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ABSTRACT

Viperin is an IFN-stimulated gene (ISG)-encoded protein that was identified in human 
primary macrophages treated with IFN-γ and in human primary fibroblasts infected with 
cytomegalovirus (CMV). This protein plays multiple roles in various cell types. It inhibits 
viral replication, mediates signaling pathways, and regulates cellular metabolism. Recent 
studies have shown that viperin inhibits IFN expression in macrophages, while it enhances 
TLR7 and TLR9-mediated IFN production in plasmacytoid dendritic cells, suggesting that 
viperin can play different roles in activation of the same pathway in different cell types. 
Viperin also controls induction of ISGs in macrophages. However, the effect of viperin on 
induction of ISGs in cell types other than macrophages is unknown. Here, we show that 
viperin differentially induces ISGs in 2 distinct cell types, macrophages and fibroblasts 
isolated from wild type and viperin knockout mice. Unlike in bone marrow-derived 
macrophages (BMDMs), viperin downregulates the expression levels of ISGs such as bone 
marrow stromal cell antigen-2, Isg15, Isg54, myxovirus resistance dynamin like GTPase 2, 
and guanylate binding protein 2 in murine embryonic fibroblasts (MEFs) treated with type I 
or II IFN. However, viperin upregulates expression of these ISGs in both BMDMs and MEFs 
stimulated with polyinosinic-polycytidylic acid or CpG DNA and infected with murine CMV. 
The efficiency of viral entry is inversely proportional to the expression levels of ISGs in both 
cell types. The data indicate that viperin differentially regulates induction of ISGs in a cell 
type-dependent manner, which might provide different innate immune responses in distinct 
cell types against infections.
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INTRODUCTION

The IFN response is the first line of host defense against diverse pathogens. Pattern-
recognition receptors such as TLRs and RIG-I-like receptors recognize infectious agents and 
activate transcription factors, IFN-regulatory factors (IRFs) and NF-κB (1). The transcription 
factors subsequently mediate production of IFNs and pro-inflammatory cytokines. The 
secreted IFNs trigger induction of a large number of IFN-stimulated genes (ISGs) including 
2′5′-oligoadenylate synthetase (Oas), ribonuclease L, IFN-inducible dsRNA-dependent protein 
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kinase (Pkr), myxovirus resistance dynamin like GTPase (Mx), and interferon-stimulated gene 
15 (Isg15) through the JAK- STAT signaling pathway (1,2). The protein products of these ISGs 
play important roles as antipathogenic effector molecules in innate immunity (1,3).

Macrophages are innate immune cells that have functions in phagocytosis, antigen 
presentation, and immunomodulation (4). They can be polarized into 2 different subsets, 
classically activated macrophages (M1) and alternatively activated macrophages (M2) (5). 
M1 macrophages produce pro-inflammatory cytokines and provide a host defense against 
pathogens (6,7). M2 macrophages secrete anti-inflammatory cytokines and have repairing 
function (6,7). It has been reported that IFN responses affect the inflammatory functions of 
macrophages (8,9). Some ISG products expressed in macrophages promote inflammation 
and others inhibit (10-14).

Fibroblasts are ubiquitous mesenchymal cells that play roles in wound healing, antigen 
presentation, and maintenance of homeostasis (15-17). They are also important for immune 
responses. Fibroblasts can initiate inflammation in the presence of invading pathogens. 
They produce many different cytokines including IFNs and modulate extracellular matrix 
components against infectious pathogens (15-17). The ISG products expressed in fibroblasts 
exert their diverse antipathogenic properties (18-20).

Viperin (virus inhibitory protein, endoplasmic reticulum-associated, interferon-inducible) 
was first identified in human primary macrophages stimulated with IFN-γ and in human 
fibroblasts infected with human cytomegalovirus (CMV) (21,22). It is also induced in a 
variety of cells by treatment of type I, II, and III IFNs, ds B-form DNA, the dsRNA analog 
polyinosinic-polycytidylic acid (poly[I:C]), or LPS and infection of a wide range of viruses 
(23). Viperin protein has multiple functions in various cell types including macrophages, 
fibroblasts, dendritic cells, adipocytes, and astrocytes (24-30). This protein exhibits antiviral 
activity against many viruses (25-28), mediates signaling pathways or T cell development 
(29,31), and modulates cellular metabolism (24,30,32). It also plays a pivotal role in activation 
of macrophages, dendritic cells, and T cells (31,33-35). Recent studies have shown that viperin 
is a positive regulator of TLR7- and TLR9-mediated production of type I IFNs in plasmacytoid 
dendritic cells (pDCs) (29), while this protein is a negative regulator of mitochondrial 
antiviral signaling protein (MAVS)-linked IFN-β induction in macrophages (36). It suggests 
that viperin differentially regulates IFN induction in different cell types. Viperin also 
upregulates expression of most ISGs in macrophages in the absence or presence of type I 
IFN (36). Despite the importance of ISG products in innate immunity, the effect of viperin on 
induction of ISGs in cell types other than macrophages has not been examined.

In this study, we show that viperin differentially regulates ISG induction in two distinct 
cell types, macrophages and fibroblasts treated with type I or II IFNs. Viperin upregulates 
ISG expression in bone marrow-derived macrophages (BMDMs) treated with IFNs, while it 
downregulates ISG expression in murine embryonic fibroblasts (MEFs). Interestingly, viperin 
upregulates ISG expression in both BMDMs and MEFs stimulated with poly(I:C), CpG DNA, 
or CMV other than IFNs. The efficiency of viral entry depends on the levels of ISG expression 
in both cell types treated with CMV in the absence or presence of IFNs. Our data indicate 
that viperin differentially regulates ISG induction in a cell type-dependent manner under 
IFNs treatments, and in a stimulus-dependent manner through an IFN signaling pathway. It 
suggests that viperin-mediated differential expression of ISGs might provide different innate 
immune responses in distinct cell types against diverse pathogens.
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MATERIALS AND METHODS

Cells, viruses, antibodies, and reagents
Murine bone marrow cells and MEFs used in the study were isolated from wild type (WT) 
or viperin (Rsad2) knockout (KO) C57BL/6 mice (24,34). MEFs were immortalized by serial 
passages as described previously (24).

The Smith strain of murine cytomegalovirus (MCMV) and monoclonal antibody Croma 101 
(anti-immediate early 1 [IE1]) were kindly provided by Dr. W.J. Britt (University of Alabama 
at Birmingham). Viperin was detected with the monoclonal mouse antibody to viperin (MaP.
VIP) described previously (21,27). The monoclonal mouse anti-ISG15 antibody (Santa Cruz 
Biotechnology, Inc., Dallas, TX, USA), monoclonal rat anti-GRP94 antibody (Enzo Life 
Sciences, Inc., Farmingdale, NY, USA), and horseradish peroxidase-conjugated goat anti-
mouse or anti-rat IgG antibody (Jackson ImmunoResearch Laboratories, West Grove, PA, 
USA) were used. Universal type I IFN (PBL Assay Science, Piscataway, NJ, USA), recombinant 
mouse IFN-γ (R&D systems, Minneapolis, MN, USA), poly(I:C) (InvivoGen, San Diego, 
CA, USA), CpG DNA (Enzo Life Sciences, Inc.), and Lipofectamine 2000 (Thermo Fisher 
Scientific, Waltham, MA, USA) were also used.

Mouse M-CSF was stably expressed in CHO cells and the culture supernatants containing the 
secreted M-CSF were used for generation of BMDMs as described previously (37).

Generation of BMDMs
To generate BMDMs, the bone marrow cells from femurs and tibias of mice were harvested 
and plated in culture medium (RPMI [Hyclone Laboratories Inc., South Logan, UT, USA], 
10% FBS [Hyclone Laboratories Inc.], 1% penicillin/streptomycin [Sigma-Aldrich, St. Louis, 
MO, USA]) containing 10% M-CSF supernatants for 7 days. BMDMs cultured in M-CSF 
conditioned media were washed and re-plated in cell culture dishes (SPL Life Sciences, 
Pocheon, Korea) containing culture medium without M-CSF for 24 h.

Stimulation of BMDMs and MEFs
BMDMs and MEFs were treated with 1000 U/ml IFN-I (PBL Assay Science) or 100 ng/ml 
IFN-γ (R&D systems) for 24 h. The cells were transfected with 1 μg/ml poly(I:C) (InvivoGen) 
or 1 μg/ml CpG DNA (Enzo Life Sciences, Inc.) using Lipofectamine 2000 (Thermo Fisher 
Scientific). The cells were infected with MCMV at the initial multiplicity of infection (MOI) of 
0.2 or 2 in the absence or presence of IFNs, and incubated for 24 h.

Immunoblot analysis
Cells were harvested and lysed in lysis buffer (1% Triton X-100 in TRIS-buffered saline) 
containing proteinase inhibitors. Supernatants of lysates were collected, and the 
concentration of proteins was measured by bicinchoninic acid (BCA) assay (Thermo 
Fisher Scientific). The proteins were separated on 15% SDS-PAGE gels and transferred 
to polyvinylidene fluoride membranes (Millipore, Burlington, MA, USA). The blots were 
blocked with 5% skim milk and 0.05% Tween in PBS for 1 h, incubated with primary 
antibodies for 1 day, probed with horseradish peroxidase-conjugated secondary antibodies 
for 1 h, followed by incubation with enhanced chemiluminescence reagents (Thermo Fisher 
Scientific). The intensity of bands was analyzed using ImageJ software.
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Immunofluorescence
Cells were grown in 24-well cell culture plates containing a 13-mm-diameter coverslip. 
The coverslips were harvested by washing cells with PBS and then fixing cells with 3% 
paraformaldehyde in PBS for 45 min at room temperature. The coverslips were washed with 
PBS and permeabilized with 0.1% Triton X-100 and 0.01% SDS in PBS for 7 min. The coverslips 
were then blocked with 0.2% Tween in PBS containing 10% normal goat serum (Thermo Fisher 
Scientific) for 20 min at room temperature, followed by the addition of the monoclonal mouse 
antibody Croma 101 (anti-IE1), and incubated for 1 h at room temperature. The coverslips 
were washed with 0.2% Tween in PBS and incubated with anti-mouse Ig secondary antibody 
conjugated to dye (Thermo Fisher Scientific) for 45 min at room temperature. The coverslips 
were washed with 0.2% Tween in PBS, rinsed once in PBS, and mounted with ProLong Gold 
Antifade reagent (Molecular Probes, Eugene, OR, USA). The images were acquired with a 
Zeiss LSM700 scanning laser confocal microscope (Carl Zeiss AG, Oberkochen, Germany) and 
analyzed using Zeiss ZEN 2012 software and ImageJ software.

RNA extraction, cDNA preparation, and quantitative real-time PCR
Cells were collected and total RNA were extracted using RNeasy Mini kit (Qiagen, Hilden, 
Germany). The cDNA was synthesized with 1 μg RNA using Prime script RT reagent kit 
according to the manufacturer's instructions (Takara Bio, Kusatsu, Japan). The cDNA 
obtained from cells was quantified by quantitative real-time PCR (qRT-PCR) using TB 
Green Fast qPCR reagent kit (Takara Bio). The sequences of primers for the PCR are listed in 
Supplementary Table 1. The reaction included 95°C for 5 min, which was followed by a 3-step 
PCR program of 95°C for 30 s, 60°C for 5 s, and 72°C for 15 s repeated for 40 cycles. The PCR 
was performed in triplicate for each sample. The quantitation of the results was performed by 
the comparative Ct (2−ΔΔCt) method. The Ct value for each sample was normalized by the value 
for β-actin gene. Three independent experiments were analyzed statistically for differences in 
the mean values, and p values are indicated in the figures.

Statistical analysis
The data are presented as mean±SEM. Statistical significance was determined with unpaired 
2-tailed Student's t-test using GraphPad Prism 5 software. The p values less than 0.05 were 
considered significant.

RESULTS

Viperin differentially regulates expression of ISGs in 2 different cell types 
treated with IFNs
Viperin enhances ISG expression in macrophages in the absence or presence of type I IFN 
(36), but its effect on cell types other than macrophages has not been examined. We therefore 
investigated the role of viperin in ISG induction in 2 distinct cell types, macrophages and 
fibroblasts. Bone marrow cells were isolated from WT and viperin KO mice and differentiated 
into BMDMs in M-CSF conditioned media. MEFs were also isolated from these mice and 
immortalized as described previously (24). The expression levels of ISGs, Viperin, bone 
marrow stromal cell antigen-2 (Bst-2), Isg15, Isg54, myxovirus resistance dynamin like GTPase 
2 (Mx2), guanylate binding protein 2 (Gbp2), and Isg56 that are known to be highly increased 
in cells upon IFN stimulation (36,38-41), were measured in WT and viperin KO BMDMs or 
MEFs (Fig. 1). Consistent with previous studies (36), the increases in expression levels of these 
ISGs were greater in WT BMDMs compared with viperin KO BMDMs treated with type I IFN 
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Figure 1. Viperin differentially regulates ISG expression in BMDMs and MEFs treated with type I IFN. (A-D) The effect of viperin on expression of ISGs in BMDMs 
and MEFs upon type I IFN treatment. The bone marrow cells isolated from WT and viperin KO C57BL/6 mice were differentiated into BMDMs in M-CSF conditioned 
media for 7 days. The BMDMs were washed and plated in media without M-CSF for 24 h (A, B). MEFs were isolated from these mice and immortalized (C, D). The 
cells were treated with or without type I IFN (1,000 U/ml) for 24 h. The mRNA expression levels of ISGs in the cells were measured by qRT-PCR and normalized to 
β-actin mRNA (A, C). Data are presented as mean ± SEM of triplicate samples and are representative of three individual experiments. Expression of viperin and 
ISG15 proteins in the cells was detected by immunoblot using anti-viperin (MaP.VIP) or anti-ISG15 antibody (B, D). GRP94 served as a protein-loading control. 
Quantitation of ISG15 protein level was normalized to GRP94. 
*p<0.05; **p<0.01; ***p<0.001.
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(Fig. 1A and Supplementary Fig. 1). The expression level of ISG15 protein in WT BMDMs was 
also higher than that of ISG15 in viperin KO BMDMs treated with type I IFN (Fig. 1B). Viperin was 
basally expressed in WT BMDMs and highly increased upon type I IFN stimulation (Fig. 1B) (34). 
In contrast, the increases in expression levels of these ISGs, except for Isg56, were less in WT MEFs 
compared with viperin KO MEFs treated with type I IFN (Fig. 1C and Supplementary Fig. 1). The 
expression level of ISG15 in WT MEFs was also lower than that of ISG15 in viperin KO MEFs treated 
with type I IFN (Fig. 1D). Viperin was not basally expressed in MEFs, but it was highly induced in 
WT MEFs treated with type I IFN (Fig. 1D). The results indicated that viperin affects the expression 
of ISGs in type I IFN-mediated signaling pathway and its effects are dependent on cell type.

Both type I and type II IFNs are cytokines that have potent antiviral inhibitory effects on 
innate immune response. Although they bind to different receptors, the type I IFN receptor 
(IFNAR1-IFNAR2 subunits) and the type II IFN receptor (IFNGR1-IFNGR2 subunits), they 
commonly activate the JAK/STAT pathway and induce expression of ISGs (42). To examine 
whether viperin affects type II IFN-mediated signaling pathway, the expression levels of 
ISGs were measured in WT and viperin KO BMDMs or MEFs upon IFN-γ stimulation (Fig. 2). 
Similar to the results from type I IFN treatment, viperin differently affects ISG expression in 
BMDMs and MEFs treated with IFN-γ (Fig. 2). The results suggested that viperin is a cell type-
specific regulator of ISG expression in type I or II IFN-mediated signaling pathway.

Viperin enhances expression of ISGs in cells treated with poly(I:C) or CpG DNA
Viperin can modulate production of IFN in various cells such as pDCs, T cells, and BMDMs 
(29,31,36). To investigate whether viperin regulates ISG expression in cells treated with certain 
stimuli which induce IFN production, the expression levels of ISGs, Viperin, Bst-2, Isg15, Isg54, 
Mx2, and Gbp2 were measured in WT and viperin KO BMDMs or MEFs transfected with poly(I:C) 
or CpG DNA (Fig. 3). The increases in expression levels of these ISGs were significantly greater 
in WT BMDMs compared with viperin KO BMDMs treated with poly(I:C) or CpG DNA (Fig. 3A). 
The expression level of ISG15 in WT BMDMs was also higher than that of ISG15 in viperin KO 
BMDMs treated with poly(I:C) or CpG DNA (Fig. 3B and C). Like in BMDMs, viperin enhances 
ISG expression in MEFs treated with poly(I:C) or CpG DNA (Fig. 3D-F). The results suggested 
that viperin plays a role as a positive regulator on expression of ISGs in response to certain 
stimuli which mediate IFN production.

Viperin differentially regulates expression of ISGs in different cell types upon 
viral infection and/or IFN treatment
To examine the effects of viperin on ISG expression in cells infected with virus, the 
expression levels of ISGs, Viperin, Bst-2, Oas1, Isg15, Isg54, Isg56, Mx2, and Gbp2 were measured 
in WT and viperin KO BMDMs or MEFs infected with MCMV in the absence or presence 
of type I IFN (Fig. 4). The increases in expression levels of these ISGs were greater in WT 
BMDMs compared with viperin KO BMDMs infected with MCMV both in the absence and 
presence of type I IFN (Fig. 4A). While the increases in expression levels of these ISGs were 
greater in WT MEFs compared with viperin KO MEFs infected with MCMV in the absence of 
type I IFN, those of these ISGs except for Isg56 were less in WT MEFs compared with viperin 
KO MEFs infected with MCMV in the presence of type I IFN (Fig. 4B). Similar results were 
obtained from BMDMs and MEFs infected with MCMV in the absence or presence of IFN-γ 
(Fig. 5A and B). The data indicated that like in CpG DNA treatment, viperin enhances ISG 
expression of both BMDMs and MEFs after DNA virus infection. However, the effects of 
viperin on ISG expression by viral infection in MEFs were overwhelmed by IFN treatment, 
resulting in that viperin differentially regulates ISG expression in these 2 cell types.
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Figure 3. Viperin enhances ISG expression in both BMDMs and MEFs transfected with poly(I:C) or CpG DNA. (A-F) The effect of viperin on expression of ISGs 
in BMDMs and MEFs upon poly(I:C) or CpG DNA treatment. WT and viperin KO BMDMs (A-C) or MEFs (D-F) were treated with lipofectamine 2000 (Lipo), or 
transfected with poly(I:C) (1 μg/ml) or CpG DNA (1 μg/ml) for 24 h. The mRNA expression levels of ISGs in the cells were measured by qRT-PCR and normalized 
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*p<0.05; **p<0.01; ***p<0.001.
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Figure 4. Viperin differentially regulates ISG expression in BMDMs and MEFs treated with MCMV and/or type I IFN. (A, B) The effect of viperin on expression of 
ISGs in BMDMs and MEFs infected with MCMV in the absence or presence of type I IFN. WT and viperin KO BMDMs (A) or MEFs (B) were treated with or without 
type I IFN (1,000 U/ml) for 8 h and then infected with MCMV at an MOI of 0.2 for 24 h. The mRNA expression levels of ISGs in the cells were measured by qRT-PCR 
and normalized to β-actin mRNA. Data are presented as mean ± SEM of triplicate samples and are representative of three individual experiments. 
*p<0.05; **p<0.01; ***p<0.001.
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Figure 5. Viperin differently induces ISG expression in BMDMs and MEFs treated with MCMV and/or type II IFN. (A, B) The effect of viperin on expression of ISGs 
in BMDMs and MEFs infected with MCMV in the absence or presence of type II IFN. WT and viperin KO BMDMs (A) or MEFs (B) were treated with or without IFN-γ 
(100 ng/ml) for 8 h and then infected with MCMV at an MOI of 0.2 for 24 h. The mRNA expression levels of ISGs in the cells were measured by qRT-PCR and 
normalized to β-actin mRNA. Data are presented as mean±SEM of triplicate samples and are representative of three individual experiments. 
*p<0.05; **p<0.01; ***p<0.001.
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MCMV entry depends on viperin-mediated ISG expression
To determine whether viperin-mediated ISG expression affects viral infection, the efficiency 
of MCMV entry into WT and viperin KO BMDMs or MEFs were measured (Fig. 6). WT and 
viperin KO BMDMs were infected with MCMV for 24 h in the absence or presence of type I 
or II IFN (Fig. 6A and B). Cells expressing an MCMV protein, IE1 protein, were monitored 
(Fig. 6A). The efficiency of viral entry was quantitated by the percentage of cells expressing 
IE1 protein (Fig. 6B). The number of IE1-positive cells was less in WT BMDMs compared with 
viperin KO BMDMs infected with MCMV in the absence or presence of IFNs. Similar patterns 
of viral entry were also obtained from BMDMs infected with MCMV at low multiplicity of 
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Figure 6. MCMV entry is inversely proportional to viperin-mediated ISG expression. (A-D) The efficiency of MCMV entry into BMDMs and MEFs infected with MCMV 
in the absence or presence of IFNs. WT and viperin KO BMDMs (A, B) or MEFs (C, D) were treated with or without type I IFN (1,000 U/ml) or IFN-γ (100 ng/ml) for 
8 h and then infected with MCMV at an MOI of 2 for 24 h. The cells were stained with antibody specific to the MCMV protein IE1 (green) to identify infected cells. 
Nuclei were stained with DAPI (blue). A representative image from two individual experiments was shown (scale bar=100 μm) (A, C). The efficiency of MCMV 
entry into the cells was quantitated (B, D). The infected cells were counted in each image (n=10). The percentage of MCMV positive cells per total cells in each 
image was calculated. Data are presented as mean±SEM. 
*p<0.05; ***p<0.001.
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infection (Supplementary Fig. 2). While the number of IE1-positive cells was less in WT 
MEFs compared with viperin KO MEFs infected with MCMV in the absence of IFNs, that was 
greater in WT MEFs compared with viperin KO MEFs infected with MCMV in the presence 
of IFNs (Fig. 6C and D). The results indicated that the efficiency of viral entry is inversely 
proportional to the expression levels of ISGs mediated by viperin in both cell types.

DISCUSSION

ISG products play critical roles in innate immunity against infectious pathogens (1,3). 
ISGs are induced by various stimuli including pathogens and IFNs. It suggested that ISG 
expression can be regulated by two distinct signaling pathways, the signaling pathways to 
induce IFN production and the JAK/STAT pathway to induce IFN-mediated ISG expression 
(1,3). Viperin is a highly induced ISG protein in many cell types including macrophages and 
fibroblasts (23). Our study showed that viperin differentially regulates ISG expression in 
BMDMs and MEFs in responses to IFNs. Viperin promoted the increases in ISG expression 
of BMDMs, while it diminished the increases in ISG expression of MEFs treated with IFNs. 
Some ISGs including viperin have cell type-specific property (11,43). Therefore, our data 
indicated that viperin modulates ISG expression in a cell type-dependent manner in response 
to excessive IFN treatment. Previous studies have shown that viperin interacts with IL-1 
receptor associated kinase 1 (IRAK1) and TNF receptor associated factor 6 (TRAF6) at lipid 
droplet in pDCs, and MAVS at mitochondria in BMDMs to regulate the signaling pathway 
for IFN production (29,36). However, viperin interactions to modulate the JAK/STAT 
pathway for ISG induction under IFN treatment are unknown. The possible interactions 
between viperin and the signaling pathway components such as JAK protein kinases, STAT 
proteins, and STAT-IRF complexes may affect viperin-mediated and cell type-dependent ISG 
expression. Recently, it has been reported that both type I IFN and IFN-γ cause promoter 
binding of STAT1-STAT2-IRF9 complexes, a complete IFN-stimulated gene factor 3 (ISGF3) 
complex of the JAK-STAT pathway and highly induce expression of ISGs, while STAT2-IRF9 
complexes control basal expression of ISGs in the steady state (44). It suggested that viperin 
may interact with the ISGF3 complex at different efficiency in BMDMs and MEFs treated with 
IFNs, resulting in different phenotypes of innate immune responses in these cell types. STAT 
proteins regulate the interplay between transcriptional activators, such as Src homology 2 
domain and p300/CBP and the transcriptional activators contribute to selective expression of 
ISGs (45). It suggested that possible interactions of viperin and STAT proteins may determine 
expression of a set of ISGs in different cell types. The mechanism of viperin-mediated and 
cell type-dependent ISG expression needs to be further elucidated.

Our study also showed that viperin augments the increases in ISG expression of both BMDMs 
and MEFs treated with poly(I:C) or CpG DNA and infected with MCMV. However, viperin 
differently regulates production of type I IFN in different cell types (29,36). Upon TLR7- and 
TLR9 stimulation, viperin enhances K63-linked ubiquitination of IRAK1 by TRAF6, activates 
IRF7, and leads to production of type I IFN in pDCs (29). Upon poly(I:C) stimulation, viperin 
interacts with MAVS and restricts IRF3-dependent production of IFN-β in BMDMs (36). 
Therefore, our data indicated that viperin differentially regulates two distinct signaling 
pathways for IFN production and IFN-mediated ISG expression.

In addition, we have previously shown that viperin decreases expression of M1 macrophage 
cytokines including Tnf-a, Il-1b, and Il-6 in BMDMs treated with IFN-γ and LPS (34), while it 

12/16https://doi.org/10.4110/in.2019.19.e33

The Effects of Viperin on Induction of ISGs

https://immunenetwork.org

https://immunenetwork.org


increases expression of ISGs in BMDMs treated with IFN-γ. IL-1β limits production of type I 
IFN through direct transcriptional downregulation and prostaglandin-endoperoxide synthase 
2-dependent prostaglandin E2 production. Inversely, type I IFN modulates the inflammatory 
microenvironment and suppresses production of cytokines (8,9,46). The balance of immune 
responses is important to prevent tissue damage and autoimmunity (9,46). Therefore, our 
data suggested that viperin may be involved in maintenance of a balance between ISGs and 
cytokines in inflammatory responses of macrophages.

The efficiency of MCMV entry was dependent on viperin-mediated ISG expression levels in 
cells infected with MCMV in the absence or presence of IFNs. The viral entry was less in both 
WT BMDMs and MEFs compared with viperin KO cells after MCMV infection. However, in 
the presence of IFNs, unlike in BMDMs, the viral entry was greater in WT MEFs compared 
with viperin KO MEFs after MCMV infection. Our data indicated that the efficiency of viral 
entry is inversely proportional to the expression levels of ISGs shown in both cell types. Our 
data also suggested that although viperin increases viral replication by modulating cellular 
metabolism in the late stage of human cytomegalovirus infection (24,32), the expression levels 
of ISGs mediated by viperin may determine viral infectivity in the early stage of CMV infection. 
Alternatively, the efficiency of MCMV entry in cells infected with MCMV in the presence of IFNs 
may be affected by viperin itself. Upon a combined treatment of CMV and IFN, viperin is highly 
induced and its antiviral or proviral activity may differently acts on BMDMs and MEFs.

In conclusion, we demonstrated that viperin differentially regulates expression of ISGs 
in distinct cell types. The data suggested that viperin is a key regulator in production of 
inflammatory molecules such as IFNs, ISGs, and cytokines in innate immune responses, and its 
regulation mechanism is dependent on cell type or stimulus. Our findings may provide a clue to 
develop new strategies of IFN therapy in immune-mediated or infection-associated diseases.
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SUPPLEMENTARY MATERIALS

Supplementary Table 1
Primer sequences used for qRT-PCR

Click here to view

Supplementary Figure 1
Viperin upregulates Isg56 expression in both BMDMs and MEFs treated with type I IFN. 
(A, B) The effect of viperin on the expression of Isg56 in BMDMs and MEFs upon type I IFN 
treatment. WT and viperin KO BMDMs (A) or MEFs (B) were treated with or without type I 
IFN (1,000 U/ml) for 24 h. The mRNA expression levels of Isg56 in the cells were measured by 
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qRT-PCR and normalized to β-actin mRNA. Data are presented as mean±SEM of triplicate 
samples and are representative of three individual experiments.
*p<0.05; ***p<0.001.

Click here to view

Supplementary Figure 2
The efficiency of MCMV entry depends on viperin-mediated ISG expression. (A, B) The 
efficiency of MCMV entry into BMDMs infected with MCMV in the absence or presence of IFNs. 
WT and viperin KO BMDMs were treated with or without type I IFN (1,000 U/ml) or IFN-γ (100 
ng/ml) for 8 h and then infected with MCMV at an MOI of 0.2 for 24 h. The cells were stained 
with antibody specific to the MCMV protein IE1 (green) to identify infected cells. Nuclei were 
stained with DAPI (blue). A representative image from 2 individual experiments was shown 
(scale bar=100 μm) (A). The efficiency of MCMV entry into the cells was quantitated (B). The 
infected cells were counted in each image (n=10). The percentage of MCMV positive cells per 
total cells in each image was calculated. Data are presented as mean±SEM.
**p<0.01; ***p<0.001.

Click here to view

REFERENCES

	 1.	 Bowie AG, Unterholzner L. Viral evasion and subversion of pattern-recognition receptor signalling. Nat 
Rev Immunol 2008;8:911-922. 
PUBMED | CROSSREF

	 2.	 de Veer MJ, Holko M, Frevel M, Walker E, Der S, Paranjape JM, Silverman RH, Williams BR. Functional 
classification of interferon-stimulated genes identified using microarrays. J Leukoc Biol 2001;69:912-920.
PUBMED

	 3.	 Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: a complex web of host defenses. 
Annu Rev Immunol 2014;32:513-545. 
PUBMED | CROSSREF

	 4.	 Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, 
Mohammadi A, Afshari JT, Sahebkar A. Macrophage plasticity, polarization, and function in health and 
disease. J Cell Physiol 2018;233:6425-6440. 
PUBMED | CROSSREF

	 5.	 Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity 
2010;32:593-604. 
PUBMED | CROSSREF

	 6.	 Liu YC, Zou XB, Chai YF, Yao YM. Macrophage polarization in inflammatory diseases. Int J Biol Sci 
2014;10:520-529. 
PUBMED | CROSSREF

	 7.	 Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature 
2013;496:445-455. 
PUBMED | CROSSREF

	 8.	 Mayer-Barber KD, Yan B. Clash of the Cytokine Titans: counter-regulation of interleukin-1 and type I 
interferon-mediated inflammatory responses. Cell Mol Immunol 2017;14:22-35. 
PUBMED | CROSSREF

	 9.	 Kalliolias GD, Ivashkiv LB. Overview of the biology of type I interferons. Arthritis Res Ther 2010;12 Suppl 1:S1. 
PUBMED | CROSSREF

	10.	 John SP, Sun J, Carlson RJ, Cao B, Bradfield CJ, Song J, Smelkinson M, Fraser ID. IFIT1 exerts opposing 
regulatory effects on the inflammatory and interferon gene programs in LPS-activated human 
macrophages. Cell Reports 2018;25:95-106.e6. 
PUBMED | CROSSREF

14/16https://doi.org/10.4110/in.2019.19.e33

The Effects of Viperin on Induction of ISGs

https://immunenetwork.org

https://immunenetwork.org/DownloadSupplMaterial.php?id=10.4110/in.2019.19.e33&fn=in-19-e33-s002.ppt
https://immunenetwork.org/DownloadSupplMaterial.php?id=10.4110/in.2019.19.e33&fn=in-19-e33-s003.ppt
http://www.ncbi.nlm.nih.gov/pubmed/18989317
https://doi.org/10.1038/nri2436
http://www.ncbi.nlm.nih.gov/pubmed/11404376
http://www.ncbi.nlm.nih.gov/pubmed/24555472
https://doi.org/10.1146/annurev-immunol-032713-120231
http://www.ncbi.nlm.nih.gov/pubmed/29319160
https://doi.org/10.1002/jcp.26429
http://www.ncbi.nlm.nih.gov/pubmed/20510870
https://doi.org/10.1016/j.immuni.2010.05.007
http://www.ncbi.nlm.nih.gov/pubmed/24910531
https://doi.org/10.7150/ijbs.8879
http://www.ncbi.nlm.nih.gov/pubmed/23619691
https://doi.org/10.1038/nature12034
http://www.ncbi.nlm.nih.gov/pubmed/27264686
https://doi.org/10.1038/cmi.2016.25
http://www.ncbi.nlm.nih.gov/pubmed/20392288
https://doi.org/10.1186/ar2881
http://www.ncbi.nlm.nih.gov/pubmed/30282041
https://doi.org/10.1016/j.celrep.2018.09.002
https://immunenetwork.org


	11.	 Tecalco Cruz AC, Mejía-Barreto K. Cell type-dependent regulation of free ISG15 levels and ISGylation. J 
Cell Commun Signal 2017;11:127-135. 
PUBMED | CROSSREF

	12.	 Fan JB, Miyauchi-Ishida S, Arimoto K, Liu D, Yan M, Liu CW, Győrffy B, Zhang DE. Type I IFN induces 
protein ISGylation to enhance cytokine expression and augments colonic inflammation. Proc Natl Acad Sci 
U S A 2015;112:14313-14318. 
PUBMED | CROSSREF

	13.	 Pang X, Li X, Mo Z, Huang J, Deng H, Lei Z, Zheng X, Feng Z, Xie D, Gao Z. IFI16 is involved in HBV-
associated acute-on-chronic liver failure inflammation. BMC Gastroenterol 2018;18:61. 
PUBMED | CROSSREF

	14.	 Trahey M, Weissman IL. Cyclophilin C-associated protein: a normal secreted glycoprotein that down-
modulates endotoxin and proinflammatory responses in vivo. Proc Natl Acad Sci U S A 1999;96:3006-3011. 
PUBMED | CROSSREF

	15.	 Lynch MD, Watt FM. Fibroblast heterogeneity: implications for human disease. J Clin Invest 2018;128:26-35. 
PUBMED | CROSSREF

	16.	 Hamada A, Torre C, Drancourt M, Ghigo E. Trained immunity carried by non-immune cells. Front Microbiol 
2019;9:3225. 
PUBMED | CROSSREF

	17.	 Buechler MB, Turley SJ. A short field guide to fibroblast function in immunity. Semin Immunol 2018;35:48-58. 
PUBMED | CROSSREF

	18.	 Jones PH, Mehta HV, Maric M, Roller RJ, Okeoma CM. Bone marrow stromal cell antigen 2 (BST-2) 
restricts mouse mammary tumor virus (MMTV) replication in vivo. Retrovirology 2012;9:10. 
PUBMED | CROSSREF

	19.	 Perwitasari O, Cho H, Diamond MS, Gale M Jr. Inhibitor of κB kinase ε (IKKε), STAT1, and IFIT2 
proteins define novel innate immune effector pathway against West Nile virus infection. J Biol Chem 
2011;286:44412-44423. 
PUBMED | CROSSREF

	20.	 Tallóczy Z, Virgin HW 4th, Levine B. PKR-dependent autophagic degradation of herpes simplex virus type 
1. Autophagy 2006;2:24-29. 
PUBMED | CROSSREF

	21.	 Chin KC, Cresswell P. Viperin (cig5), an IFN-inducible antiviral protein directly induced by human 
cytomegalovirus. Proc Natl Acad Sci U S A 2001;98:15125-15130. 
PUBMED | CROSSREF

	22.	 Zhu H, Cong JP, Shenk T. Use of differential display analysis to assess the effect of human 
cytomegalovirus infection on the accumulation of cellular RNAs: induction of interferon-responsive 
RNAs. Proc Natl Acad Sci U S A 1997;94:13985-13990. 
PUBMED | CROSSREF

	23.	 Seo JY, Yaneva R, Cresswell P. Viperin: a multifunctional, interferon-inducible protein that regulates virus 
replication. Cell Host Microbe 2011;10:534-539. 
PUBMED | CROSSREF

	24.	 Seo JY, Yaneva R, Hinson ER, Cresswell P. Human cytomegalovirus directly induces the antiviral protein 
viperin to enhance infectivity. Science 2011;332:1093-1097. 
PUBMED | CROSSREF

	25.	 Jiang D, Guo H, Xu C, Chang J, Gu B, Wang L, Block TM, Guo JT. Identification of three interferon-
inducible cellular enzymes that inhibit the replication of hepatitis C virus. J Virol 2008;82:1665-1678. 
PUBMED | CROSSREF

	26.	 Rivieccio MA, Suh HS, Zhao Y, Zhao ML, Chin KC, Lee SC, Brosnan CF. TLR3 ligation activates an 
antiviral response in human fetal astrocytes: a role for viperin/cig5. J Immunol 2006;177:4735-4741. 
PUBMED | CROSSREF

	27.	 Wang X, Hinson ER, Cresswell P. The interferon-inducible protein viperin inhibits influenza virus release 
by perturbing lipid rafts. Cell Host Microbe 2007;2:96-105. 
PUBMED | CROSSREF

	28.	 Zhang Y, Burke CW, Ryman KD, Klimstra WB. Identification and characterization of interferon-induced 
proteins that inhibit alphavirus replication. J Virol 2007;81:11246-11255. 
PUBMED | CROSSREF

	29.	 Saitoh T, Satoh T, Yamamoto N, Uematsu S, Takeuchi O, Kawai T, Akira S. Antiviral protein Viperin 
promotes Toll-like receptor 7- and Toll-like receptor 9-mediated type I interferon production in 
plasmacytoid dendritic cells. Immunity 2011;34:352-363. 
PUBMED | CROSSREF

15/16https://doi.org/10.4110/in.2019.19.e33

The Effects of Viperin on Induction of ISGs

https://immunenetwork.org

http://www.ncbi.nlm.nih.gov/pubmed/28285335
https://doi.org/10.1007/s12079-017-0385-7
http://www.ncbi.nlm.nih.gov/pubmed/26515094
https://doi.org/10.1073/pnas.1505690112
http://www.ncbi.nlm.nih.gov/pubmed/29743020
https://doi.org/10.1186/s12876-018-0791-1
http://www.ncbi.nlm.nih.gov/pubmed/10077627
https://doi.org/10.1073/pnas.96.6.3006
http://www.ncbi.nlm.nih.gov/pubmed/29293096
https://doi.org/10.1172/JCI93555
http://www.ncbi.nlm.nih.gov/pubmed/30692968
https://doi.org/10.3389/fmicb.2018.03225
http://www.ncbi.nlm.nih.gov/pubmed/29198601
https://doi.org/10.1016/j.smim.2017.11.001
http://www.ncbi.nlm.nih.gov/pubmed/22284121
https://doi.org/10.1186/1742-4690-9-10
http://www.ncbi.nlm.nih.gov/pubmed/22065572
https://doi.org/10.1074/jbc.M111.285205
http://www.ncbi.nlm.nih.gov/pubmed/16874088
https://doi.org/10.4161/auto.2176
http://www.ncbi.nlm.nih.gov/pubmed/11752458
https://doi.org/10.1073/pnas.011593298
http://www.ncbi.nlm.nih.gov/pubmed/9391139
https://doi.org/10.1073/pnas.94.25.13985
http://www.ncbi.nlm.nih.gov/pubmed/22177558
https://doi.org/10.1016/j.chom.2011.11.004
http://www.ncbi.nlm.nih.gov/pubmed/21527675
https://doi.org/10.1126/science.1202007
http://www.ncbi.nlm.nih.gov/pubmed/18077728
https://doi.org/10.1128/JVI.02113-07
http://www.ncbi.nlm.nih.gov/pubmed/16982913
https://doi.org/10.4049/jimmunol.177.7.4735
http://www.ncbi.nlm.nih.gov/pubmed/18005724
https://doi.org/10.1016/j.chom.2007.06.009
http://www.ncbi.nlm.nih.gov/pubmed/17686841
https://doi.org/10.1128/JVI.01282-07
http://www.ncbi.nlm.nih.gov/pubmed/21435586
https://doi.org/10.1016/j.immuni.2011.03.010
https://immunenetwork.org


	30.	 Eom J, Kim JJ, Yoon SG, Jeong H, Son S, Lee JB, Yoo J, Seo HJ, Cho Y, Kim KS, et al. Intrinsic expression of 
viperin regulates thermogenesis in adipose tissues. Proc Natl Acad Sci U S A 2019;116:17419-17428. 
PUBMED | CROSSREF

	31.	 Qiu LQ, Cresswell P, Chin KC. Viperin is required for optimal Th2 responses and T-cell receptor-mediated 
activation of NF-κB and AP-1. Blood 2009;113:3520-3529. 
PUBMED | CROSSREF

	32.	 Seo JY, Cresswell P. Viperin regulates cellular lipid metabolism during human cytomegalovirus infection. 
PLoS Pathog 2013;9:e1003497. 
PUBMED | CROSSREF

	33.	 Jang JS, Lee JH, Jung NC, Choi SY, Park SY, Yoo JY, Song JY, Seo HG, Lee HS, Lim DS. Rsad2 is necessary 
for mouse dendritic cell maturation via the IRF7-mediated signaling pathway. Cell Death Dis 2018;9:823. 
PUBMED | CROSSREF

	34.	 Eom J, Yoo J, Kim JJ, Lee JB, Choi W, Park CG, Seo JY. Viperin deficiency promotes polarization of 
macrophages and secretion of M1 and M2 cytokines. Immune Netw 2018;18:e32. 
PUBMED | CROSSREF

	35.	 Carissimo G, Teo TH, Chan YH, Lee CY, Lee B, Torres-Ruesta A, Tan JJ, Chua TK, Fong SW, Lum FM, et al. 
Viperin controls chikungunya virus-specific pathogenic T cell IFNγ Th1 stimulation in mice. Life Sci Alliance 
2019;2:e201900298. 
PUBMED | CROSSREF

	36.	 Hee JS, Cresswell P. Viperin interaction with mitochondrial antiviral signaling protein (MAVS) limits 
viperin-mediated inhibition of the interferon response in macrophages. PLoS One 2017;12:e0172236. 
PUBMED | CROSSREF

	37.	 Ryu SH, Na HY, Sohn M, Han SM, Choi W, In H, Hong S, Jeon H, Seo JY, Ahn J, et al. Reduced expression 
of granule proteins during extended survival of eosinophils in splenocyte culture with GM-CSF. Immunol 
Lett 2016;173:7-20. 
PUBMED | CROSSREF

	38.	 Lissner MM, Thomas BJ, Wee K, Tong AJ, Kollmann TR, Smale ST. Age-related gene expression 
differences in monocytes from human neonates, young adults, and older adults. PLoS One 
2015;10:e0132061. 
PUBMED | CROSSREF

	39.	 Josset L, Tchitchek N, Gralinski LE, Ferris MT, Eisfeld AJ, Green RR, Thomas MJ, Tisoncik-Go J, Schroth 
GP, Kawaoka Y, et al. Annotation of long non-coding RNAs expressed in collaborative cross founder mice 
in response to respiratory virus infection reveals a new class of interferon-stimulated transcripts. RNA Biol 
2014;11:875-890. 
PUBMED | CROSSREF

	40.	 Ouda R, Sarai N, Nehru V, Patel MC, Debrosse M, Bachu M, Chereji RV, Eriksson PR, Clark DJ, Ozato K. 
SPT6 interacts with NSD2 and facilitates interferon-induced transcription. FEBS Lett 2018;592:1681-1692. 
PUBMED | CROSSREF

	41.	 Bachu M, Tamura T, Chen C, Narain A, Nehru V, Sarai N, Ghosh SB, Ghosh A, Kavarthapu R, Dufau ML, 
et al. A versatile mouse model of epitope-tagged histone H3.3 to study epigenome dynamics. J Biol Chem 
2019;294:1904-1914. 
PUBMED | CROSSREF

	42.	 Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 
2005;5:375-386. 
PUBMED | CROSSREF

	43.	 Lindqvist R, Kurhade C, Gilthorpe JD, Överby AK. Cell-type- and region-specific restriction of 
neurotropic flavivirus infection by viperin. J Neuroinflammation 2018;15:80. 
PUBMED | CROSSREF

	44.	 Platanitis E, Demiroz D, Schneller A, Fischer K, Capelle C, Hartl M, Gossenreiter T, Müller M, 
Novatchkova M, Decker T. A molecular switch from STAT2-IRF9 to ISGF3 underlies interferon-induced 
gene transcription. Nat Commun 2019;10:2921. 
PUBMED | CROSSREF

	45.	 Ooi EL, Chan ST, Cho NE, Wilkins C, Woodward J, Li M, Kikkawa U, Tellinghuisen T, Gale M Jr, Saito T. 
Novel antiviral host factor, TNK1, regulates IFN signaling through serine phosphorylation of STAT1. Proc 
Natl Acad Sci U S A 2014;111:1909-1914. 
PUBMED | CROSSREF

	46.	 Psarras A, Emery P, Vital EM. Type I interferon-mediated autoimmune diseases: pathogenesis, diagnosis 
and targeted therapy. Rheumatology (Oxford) 2017;56:1662-1675. 
PUBMED | CROSSREF

16/16https://doi.org/10.4110/in.2019.19.e33

The Effects of Viperin on Induction of ISGs

https://immunenetwork.org

http://www.ncbi.nlm.nih.gov/pubmed/31341090
https://doi.org/10.1073/pnas.1904480116
http://www.ncbi.nlm.nih.gov/pubmed/19047684
https://doi.org/10.1182/blood-2008-07-171942
http://www.ncbi.nlm.nih.gov/pubmed/23935494
https://doi.org/10.1371/journal.ppat.1003497
http://www.ncbi.nlm.nih.gov/pubmed/30068989
https://doi.org/10.1038/s41419-018-0889-y
http://www.ncbi.nlm.nih.gov/pubmed/30181920
https://doi.org/10.4110/in.2018.18.e32
http://www.ncbi.nlm.nih.gov/pubmed/30665948
https://doi.org/10.26508/lsa.201900298
http://www.ncbi.nlm.nih.gov/pubmed/28207838
https://doi.org/10.1371/journal.pone.0172236
http://www.ncbi.nlm.nih.gov/pubmed/26969350
https://doi.org/10.1016/j.imlet.2016.03.003
http://www.ncbi.nlm.nih.gov/pubmed/26147648
https://doi.org/10.1371/journal.pone.0132061
http://www.ncbi.nlm.nih.gov/pubmed/24922324
https://doi.org/10.4161/rna.29442
http://www.ncbi.nlm.nih.gov/pubmed/29683485
https://doi.org/10.1002/1873-3468.13069
http://www.ncbi.nlm.nih.gov/pubmed/30552116
https://doi.org/10.1074/jbc.RA118.005550
http://www.ncbi.nlm.nih.gov/pubmed/15864272
https://doi.org/10.1038/nri1604
http://www.ncbi.nlm.nih.gov/pubmed/29544502
https://doi.org/10.1186/s12974-018-1119-3
http://www.ncbi.nlm.nih.gov/pubmed/31266943
https://doi.org/10.1038/s41467-019-10970-y
http://www.ncbi.nlm.nih.gov/pubmed/24449862
https://doi.org/10.1073/pnas.1314268111
http://www.ncbi.nlm.nih.gov/pubmed/28122959
https://doi.org/10.1093/rheumatology/kew431
https://immunenetwork.org

	Viperin Differentially Induces Interferon-Stimulated Genes in Distinct Cell Types
	INTRODUCTION
	MATERIALS AND METHODS
	Generation of BMDMs
	Stimulation of BMDMs and MEFs
	Immunoblot analysis
	Immunofluorescence
	RNA extraction, cDNA preparation, and quantitative real-time PCR
	Statistical analysis

	RESULTS
	Viperin enhances expression of ISGs in cells treated with poly(I:C) or CpG DNA
	Viperin differentially regulates expression of ISGs in different cell types upon viral infection and/or IFN treatment
	MCMV entry depends on viperin-mediated ISG expression

	DISCUSSION
	SUPPLEMENTARY MATERIALS
	Supplementary Table 1
	Supplementary Figure 1
	Supplementary Figure 2

	REFERENCES


