
1/17https://immunenetwork.org

ABSTRACT

Tregs have a role in immunological tolerance and immune homeostasis by suppressing 
immune reactions, and its therapeutic potential is critical in autoimmune diseases and 
cancers. There have been multiple studies conducted on Tregs because of their roles in 
immune suppression and therapeutic potential. In tumor immunity, Tregs can promote 
the development and progression of tumors by preventing effective anti-tumor immune 
responses in tumor-bearing hosts. High infiltration of Tregs into tumor tissue results in 
poor survival in various types of cancer patients. Identifying factors specifically expressed 
in Tregs that affect the maintenance of stability and function of Tregs is important for 
understanding cancer pathogenesis and identifying therapeutic targets. Thus, manipulation 
of Tregs is a promising anticancer strategy, but finding markers for Treg-specific depletion 
and controlling these cells require fine-tuning and further research. Here, we discuss the 
role of Tregs in cancer and the development of Treg-targeted therapies to promote cancer 
immunotherapy.
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INTRODUCTION

Tregs have been known to function as suppressors of immune responses to self- or foreign-Ags 
in order to maintain immune homeostasis (1). Tregs are characterized by the expression of a 
master transcription factor, forkhead box P3 (FOXP3), which is critical for Treg differentiation 
and function, including secretion of suppressive cytokines and expression of inhibitory surface 
molecules (1-3). Severe autoimmune-related diseases leading to scurfy phenotype develop in 
mice that have the transcription factor FOXP3 gene deleted, and humans with impaired FOXP3 
suffer from immune-dysregulation, poly-endocrinopathy, enteropathy, and X-linked syndrome 
(IPEX), which is characterized by the development of multiple autoimmune disorders (4). 
Therefore, FOXP3+ Tregs have attracted tremendous interest because of their essential role in 
maintaining immune tolerance and their therapeutic potential.

In cancer, a large population of CD4+FOXP3+ T cells infiltrates into several tumor tissues to 
suppress the effector functions of tumor-specific T cells (5). Therefore, the depletion of Tregs 
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in the tumor microenvironment (TME) leads to anti-tumor effects via the reactivation of 
effector T (Teff ) cells (6). Indeed, in cancer patients, FOXP3+ Tregs migrate into the TME and 
suppress various types of effector lymphocytes, including CD4+ Th cells and CD8+ CTLs (7,8).

Anticancer immunotherapy, especially immune checkpoint inhibitors (ICIs), can reverse the 
effects of immunosuppression and revitalize dysfunctional or “exhausted” CTLs, enabling 
them to attack cancer cells (9,10). mAbs targeting PD-1, PD-L1, and CTLA-4 have exceptional 
clinical efficacy against various types of cancer (11-13). However, the efficacy of ICIs proved 
to be unsatisfactory in most patients, and more effective therapies are required, including 
combination immunotherapy.

Here, we discuss the roles Tregs play in cancer and how cancer immunotherapy can be 
developed by targeting Tregs for immune precision medicine.

ONTOGENIC CLASSIFICATION AND DEVELOPMENT OF 
Tregs
Tregs can be classified into 2 subtypes depending on the site of development (14,15). 
Thymus-derived Tregs (tTregs) comprise the immunosuppressive subpopulation that 
originates from the thymus. tTregs develop by strong interactions between the TCR of 
CD4/CD8 double-positive or CD4 single-positive thymocytes and self-peptide–MHC 
complexes in the thymus, resulting in the suppression of autoimmune reactions directed 
against self-Ags (16,17). Whereas thymic selection leads to differentiation of self-Ag-
specific tTregs, peripheral Tregs (pTregs) induced in peripheral tissues mediate tolerance 
to innocuous foreign Ags not encountered in the thymus (18). Consequently, pTregs 
prevent inflammation directed against innocuous Ags, which are expressed by commensal 
microflora or dietary components. In certain environments, such as a TME, some Teff 
cells turn into FOXP3+ Tregs in the periphery, which are termed induced Tregs (iTregs). 
These different subtypes of Tregs share significant similarities, such as their dependence 
on the activity of the transcription factors FOXP3 and broad complex-tramtrack-bric a 
brac and Cap'n'collar homology 2 (BACH2); however, some distinguishable features 
exist (19-22). tTregs overexpress helios (a member of the Ikaros family of transcription 
factors) and neurophilin1 (a type 1 transmembrane protein), which are involved in the 
immunosuppressive activity and dominant Ag recognition, whereas iTregs frequently lack 
or express less of these proteins(23-25). On the other hand, an intronic FOXP3 cis-regulatory 
element, conserved non-coding sequence 1, harboring SMAD3 binding sites, is necessary for 
pTreg differentiation but is dispensable for tTreg differentiation (26). Additionally, the TCR 
specificity of tTregs and pTregs is distinct in many ways (18,27).

THE SUBTYPE OF Tregs CLASSIFIED BY SUPPRESSIVE 
FUNCTION
Tregs were initially defined as CD4+ T cells with high expression of CD25, an α-subunit of 
IL-2 receptor. However, CD25 is a general marker of T cell activation and not exclusive to 
Tregs, thus emphasizing the need for additional Treg-specific markers. Although FOXP3 
expression is mostly restricted to the Treg population in mice, FOXP3+ T cells in humans 
possess heterogeneous properties in terms of their phenotype and immunosuppressive 
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functions, despite the high expression level of FOXP3 upon TCR stimulation of Teff cells 
(28). CD4+CD25+ Tregs expressing low levels of CD127 (the α-chain of the IL-7 receptor) are 
regarded as functional Tregs with suppressive activities (29,30). However, TCR stimulation of 
naïve T cells transiently induces FOXP3 expression along with the downregulation of CD127. 
Given this fact, CD4+CD25+CD127lo T cells may contain some activated non-Tregs in their 
population. Therefore, the expression levels of CD45RA, a marker of naïve T cells, have been 
previously proposed as a complementary marker, as well as CD25 and FOXP3, for alternative 
classification of Tregs (14,15,31). According to this classification, CD4+CD25+FOXP3+ T cells 
can be categorized into three fractions: naïve Tregs (CD4+CD25loFOXP3loCD45RA+); effector 
Tregs (eTregs) (CD4+CD25hiFOXP3hiCD45RA−); and non-Tregs (CD4+CD25loFOXP3loCD45RA−) 
(Figure 1). Naïve Tregs are separated from the thymus but have not yet been stimulated in 
the periphery, and barely possess any immunosuppressive function. After TCR stimulation, 
naïve Tregs differentiate into eTregs and thus display highly immunosuppressive activities. 
However, FOXP3+ non-Tregs are not immunosuppressive but rather are immunostimulatory, 
providing inflammatory cytokines, such as IFN-γ and IL-17 (31). Therefore, the features 
of these types of CD4+FOXP3+ T cells are closely connected to human autoimmune 
and inflammatory diseases. Specifically, eTregs have been referred to as the dominant 
CD4+FOXP3+ T cell subpopulation in patients with inflammatory diseases (including 
sarcoidosis), whereas FOXP3+ non-Tregs have been implicated as the predominant 
subpopulation for those with autoimmune diseases, such as lupus erythematosus (31).

MECHANISMS OF IMMUNOSUPPRESSION FOR Tregs

Tregs exert their immunosuppressive function through various modes of action. The first 
suppressive mechanism is associated with cytokines, and include the expenditure of IL-2 by 
Tregs with high levels of CD25 expression (32,33), and suppression by inhibitory cytokines 
(such as TGF-β, IL-10, and IL-35) (34-37). Metabolite-related suppressive mechanisms include 
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Naïve Tregs (Fr.1): FOXP3+CD25+CD45RA+ (suppressive) 

eTregs (Fr.2): FOXP3++CD25++CD45RA− (highly suppressive)

Non-Tregs (Fr.3): FOXP3+CD25+CD45RA− (poorly suppressive)
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Figure 1. Classification of human CD4+FOXP3+ T cells. In humans, CD4+FOXP3+ T cells can be classified into three 
subsets: naïve Tregs (Fr.1), eTregs (Fr.2), and non-Tregs (Fr.3). These three fractions can be distinguished based 
on the expression of CD45RA, cell surface markers of naive T cells, and the transcription factor FOXP3. Moreover, 
these subpopulations are functionally different in terms of their suppressive activity. Effector Tregs harbor strong 
immune suppressive activity, but non-Tregs do not possess immune suppressive activity. In the majority of 
cancer, eTregs predominantly infiltrate into tumor tissues. In general, the frequency of eTregs in cancer patients 
is 2~5% in peripheral blood but approximately 10~50% in the tumor tissues. In contrast, naïve Tregs and FOXP3+ 
non-Tregs are insufficient or absent altogether.
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conversion of ATP into adenosine that can prevent optimal T cell activation (38,39), as well as 
the expression of indoleamine 2,3-dioxygenase (IDO) in dendritic cells (DCs), which results 
in T cell exhaustion by depleting amino acids essential for survival (40). Other important 
suppressive mechanisms involving immune checkpoint-related pathways include the 
disruption of Teff cells by the lymphocyte activation gene-3 (LAG-3)-MHC class II interaction, 
the inducible T-cell costimulator (ICOS)-ICOS ligand (ICOSL)-mediated T cell activation, and 
the interaction between PD-1/PD-L1 (41). Impairment of Ag-presenting cell (APC) maturation 
is considered as a crucial mode of action for immune suppression through the binding 
of CTLA-4 expressed in eTregs, which causes downregulation of CD80/86 expression. 
Moreover, APCs are directly eliminated by Fas/Fas ligand, perforin, and granzyme B signaling 
(42). The majority of observations seem to indicate that, CTLA-4-dependent and/or high-
affinity IL-2R-dependent suppression of T cell activity is an especially crucial process for 
immunosuppression by Tregs: mice specifically lacking CTLA-4 in Tregs have impaired Treg-
mediated immunosuppression (43); heterozygous CTLA4 mutations have been described 
in patients with multiple autoimmune symptoms, and are associated with impairments 
in the immunosuppressive activity of Tregs (44,45); treating CTLA-4-immunoglobulin 
fusion protein leads to the conversion of Teff cells into an anergic state (46); high-dose IL-2 
neutralizes Treg-mediated suppression of T cell activation and proliferation in vitro (32,33). 
Through these mechanisms, Tregs can suppress Ag-specific Teff cells.

Treg AND CANCER

Tregs in the TME
The association between Tregs and tumors in the TME has been studied for decades. The 
involvement of Tregs in anti-tumor immunity was initially reported in 1999 (47,48). It is 
demonstrated that anti-CD25 Ab depleting CD4+CD25+ Tregs retarded tumor growth in T 
cell-deficient mice transplanted with CD25+ cell-depleted splenocytes. Tregs accumulate 
at tumor sites and in the peripheral circulation of patients with cancer, and their 
immunosuppressive function, as well as their number, are increased compared to those 
found in healthy donors (47,48). Tregs that have infiltrated into human tumors account for 
10%–50% of CD4+ T cells in tumors, which is more abundant relative to the 2%–5% of CD4+ T 
cells found in the peripheral blood of individuals without cancer. Furthermore, higher levels 
of tumor-infiltrating Tregs and Treg/Teff cell ratio indicate poor prognosis in patients with 
various types of cancers, such as non-small cell lung carcinoma (NSCLC), melanoma, and 
gastric cancer (49,50). The accumulation of Tregs in tumors are well-studied in the previous 
reports, elucidating their ability to effectively migrate into tissue sites depending on the 
expression of multiple chemokine receptors; for example, CXCR5 in Tregs from the lymph 
node of patients with lung cancer (51). C-C motif chemokine receptor (CCR) 4 with CCL12, 
CCR4 with CCL17, CCR10 with CCL28, and CXCR4 with CXCL1 have been reported as other 
chemokine receptors on Tregs with their partner chemokines (51-56). Treg infiltration into 
tumor tissues has been extensively investigated in the context of recent “immune-oncology” 
researches (57,58). These studies confirmed the conspicuous presence of Tregs among 
tumor-infiltrating lymphocytes, especially in tumors harboring large immune cell infiltrates 
(59). Also, based on numerous articles, it is demonstrated that Tregs block antitumor 
immunity, and thus enhance tumor progression, and their presence in the TME is profoundly 
linked with unfavorable prognosis, resulting in short OS (60,61). Notably, Tregs that directly 
interact with the tumor are more essential for the study of immune evasion by the tumor, 
because the peripheral Tregs do not always represent immune-tolerant TME (49). Recently, 
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compelling evidence suggests that colorectal cancer (CRC) abundantly infiltrated with the 
FOXP3hi subset of suppression-competent eTregs lead to poor prognosis, while the presence 
of pro-inflammatory cytokine-secreting CD4+CD45RAloFOXP3lo T cells (non-Tregs) in tumor 
tissues is associated with favorable outcomes (50). Therefore, especially in cancer patients 
with high numbers of tumor-infiltrating Tregs, further analysis needs to be conducted in 
order to distinguish FOXP3+ non-Tregs from FOXP3hi eTregs in tumors. This will help evaluate 
the clinical importance of FOXP3+ cells in tumor tissues. In summary, Tregs, particularly in 
the TME, are a key factor of hindrance in anti-tumor immunity in various types of cancer 
patients, resulting in the initiation of tumor progression or resistance against cancer 
immunotherapy (Figure 2).

Molecular and cellular characteristics of Tregs in the tumor
On the basis of the functional classification of Tregs described above, Tregs in the TME 
is mostly composed of bona fide Treg (eTreg) cells that overexpress immunosuppressive 
molecules including CTLA-4 and T cell immunoreceptor with Ig and ITIM domains (TIGIT), 
which are not expressed much in naïve Tregs (14,62,63). Also, transcriptome analysis on 
human cancer specimens shows that tumor-infiltrating Tregs have high expression levels 
of Treg-activation surface markers, such as glucocorticoid-induced TNFR-related protein 
(GITR; also known as TNFRSF18), lymphocyte-activation gene 3 protein (LAG3), T cell 
immunoglobulin mucin receptor 3 (TIM3; also known as HAVCR2), OX40 (also known 
as TNFRSF4), and ICOS (64). These phenotypes, distinct from peripheral Tregs, indicate 
that Tregs in the TME show potent immunosuppressive activities in terms of function and 
number. One possible mechanism that has been suggested is that proliferating and dying 
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Figure 2. Role of Tregs in immune-evasion of cancer after differentiation from the thymus. Natural Tregs, generated in the thymus, are initially differentiated 
from the thymocytes by using thymic “positive selection” based on the binding affinity of TCR to the self- peptides-MHC complexes expressed on thymic APCs. 
The CD4+ T cells which bind to self-peptide-MHC complexes with the highest affinity are removed through apoptosis, and those that cannot bind at all with the 
complexes will also be removed because of the absence of TCR stimulation. After strong TCR stimulation, these immature precursor cells undergo IL-2-mediated 
signaling, thus expressing the master transcription factor FOXP3, which orchestrates the differentiation of these cells into Tregs. By contrast, immature T cells 
with lower affinity for self-peptide–MHC complexes are also positively selected but differentiate into Teff cells. Even though some Teff cells are auto-reactive, 
Tregs can block the autoimmunity of Teff cells owing to their higher affinity. These immune cells that have departed from the thymus travel through the blood 
vessels and move wherever they are needed. In the tumor microenvironment, especially, Tregs expressing the chemokine receptors, such as CCR4, CCR5, CCR8, 
and CCR10, are recruited to and around the tumors by binding to chemokines including CCL1, CCL5, CCL22, and CCL28 that are secreted from various kinds of 
tumors. Moreover, Tregs constitutively express the IL-2 receptor subunit-α (also known as CD25) that binds to IL-2 with higher affinity, resulting in the depletion 
of IL-2 from their surroundings. This leads to the reduction of the availability of this cytokine to Teff cells. Tregs also constitutively express CTLA-4, a checkpoint 
protein suppressing the immune response, which binds to CD80 and CD86 on APC, thereby transmitting suppressive signals to Teff cells. In addition, Tregs 
secrete cytokines, such as IL-10, IL-35, and TGF-β, which can decrease the activity of APCs and Teff cells and secrete granzymes and perforins that can directly 
kill these cells. Moreover, abundant adenosine is produced by Tregs via nucleotidase activity of CD39 and CD73, which provides immunosuppressive signals to 
Teff cells and APCs through the engagement of adenosine A2AR.
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tumor cells produce a large number of self-Ags, which are recognized by Tregs, thereby 
inducing the activation of Tregs in the TME (65). As part of the mechanism mentioned above, 
whether Tregs recognize Ags exclusively or share Ags with Th cells remains unclear at this 
stage (65,66). Nevertheless, Tregs usually possess a higher binding affinity to TCRs than does 
Teff cells, resulting in the predominant activation of Tregs in the TME, even in the presence 
of competition with Teff cells. Furthermore, tumors can harbor some immature dendritic 
cells, which drive the activation and/or proliferation of Tregs in a TGF-β-dependent manner 
in animal models. In contrast to the abundant animal studies regarding iTregs, the existence 
of TGF-β-iTreg cells in humans have not been elucidated clearly; accordingly, investigations 
on human tumor specimens are crucial to understanding the phenotypes and origins of 
tumor-infiltrating Tregs.

Regulation of tumor Ag-specific T cells by Tregs
Generally, 2 different types of Ags can exist in tumor cells. First, ‘neoantigens’ are non-
self-Ags derived from either oncogenic viral proteins or abnormal self- proteins caused 
by somatic mutations. Second, self-Ags that arise from the aberrant overexpression of 
endogenous proteins are categorized as ‘shared antigens.’ How CD8+ T cells distinguish 
each of these 2 types of Ag for anti-tumor immunity remains unclear. Therefore, the 
different immunosuppressive mechanisms of Tregs against CD8+ T cells specific for shared 
Ags versus neoantigens need to be resolved through further research. Interestingly, in 
some animal models, it is suggested that Tregs select for non-self-Ag specific CD8+ T cells 
harboring high-affinity TCRs by manipulating co-stimulatory signaling (67). In particular, 
CD8+ T cells targeting self-Ags are more susceptible to Tregs due to the APCs that provide 
limited co-stimulatory signals (68). By contrast, non-self-specific CD8+ T cells are resistant 
to suppression by Tregs in humans (68). These results demonstrate that CD8+ T cells 
specific for neoantigens are more resistant to Treg-mediated immunosuppression, and 
given this fact, tumors that express shared Ags can serve as more vulnerable targets for 
cancer immunotherapy.

TARGETING Tregs FOR CANCER IMMUNOTHERAPY

Tregs, which express the transcription factor FOXP3, are indispensable for immunological 
self-tolerance and immune homeostasis. They also disturb tumor immunity and can, 
therefore, be targeted to elicit an anti-tumor immune response by depleting them or 
diminishing their suppressive capabilities (69).

FOXP3, a well-characterized Treg-specific marker and the key phenotype of Tregs to function 
as suppressive cells, is a transcription factor expressed in the nucleus and is therefore hard to 
detect for clinical use.

Therapies targeting Tregs are not likely to be effective against all types of tumors. For 
example, Treg depletion in animal models led to the regression of tumors from certain cell 
lines, such as RL-male1 or MethA cells, but did not in other cell lines like AKSL2 or RL-
female8 cells (70).

Thus, the identification of novel and specific biomarkers that distinguish Tregs from other 
cells in the TME is essential for increasing the possibility of successfully developing effective 
cancer therapies targeting Tregs.
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Specific surface molecules on Tregs
Depletion of Tregs or attenuation of their suppressive activity can enhance tumor immunity. 
Tregs in the TME reveal several cell surface markers, including CD25, CTLA-4, GITR, OX40, 
ICOS, PD-1, LAG3, TIM3, TIGIT, CCR4, folate receptor (FR) 4 (71) and CD15s (72), and 
specific mAbs for these cell surface marker can be used to deplete Tregs or hinder their 
function (Table 1).

CD25
Several studies show that the removal of CD25+CD4+Tregs by anti-CD25 mAb or toxin-
conjugated anti-IL-2 (Denileukin diftitox) facilitates the activation of Teff cells, which greatly 
inhibit tumor growth in rodents (47,48,73,74). Treg depletion using an anti-CD25 mAb has 
been evaluated in clinical trials. When patients with breast cancer were vaccinated with various 
tumor-associated peptides followed by a treatment with daclizumab—an anti-CD25 mAb—to 
deplete Tregs, there was robust T cell priming with prolonged stable disease for 6 out of 10 
patients and a median progression-free survival of 4.8 months (75). By contrast, another study 
showed that the administration of daclizumab depleted Teff cells as well as Tregs in patients 
with melanoma, but neither an antitumor immune response nor Ab production was observed 
(76). Because activation of Teff cells induces CD25 expression, Treg depletion by targeting 
CD25 can be accompanied by a deficiency in Teff cells. Thus, anti-CD25 mAb administration 
may lead to limited efficacy in increasing antitumor T cell responses.

CTLA-4
CTLA-4, an immune-checkpoint molecule, is expressed by tumor-infiltrating CD4+ and 
CD8+ Teff cells and FOXP3+CD4+ Tregs (77). The anti-tumor activity of anti-CTLA-4 mAb was 
originally thought to be dependent on the reinvigoration of exhausted Teff cells expressing 
CTLA-4 (78). However, several preclinical studies indicate that the anti-tumor activity of anti-
CTLA-4 mAb is instead dependent on the depletion of CTLA-4-expressing Tregs in the TME 
through Ab-dependent cellular cytotoxicity, thereby increasing the Teff cell to Treg ratio. 
Consequently, disrupting the function of the Fc portion of the Ab completely abrogated the 
anti-tumor activity of the anti-CTLA-4 mAb (79-82). Therefore, further research to address 
the relative roles of CTLA-4 in Teff cells and Tregs in the TME of various cancers is needed.

Co-stimulatory molecules (GITR, OX40, and ICOS)
Co-stimulatory receptors, such as GITR, OX40, and ICOS, highly expressed by Tregs can be 
candidates for Treg depletion and functional modulation.

GITR is expressed at a high level by Tregs but at a low level by resting CD4+ and CD8+ T 
cells, and they play an important role in Treg expansion (83). Activation of GITR signaling 
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Table 1. Ab-drug development status of Treg-targeting therapy
Treg markers Representative drugs Function of Ab Tumor types Development stage
CD25 Daclizumab Depletion Leukemia/lymphoma Phase 2
CTLA-4 Ipilimumab Antagonist Melanoma Commercialized
PD-1 Nivolumab Antagonist Melanoma, lymphoma Commercialized
GITR TRX518 Agonist Melanoma Phase 1
CCR4 Mogamulizumab Antagonist CCR4+ adult T-cell leukemia/lymphoma Commercialized
OX40 PF-04518600 Agonist Advanced malignant cancer Phase 2
ICOS JTX-2011 Agonist Advanced/refractory solid cancer Phase 1/2
LAG3 Sym-2011 Antagonist Solid tumor, lymphoma Phase 1
TIM-3 Sym-023 Antagonist Solid tumor, lymphoma Phase 1
TIGIT BMS-986207 Antagonist Multiple myeloma Phase 1/2
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through an agonistic anti-GITR mAb inhibits the suppression activity of Tregs and induces 
Treg-resistant Teff cells (84). The GITR agonists are now being investigated in patients with 
advanced solid cancer.

OX40 is constitutively expressed by a subset of Tregs, but is also found on Teff cells (85). 
Although OX40-agonists are used to stimulate anti-tumor responses of Teff cells, the effect 
on Tregs in cancer is not well understood. OX40 agonists are being investigated alone or in 
combination with other immunotherapies in patients with solid cancer or melanoma (86).

ICOS is important in Treg function and homeostasis (87,88), and is highly expressed by 
activated Tregs in tumor-infiltrating lymphocyte (TIL) of gastric cancer patients (89). Agonistic 
anti-ICOS mAbs, like OX40 and GITR agonists, are expected to have a dual-mode of action 
involving activation of Ag-specific CD4+ Teff cells and selective depletion of Tregs (90).

Co-inhibitory molecules (TIGIT, LAG3, and TIM3)
Immune co-inhibitory receptors predominantly expressed by Tregs are also being explored 
as Treg-targeted immunotherapies. TIGIT marks a population of Tregs with an enhanced 
suppressive capacity in the TME (91,92). TIGIT+Tregs have a highly suppressive activity 
and they express more co-inhibitory molecules, such as LAG3, TIM3, and PD-1 compared 
to TIGIT-Tregs (91). In contrast, another study showed that TIGIT expression correlated 
with CD8+ Teff cell exhaustion, and TIGIT blockade increased the production of effector 
cytokines, such as IFN-γ and TNF-α, by CD8+ Teff cells in a Treg-independent manner (93). 
Thus, TIGIT blockade may promote anti-tumor immunity through both Treg dependent and 
independent mechanisms. LAG3 is expressed on TILs, especially on Tregs. Interestingly, 
CD4+CD25+FOXP3−LAG3+ T cell population from colorectal cancer patients produce 
immunosuppressive cytokines, such as IL-10 and TGF-β, and show 50% more suppressive 
activity than FOXP3+ Tregs (94). The humanized LAG3 Ab is under phase I and phase II 
clinical trials in patients with various solid cancers. TIM3 is expressed on activated T cells 
and certain subsets of Tregs and binds to several identified ligands (i.e. galectin-9, HMGB1, 
caecam, phosphatidyl serine) (95,96). The co-inhibitory function of TIM3 is implicated in 
tumor evasion and TIM3+ Tregs have an increased suppressive function (97,98). Co-inhibitory 
receptors such as LAG3, TIM3, and TIGIT seem to offer an advantage as they are dominantly 
overexpressed on tumor-infiltrating Tregs. However, broader studies need to be conducted in 
order to determine their safety and efficacy.

CCR4
Chemokine receptors, which allow Tregs to migrate to the TME site, can be a candidate 
molecule for Treg depletion (99). Tumor-infiltrating macrophages and tumor cells produce 
the CCL22, which chemoattracts Tregs expressing CCR4 (52,100,101). CCR4 is highly 
expressed by eTregs but not by naive Tregs or most Teff cells, except for some Th2 and 
Th17 cells in peripheral blood (102). In vitro or in vivo anti-CCR4 mAb treatment selectively 
depleted eTregs and efficiently induced tumor-specific effector CD4+ and CD8+ T cells (63). 
Additionally, the administration of an anti-CCR4 mAb (mogamulizumab) on advanced solid 
cancer patients significantly reduces eTregs in peripheral blood (70). Additional clinical trials 
are underway with immune checkpoint blockades.

Treg and Immune checkpoint inhibition
Immune checkpoint molecules, including CTLA-4 and PD-1, are highly expressed by activated 
Tregs and Teff cells (49,77). The role of CTLA-4 in Tregs is mentioned above. The role of the 
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inhibitory receptor PD-1 on Teff cells is well established, but its function in Tregs is less clear. 
Tregs in the TME show comparable levels of PD-1 expression with that of Teff cells. Because 
PD-1 signaling in Treg reduces its immunosuppressive activity, PD-1-deficient Tregs might 
potentiate the activation and immunosuppressive function of Tregs (103). Various studies 
reported that the anti-PD-1 mAb, nivolumab, reduced the immune-suppressive activity of 
Tregs (104). However, another research maintains that PD-1 inhibition induced the immune-
suppressive activity mediated by Tregs in some cancer patients (105). Therefore, more 
research is needed to investigate the role of PD-1 in Teff cells and the role of Tregs in the TME.

Treg modulation factor in the TME
Cytokines
The TGF-β and IL-2 signaling pathways are essential to maintain the differentiation and 
survival of Tregs in the thymus and peripheral tissues. The effect of cancer therapy by 
IL-2 blockade is still unclear. In particular, hyperactivation of the TGF-β pathway in the 
TME enhances tumor progression by stimulating angiogenesis and inhibiting innate and 
adaptive anti-tumor immune responses (106). A type I TGF-β receptor serine/threonine 
kinase inhibitor (galunisertib) increased the ratio of CD8+ T cells to Tregs in melanoma 
animal models in a combination treatment with an anti-CTLA-4 mAb (107). In addition, 
a combination therapy of galunisertib with an anti-PD-1 or anti-PD-L1 mAb is currently 
underway in clinical trials (108). Thus, the regulation of TGF-β signaling pathways can be a 
noteworthy candidate for Treg control.

Targeting intracellular signaling in Tregs
PI3K signaling pathway, which is crucial for Treg maintenance and function, is a promising 
target for Treg-directed therapy (109). Inhibitors of PI3K effectively reduced immune 
suppression by Tregs in mouse models. In particular, selective inactivation of PI3Kδ in Tregs 
increases the activity of CD8+ T cells, preventing or slowing tumor development, progression, 
and metastasis (110). Specific ablation of the PI3K-phosphatase and tensin homolog (PTEN)-
mTOR pathway in Tregs impairs mitochondrial fitness, upregulates glycolysis, leads to the 
loss of FOXP3 expression in Tregs, and induces Teff cell activity (111,112). Combination 
treatment of pembrolizumab and PI3Kδ inhibitors is currently being explored at an early 
stage of phase I trial in patients with advanced solid tumors. Also, tyrosine kinase inhibitors, 
including imatinib and dasatinib, which are known to target specific TCR signaling 
molecules, have been shown to reduce Treg survival and function through off-target effects 
(113,114). In the discontinued clinical trial for dasatinib, Treg reduction was observed and 
showed favorable clinical outcomes in patients with chronic myeloid leukemia (113).

CD39 and CD73
Tregs produce extracellular adenosine by the activity of CD39 and CD73 on their cell 
surface. Tregs express high levels of CD39 and CD73 and directly inhibit T cell activation via 
interaction with adenosine A2A receptor (A2AR). Moreover, adenosine increases tolerogenic 
APCs and enhances the immunosuppressive activity of Tregs (115). Therefore, CD39 and 
CD73, which are important for adenosine metabolism, can be promising therapeutic targets.

VEGF signaling
VEGF receptor (VEGFR) 2 plays an important role in tumor angiogenesis, and this signaling 
pathway has been shown to increase the infiltration of Tregs into tumors in animal models 
(116,117). In addition, blockade of VEGF-VEGFR2 signaling has been reported to inhibit tumor 
growth by reducing the accumulation of immunosuppressive cells, including Tregs, myeloid-
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derived suppressor cells, and M2 macrophages in the TME (118). Furthermore, researchers have 
established that treatment of a humanized anti-VEGFR2 mAb, ramucirumab, led to a decrease 
in PD-1 expression in CD8+ T cells and a reduction in eTreg infiltration into the TME (49,119). 
Thus, targeting VEGFR2 molecules expressed by activated Tregs or blocking the VEGF-VEGFR2 
signaling may contribute to cancer therapy through Treg inhibition.

CONCLUSION

Tregs serve as a specialized cell lineage that plays an essential role in the immunological 
tolerance of immune homeostasis through their immune suppressive activity. High levels 
of Treg infiltration in the TME lead to an undesirable prognosis in patients with various 
types of cancers. Depleting Tregs and regulating their function in the TME may be potential 
strategies for cancer therapy. Several Treg-targeted therapies are under investigation, but 
the lack of specific markers for Tregs has limited their clinical application. Since drugs that 
selectively deplete Tregs in the TME of cancer patients have not been developed at present, 
identification of specific targets for disrupting and depleting Tregs is important for the 
success of cancer immunotherapy. In the future, the development of Treg-targeted therapies 
based on the TME's comprehensive immune profiling may lead to new therapies and immune 
precision for individual cancer patients.
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