunostimulatory 

molecule (22). 

  Degradation of the ARE-containing GM-CSF mRNA is accel-

erated in vitro by protein fractions enriched for hnRNP D, an 

ARE-specific binding factor (23). hnRNP D is broadly involved 

in mRNA decay (24,25). HuR, a ubiquitously expressed mem-

ber of the Elav family of RNA binding proteins, exhibits spe-

cific affinities for ARE-containing RNA sequences in vitro, 

which correlates with their in vivo decay rates. Overexpres-

sion of HuR enhances the stability of GM-CSF mRNA (26). 

Enzymes involved in all three of these mRNA decay proc-

esses, as well as 5’-to-3’ exonucleolytic decay, include the 

protein TTP and its homolog BRF-1, which bind to GM-CSF 

ARE and activate mRNA decay. The TTP family functions as 

a molecular link between ARE-containing mRNAs and mRNA 

decay machinery by recruiting mRNA decay enzymes. The 

TTP protein family also helps to explain how deadenylation, 

decapping, and exonucleolytic decay can be independently 

activated on ARE-containing mRNAs (27,28).

  Interestingly, the GM-CSF ARE has also been shown to con-

trol translation in vitro. In the absence of a native 5’-UTR, 

the ARE and poly (A) tail act in concert to block GM-CSF 

mRNA translation. Substitutions of different regions of the na-

tive 5'-UTR revealed that the entire sequence was essential 

in maintaining the highest rates of translation. The 5’-UTR is 

highly conserved, suggesting similar regulation in multiple 

species. The 5’-UTR is the dominant element regulating 

GM-CSF mRNA translation, overriding the inhibitory effects of 

the ARE and the poly (A) tail (29,30).

Interleukin-10 (IL-10)
IL-10 has been shown to be anti-inflammatory in many model 

systems. Deregulation of IL-10 leads to various immunological 

diseases, such as cancer, rheumatoid arthritis, asthma, and in-

fectious disorders. Therefore, it is likely that IL-10 expression 

is tightly regulated at the transcriptional and posttranscrip-

tional levels (31). Recently, it has been reported that NK cells 

are the major source of murine IL-10, as compared with help-

er T cells. The inhibitory effect of NK cells are only acquired 

later during infection, coincident with increased IL-10 mRNA 

stability and an enhanced capacity to secrete IL-10 protein. 

This suggests that post-transcriptional regulation of IL-10 

mRNA is involved in the inhibitory function of NK cells. 

However, the detailed molecular mechanisms have yet to be 

elucidated (32). 

  The availability of IL-10 protein is significantly determined 

by post-transcriptional mechanisms. ARE in the 3’-UTR of 

IL-10 are involved in its translational regulation. Adenosine 

receptor ligands have anti-inflammatory effects and modulate 

immune responses by inducing IL-10 production by im-

munostimulated macrophages. Adenosine receptor activation 

acts by relieving the translational repressive effect of the IL-10 

3’-UTR. Adenosine enhanced binding of proteins to a region 

of the IL-10 3’-UTR containing the GUAUUUAUU nonamer. 

During lipopolysaccharide (LPS) stimulation of THP-1 cells, 

the p40 hnRNP D isoform binds to the IL-10 3’-UTR and se-

lectively induces IL-10 expression (33,34). Interaction of AREs 

in the 3’-UTR of IL-10 mRNA with hnRNP D leads to the deg-

radation of IL-10 mRNA (35).

  Moreover, a miRNA, hsa-miR-106a, that regulates IL-10 ex-

pression was reported. hsa-miR-106a directly binds to the 

IL-10 3’-UTR to repress translation. Also, the transcription fac-

tors Sp1 and Egr1 have an important role in hsa-miR-106a 

transcription and, thus, indirectly regulates the expression of 
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IL-10 at the post-transcriptional level (36).

Tumor necrosis factor alpha (TNF-α) 
TNF-α, initially discovered as a result of its antitumor activ-

ity, is a critical component of effective immune surveillance 

and is required for proper proliferation and function of NK 

cells, T cells, B cells, macrophages, and dendritic cells (37). 

Post-transcriptional regulation and stability is important for 

TNF-α expression, as TNF-α mRNA contains an ARE in the 

3’-UTR. Regulation of TNF-α mRNA turnover has been 

shown to be mediated by the trans-acting proteins TTP and 

HuR, which bind the ARE and destabilize or stabilize the tran-

script, respectively (38-41). Among TNF-α ARE-binding pro-

teins, TIA-1 and TIAR act as TNF-α mRNA translational 

silencers. In unstimulated immune cells, TNF-α mRNA is 

translationally repressed and becomes efficiently translated 

upon cellular activation (42,43). 

Macrophage inflammatory protein-1α (MIP-1α) 
MIP-1α, a chemotactic pro-inflammatory cytokine, is also se-

creted by NK cells. MIP-1α is a chemoattractant for mono-

cytes and neutrophils and, thus, plays an important role in 

initiation and control of inflammation. In resting RAM cells, 

MIP-1α mRNA decayed rapidly with a half life of less than 

2 hours. LPS treatment of RAM cells resulted in a dose-de-

pendent increase in MIP-1α mRNA expression. The in-

duction of MIP-1α mRNA by LPS was partially the result of 

mRNA stabilization, as half life increased to over 6 hours (44). 

Although the detailed molecular mechanism has not been de-

fined, ARE-mediated mRNA degradation might be involved in 

the mRNA destabilization of MIP-1α, similar to those of other 

cytokine mRNAs.

CONCLUSION

Each step of NK cell activation is controlled by post-transcrip-

tional gene regulation. Specifically, components of the uPA 

system, NKG2D ligands, and the cytokines IFN-γ, GM-CSF, 

IL-10, TNF-α, and MIP-1α are post-transcriptionally regu-

lated, mainly by mRNA stabilization/destabilization or transla-

tional control. These control mechanisms are not only essen-

tial for maintaining proper protein levels, but also allow for 

fast and sensitive responses of NK cells to target cells. 

  Although the role of noncoding RNAs in immune responses 

is an emerging hot topic, the regulation of NK cell functions 

is poorly understood. Moreover, few studies on post-tran-

scriptional regulation during NK cell development have been 

reported. A better understanding of gene regulation at the 

post-transcriptional level during NK cell differentiation and 

activation may assist in the development of novel NK cell- 

based immunotherapies for major human diseases.
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